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Abstract: The unmanned aerial vehicle (UAV) route planning problem mainly centralizes on the
process of calculating the best route between the departure point and target point as well as avoiding
obstructions on route to avoid collisions within a given flight area. A highly efficient route planning
approach is required for this complex high dimensional optimization problem. However, many
algorithms are infeasible or have low efficiency, particularly in the complex three-dimensional (3d)
flight environment. In this paper, a modified sparrow search algorithm named CASSA has been
presented to deal with this problem. Firstly, the 3d task space model and the UAV route planning cost
functions are established, and the problem of route planning is transformed into a multi-dimensional
function optimization problem. Secondly, the chaotic strategy is introduced to enhance the diversity
of the population of the algorithm, and an adaptive inertia weight is used to balance the convergence
rate and exploration capabilities of the algorithm. Finally, the Cauchy–Gaussian mutation strategy is
adopted to enhance the capability of the algorithm to get rid of stagnation. The results of simulation
demonstrate that the routes generated by CASSA are preferable to the sparrow search algorithm
(SSA), particle swarm optimization (PSO), artificial bee colony (ABC), and whale optimization
algorithm (WOA) under the identical environment, which means that CASSA is more efficient for
solving UAV route planning problem when taking all kinds of constraints into consideration.

Keywords: unmanned aerial vehicle; optimization algorithm; modified sparrow search algorithm;
route planning

1. Introduction
1.1. Research Background

The three-dimensional (3d) route planning for unmanned aerial vehicle (UAV) can be
considered as a multi-constraint global optimization problem [1], and the main purpose
of this problem is to search for the optimal route from the departure point to the target
point autonomously according to the task requirements and the flight constraints. In recent
years, with the broad use of different kinds of UAV, this problem has drawn widespread
attention from researchers.

In recent years, various approaches have been put forward for solving this complex
optimization problem, such as A* algorithm [2], rapidly exploring random trees [3], po-
tential field based method (PFM) [4], genetic algorithm (GA) [5], linear programming [6],
and artificial intelligence guidance [7]. These methods can be classified as deterministic
algorithms and non-deterministic algorithms. Obviously, most of the practical engineering
problems have many local optimal solutions [8,9]. Although deterministic algorithms are
quite mature in mathematical theory, there also exists the problem that they are less effective
in dealing with discontinuous and non-derivative functions, and they are easily trapped
into local optimal solutions when solving the UAV route planning problem with multiple
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constraints [10]. Due to those problems that deterministic algorithms have, researchers
have begun to pay more attention to heuristic algorithms. The most important feature
of the heuristic algorithm is that it introduces a stochastic approach, which provides the
opportunity to get rid of the local optimal solutions. Compared with classical methods,
the heuristic algorithms require less computation due to their independence of initial
conditions. In general, it is significant to use heuristic algorithms to obtain the optimal
solution for global optimization problems.

1.2. Related Work

With the development of computer science, some heuristic algorithms have been
widely applied to deal with UAV route planning problems. In Table 1, the recent relevant
studies are shown as below.

Table 1. Heuristic algorithms for UAV route planning.

Authors Algorithms Modified Strategy

Shin, J. et al. [11] Improved particle swarm optimization
(PSO) algorithm Proposed the multiple balance strategy

Cekmez, U. et al. [12] Multi ant colony optimization
(MACO) algorithm Proposed the new information exchange strategy

Li, B. et al. [13] Improved artificial bee colony (ABC) Algorithm Proposed the balanced evolution strategy

Pan, J. et al. [14] Chaotic cuckoo search (CCS) algorithm Integrated the chaotic strategy into CS

Pandey, P. et al. [15] Improved glowworm swarm optimization
(GSO) algorithm

Introduced the genetic operators of mutation
and crossover into GSO

YongBo, C. et al. [16] Modified wolf pack search (WPS) algorithm Introduced the mutation operators into WPS

GaiGe, W. et al. [17] Improved bat algorithm (IBA) Combined the BA with Differential
Evolution (DE)

Wu, J. et al. [18] Improved whale optimization algorithm (IWOA) Proposed an adaptive chaos–Gaussian
switching strategy

ChenZhi, Q. et al. [19] Hybrid grey wolf optimizer (GWO)
(HSGWO-MSOS)

Combined the simplified GWO and modified
symbiotic organisms search (MSOS)

Jize, L. et al. [20] Modified PSO algorithm Introduced the genetic algorithm and chaos
theory into PSO

Pierre, D.M. et al. [21] Master–slave parallel vector-evaluated genetic
algorithm (MSPVEGA)

Proposed the Master–slave parallel
vector-evaluated strategy

Xinhua, W. et al. [22] Improved ant colony algorithm (ACA) Proposed a new node selection strategy

Sun, Y. et al. [23] Modified clustering algorithm (CA) Combined the improved clustering algorithm
and ant colony algorithm

Yubing, W. et al. [24] Distributed PSO algorithm Designed the jump-out strategy and
revisit strategy

Chunying, W. et al. [25] Adaptive vortex search (VS) Algorithm Introduced an adaptive radius
decrement process

Xinfang, L. et al. [26] Shuffled frog-leaping algorithm (FLA) Proposed a novel coding method and the worst
frog update strategy

Inspired by the predatory behavior of sparrows, the sparrow search algorithm (SSA) is
firstly proposed in Ref. [27]. As a heuristic algorithm, the SSA imitates the predatory activity
and the escape activity of a sparrow group, which has better convergence performance
than some other swarm-intelligence algorithms. Because of its few controlling parameters
as well as easy implementation, SSA has been successfully used in various practical
engineering applications. For example, Ref. [28] proposed a power flow management of a
hybrid renewable energy source (HRES) with SSA. Ref. [29] used an improved SSA to solve
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the renewable energy system optimization problem. In Ref. [30], the authors combined the
neural networks with the SSA for the obstacle avoidance. In Ref. [31], the authors proposed
an adaptive SSA to identify the optimal parameter of proton exchange membrane fuel
cell stacks.

1.3. Contributions

In this paper, a novel modified sparrow search algorithm called CASSA is proposed for
solving this complex optimization problem. The modified method includes the following
steps: (1) The chaotic strategy is used to enhance the randomness of the positions of the
initial population; (2) an adaptive inertia weight is applied to balance the convergence rate
and exploration capabilities of the algorithm; (3) the Cauchy–Gaussian mutation strategy is
adopted to improve the capability to get rid of stagnation. The effectiveness of the proposed
modified algorithm is verified through the comparison among it and other algorithms,
including original SSA, PSO, ABC, and WOA. Finally, the modified SSA is successfully
applied to search the best route in the complicated 3d environment for UAV. The final
experimental results evidenced that CASSA has the most excellent capability among all the
algorithms tested in this paper.

The structure of this paper is shown as below. In Section 2, the original sparrow search
algorithm is described in detail; Section 3 shows the motivation of improving CASSA
and its details, including the chaotic strategy, the adaptive weight parameters, and the
Cauchy–Gaussian mutation; Section 4 conducts comparison experiments on some classical
benchmark functions and evaluates the effectiveness of each part of the proposed CASSA;
Section 5 introduces the mathematical model of UAV route planning in detail and shows
the experimental results of this problem; finally, Section 6 concludes with an integrated
summary of this paper.

2. Details of Optimization Techniques
2.1. Overview of Sparrow Search Algorithm

The original SSA is a heuristic algorithm motivated by the foraging and anti-predation
behaviors of sparrow colony. This algorithm was put forward by Ref. [27] in 2020 and
has drawn great attention recently. During the foraging process of sparrows, the colony
is divided into finders and entrants. The finders have better fitness values and provide
foraging areas and directions for the entire sparrow colony, while the entrants use the
position of finders to get food. When the sparrow colony detects the danger and the alarm
value exceeds the safety value, the sparrows will act against predation. The framework of
original SSA is composed of the following three main parts.

2.1.1. Updating Finder Location

In the search process, the finders with better fitness values are given priority for getting
food. As the finders have the responsibility to search for food and direct the movement of
the whole population, they can find food in a broader range compared with other sparrows.
During each iteration, the location of the finder is updated as below:

Xt+1
i =

{
Xt

i × exp
(
−i

a·Tmax

)
, R2 < ST

Xt
i + Q · L, R2 ≥ ST

with
X = [X1, X2 · · ·Xi · · ·Xn]

T ,Xi = [Xi,1, Xi,2 · · ·Xi,d]

, (1)

where t represents the current iteration; n is the number of sparrows; d denotes the
dimension of the variables; Tmax is the largest number of the iteration; Xt

i represents the
position of the ith individual at iteration t; α ∈ (0, 1] denotes a random number; R2 ∈ (0, 1]
represents the alarm value and ST ∈ [0.5, 1) represents the safety threshold; L is a 1× d
matrix that each factor inside is 1; Q is a random number that obeys the normal distribution
with mean 0 and variance 1; if R2 < ST, it denotes that the foraging environment is safe,
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while R2 ≥ ST signifies that some individuals have already encountered predators and
therefore all sparrows need to fly quickly to other safe areas.

According to Equation (1), it can be seen that when R2 < ST, the next generation of
finder will move around the current position. Equation (2) reveals the variation in the
range of values of the finder’s position.

y = exp
(
−x

a · Tmax

)
, (2)

where x represents the iteration times, and y represents the range of value variation for
finder’s position. Figure 1 shows the distribution of a random value between 0 and
y, which represents the change of the updated range of the finder’s position when the
foraging environment is safe. As x becomes larger, y gradually narrows slowly from (0,1)
to approximately (0,0.3). When x is smaller, the probability of y taking on a value close
to 1 is higher, and as x increases, the distribution of the values of y becomes more even.
Therefore, when R2 < ST, the range of value variation of each dimension of the sparrow is
getting smaller. This search strategy makes the SSA extremely capable of local search, but
it also leads to a tendency to fall into the local optimal solutions in the late iterations.

Figure 1. Distribution of the random variables between 0 and y.

2.1.2. Updating Entrant Location

The rest of the sparrow colony are entrants, which monitor the finders frequently.
As soon as they notice that the finder has found better food, they will quit their current
position and fly to better foraging areas. The location of the entrants is updated as below:

Xt+1
i =

Q · exp
(

Xworst−Xt
i

α·Tmax

)
, i > n

2

Xt+1
best +

∣∣∣Xt
i − Xt+1

best

∣∣∣ · A · L, i ≤ n
2

, (3)
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where Xbest denotes the elite individual position, i.e., the current best position; Xworst is
the current global worst position; A denotes a d× d matrix for which each factor inside is
assigned 1 or −1 in random. When i ≤ n/2, it suggests that the ith entrant is foraging near
the best location, if i > n/2, it means that the ith entrant with the worse fitness is needed
to fly to another place for food.

2.1.3. Detection and Early Warning Behavior

In the colony, all sparrows have a scouting and early warning mechanism. Generally,
the sparrows that are aware of the predator account for 15% to 30% of the colony. The
mathematical model can be described as below:

Xt+1
i =

Xt
best + β

∣∣Xt
i − Xt

best

∣∣, fi > fb

Xt+1
best + K |X

t
i−Xt+1

best |
( fi− fw)+ε

, fi = fb
, (4)

where β represents the random step length control coefficient, which obeys the normal
distribution with variance of 1 and mean value of 0; K ∈ [−1, 1] is a random number; fi
denotes the fitness value of the ith individual; fb denotes the current global best fitness;
fw denotes the current global worst fitness; ε represents a smallest parameter to avoid the
zero-division-error. When fi > fb, it means that the individual is at the edge of the colony.
If fi = fb, this indicates that the sparrows in the middle of the colony are aware of the
danger and need to fly closer to the safe place.

2.2. Proposed Modified Sparrow Search Algorithm (CASSA)

According to the results of previous research, the original SSA has better robustness
and rapid convergence speed [27–31]. However, some shortcomings still exist in SSA, such
as being easily trapped into local optimal solutions and lower solution precision. The
initialization strategy of SSA is a simple random method, which makes the performance of
the algorithm largely depend on the diversity of the initialized populations. Additionally,
in the late iterations of the algorithm, the sparrow group gradually clusters around the
found optimal position, making it easily get trapped into local optimal solutions. Therefore,
in order to further enhance the SSA’s capability, some specialized strategies are adopted.
The detailed definitions of CASSA are shown as the followings.

2.2.1. Chaotic Strategy

In solving complex optimization problems, SSA has the disadvantage of poor popula-
tion diversity in the late iterations. Recently, chaotic sequences [32] have been applied to
the intelligence algorithms in many optimization applications. For instance, in Ref. [33],
chaotic sequences are applied to dynamically improve population size to avoid immature
convergence; in Ref. [34], chaotic sequences are used in the generation of the initial popula-
tion and the performance of the mutation operators. In this paper, chaotic sequences are
used to improve the population diversity of SSA. Chaotic sequences can map by different
chaotic models such as the Tent map, Logistic map, Kent map, and Cubic map. Ref. [35]
demonstrates that the Cubic map has better uniformity than others. Therefore, the cubic
mapping chaos sequences are adopted for the generation of CASSA population. The diver-
sity of the CASSA’s population is improved by the ergodicity and the initial sensitivity of
the chaotic maps. The mathematical formula is described as below:

Xi = Xlb +
(Xub − Xlb)× (yi + 1)

2
, (5)

yi+1 = 4yi
3 − 3yi

−1 < yi < 1, yi 6= 0, i = 0, 1, . . . , N
, (6)

where Xi represents the individual variable values of sparrows; Xlb and Xub correspond to
the upper and lower bounds in the solution space, respectively; N represents the population



Sensors 2021, 21, 1224 6 of 21

size. Firstly, let D denote the dimension, and a D-dimensional vector with values of [−1,1]
in each dimension is randomly generated as the first operator. Then Equation (5) is used to
iterate over each dimension of the first operator to obtain the remaining (N−1) operators.
Finally, Equation (6) is used to map the values of the operators generated by the cubic
mapping onto individual of sparrows.

2.2.2. Adaptive Inertia Weight Strategy

Whether the SSA can find the optimal solution is largely determined by the search
ability of the finder. The locations of individuals in the searching range are distributed at
random. When there are no adjacent sparrows near the current finder, a random search
strategy will be conducted. It should be noticed that this mode not only slows down the
convergence speed, but also decreases the convergence accuracy under the limited number
of iterations. For further improvement of the finder’s performance, an adaptive inertia
weight is introduced to Equation (7). The mathematical formula is described as below:

Xt+1
i =

{
Xt

i · exp
(

−i
w·α·Tmax

)
, R2 < ST

Xt
i + Q · L, R2 ≥ ST

, (7)

w = 2− exp(t/Tmax)− 1
exp(1)− 1

, (8)

where t is the current iteration times; Tmax represents the maximum iteration times; w
is an inertia weight that adaptively decreases as the number of iterations increases. By
introducing this inertia weight, the range of values taken by α is adaptively controlled.
As is shown in Figure 2, at the beginning of the iterations, a larger value of w gives the
algorithm a larger range of optimization. At the end of the iterations, a smaller value of w
is conducive to enhancing the convergence accuracy of the algorithm.

Figure 2. The changing trend of w.

2.2.3. Cauchy–Gaussian Mutation Strategy

In the late iterations of SSA, sparrows gradually move closer to the optimal individuals,
which leads to a lack of population diversity and a tendency for the algorithm to converge
prematurely. For solving this problem, the Cauchy–Gaussian mutation strategy [36] is
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introduced in this paper. The individual with the best current fitness is selected for
mutation. Then, its positions before and after mutation are compared, after which the
better position is chosen to enter the next iteration. The mathematical definition of the
Cauchy–Gaussian mutation strategy is described as below:

Ut+1
best = Xt

best[1 + λ1cauchy(0, σ2) + λ2Gauss(0, σ2)], (9)

σ =

{
1, f (Xbest) < f (Xi)

exp
(

f (Xbest)− f (Xi)
| f (Xbest)|

)
, otherwise

, (10)

where Xbest is the elite individual position, Ut+1
i represents the position of the elite individ-

ual after mutation, σ2 represents the standard deviation of the Cauchy–Gaussian mutation
strategy. cauchy(0, σ2) is a random variate satisfying Cauchy distribution, and Gauss(0, σ2)
is a random variate satisfying Gaussian distribution. λ1 = 1− t2/T2

max and λ2 = t2/T2
max

are the dynamic parameters that are adaptively adjusted with the times of iteration. In
Equation (9), λ1 is larger at the initial stage so that the algorithm can explore the optimal
solution in a larger range with a larger mutation step. λ2 has a small mutation step, which
facilitates the algorithm to search near the optimal solution. During the search process, λ1
decreases gradually, while λ2 keeps increasing.

The flowchart is shown in Figure 3, and the detailed implementation procedure of
CASSA is illustrated in Algorithm 1.

Algorithm 1 The framework of CASSA

/*Initialization*/
1. Set the maximum iterations as Tmax;
2. Set the number of finders as Fd;
3. Set the number of threatened sparrows as Sd;
4. Set the alarm value as G;
5. Set the number of sparrows as n;
6. Initialize the position of n sparrows using Equation (5);
/*Iterative search*/
7. while (t < Tmax)
8. Rank the fitness values and find the best individual and the worst individual currently;
9. G = rand(1);
10. for i = 1 : Fd
11. Update the finder’s position using Equation (7);
12. end for
13. for i = (Fd + 1) : n
14. Update the entrant’s position using Equation (3);
15. end for
16. for i = 1 : Sd
17. Update the threatened sparrow’s position using Equation (4);
18. end for
19. Select the top S elite individuals and implement adaptive mutation for them by Equation (9);
20. Get the current new position;
21. If the new position is better than before, update it;
22. t = t + 1;
23. end while
24. Output the best solution
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Figure 3. The flowchart of CASSA.

3. Experiment for Benchmark Functions

In this section, there are four tested functions shown in Table 2, and the trajectories
of individuals of CASSA in these test functions are presented in Figure 4. It shows that
most individuals move towards the global optimum in unimodal functions. However,
in the more complex multi-modal functions, although many individuals stagnate at the
local minimums, some individuals can still avoid them and aggregate towards the global
optimum. To verify whether it is feasible and highly efficient, the proposed CASSA is
compared with four algorithms in the experiments, including original SSA, PSO, ABC, and
WOA. There are twelve classical benchmark functions [37] shown in Table 3, which consists
of the information of their formula, initialization range, and global optimum. Among
these benchmark functions, f1∼f6 are unimodal functions, and f7∼f12 are multi-modal
functions. In all cases, we conducted the independent trials 30 times on each benchmark
function. The maximum number of iterations is 500, and the population size is 50 in each
experiment. Finally, we obtained the best value, mean value, and the standard deviation
(Std.) of the objective function values. With the same benchmark function, the best value
and average value denote the exploration ability and convergence accuracy, respectively,
and the standard deviation denotes the stability of the algorithm. The experimental results
are shown in Figure 5 and Table 4.

As is shown in Figure 5, in the experiments on unimodal functions, CASSA can quickly
find the optimal values of f1, f2, f5, and f6. Although the optimal values of f3 and f4 are not
found, CASSA still has the fastest convergence speed and accuracy among all the tested
algorithms. In the experiments on the multi-modal functions, only CASSA and SSA can
find the optimal values of f7. For f8, f9, f10, and f12, CASSA, SSA, and WOA can find the
optimal values, but CASSA requires the smallest iteration times. For f11, all algorithms
fail to find the optimal value, but CASSA still finds the near-optimal solution with the
highest accuracy.
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Table 2. Four tested functions.

Name Definition Domain Optimum/Minimum

Ackley
f (x) = −20 exp

(
−0.2

√
D
∑

i=1

x2
i

D

)
− exp

(
∑D

i=1 cos(2πxi)/D
)
+ 20 + e

[−32, −32] [0, 0, 0, . . . ., 0]/0

BentCigar f (x) = x2
1 + 106

D
∑

i=2
x2

i [−100, 100] [1, 1, 1, . . . , 1]/0

Schwefel f (x) = 418.9829 ∗ D−
D
∑

i=1
xi sin(

√
|xi|) [−500, 500] [420.96, 420.96, 420.96, ...., 420.96]/0

Weierstrass
f (x) =

+∞
∑

n=0
an cos(bnπx)

where 0 < a < 1, ab > 1 + 3
2 π

[−50, 50] [0, 0, 0, . . . , 0]/0

Table 3. Twelve benchmark functions.

Name Definition Domain Optimum/Minimum

Sphere f1(x) =
D
∑

i=1
x2

i [100, 100] [0, 0, 0, . . . , 0]/0

Tablet f2(x) = (1000 ∗ x1)
2 +

D
∑

i=2
x2

i [−100, 100] [0, 0, 0, . . . , 0]/0

StepFun f3(x) =
D
∑

i=1
(|xi + 0.5|)

2
[−100, 100] [0, 0, 0, . . . , 0]/0

Rosenbrock f4(x) =
D−1
∑

i=1

(
100
(

x2
i − xi+1

))2

+ (xi − 1)2 [−100, 100] [1, 1, 1, . . . , 1]/0

Quadric f5(x) =
D
∑

i=1

(
i

∑
j=1

xj

)2

[−100, 100] [0, 0, 0, . . . , 0]/0

BentCigar f6(x) = x2
1 + 106

D
∑

i=2
x2

i [−100, 100] [1, 1, 1, . . . , 1]/0

Ackley
f7(x) = −20 exp

(
−0.2

√
D
∑

i=1

x2
i

D

)
− exp

(
∑D

i=1 cos(2πxi)/D
)
+ 20 + e

[−32, −32] [0, 0, 0, . . . ., 0]/0

Griewank f8(x) =
D
∑

i=1
x2

i /4000−
D
∏
i=1

cos
(

xi/
√

i
)
+ 1 [−600, −600] [0, 0, 0, . . . , 0]/0

Rastrigrin f9(x) =
D
∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

[−5.12, −5.12] [0, 0, 0, . . . , 0]/0

RastrigrinNon
f10(x) =

D
∑

i=1

(
y2

i − 10 cos(2πyi) + 10
)

where yi =

{
xi , |xi | < 1/2
round(2xi)

2 , otherwise

[−5.12, −5.12] [0, 0, 0, . . . , 0]/0

Penalized1

f11(x) =
D
∑

i=1
u(xi , 10, 100, 4) + π

D

{
10(sin (πy1)

2

+
D−1
∑

i=1
((yi − 1)2[1 + 10(sin(πyi+1))

+(yD − 1)2
} [−50, 50] [1, 1, 1, . . . , 1]/0

Dminima f18(x) = 78.332331408 +
D
∑

i=1

x4
i −16x2

i +5xi
D [−500, 500] [420.96, 420.96, 420.96, ...., 420.96]/0
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Figure 4. The trajectories of CASSA on the 3-D version of the four test functions: (a1,a2) Ackley function; (b1,b2) Cigar
function; (c1,c2) Schwefel function; (d1,d2) Weierstrass function.
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Figure 5. Cont.
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Figure 5. Convergence curve of five algorithms on twelve benchmarks functions.

Table 4. Experimental results of benchmark functions.

Function Algorithm Best Value Average Value Standard Deviation

Sphere

CASSA 0 4.13 × 10−4 9.91 × 10−3

WOA 1.51 × 10−90 6.88 × 102 5.63 × 103

PSO 1.45 × 10−3 4.88 × 103 8.45 × 104

ABC 3.16 × 10−2 8.18 × 102 1.62 × 106

SSA 4.94 × 10−299 2.66 × 10−5 2.63 × 10−4

Tablet

CASSA 0 9.11 × 100 1.93 × 102

WOA 2.03 × 10−85 2.36 × 104 4.36 × 105

PSO 3.37 × 10−1 3.38 × 105 1.69 × 106

ABC 1.45 × 10−3 5.76 × 104 2.36 × 105

SSA 2.79 × 10−54 2.05 × 10−15 4.27 × 10−15

Stepfun

CASSA 2.08 × 10−17 1.03 × 10−3 8.87 × 10−3

WOA 1.60 × 10−2 3.96 × 102 3.90 × 103

PSO 1.91 × 102 4.21 × 103 1.33 × 104

ABC 3.91 × 103 5.61 × 105 3.51 × 106

SSA 4.03 × 10−11 1.66 × 10−3 2.68 × 10−2

Rosenbrock

CASSA 2.65 × 10−9 5.42 × 10−2 4.17 × 10−1

WOA 2.78 × 101 1.78 × 106 1.61 × 107

PSO 7.44 × 102 1.36 × 109 4.93 × 108

ABC 5.34 × 102 2.42 × 108 6.16 × 109

SSA 2.94 × 10−5 6.64 × 10−2 4.17 × 10−1
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Table 4. Cont.

Function Algorithm Best Value Average Value Standard Deviation

Quadric

CASSA 0 1.40 × 10−1 3.08 × 102

WOA 0 8.82 × 10−1 2.62 × 10−1

PSO 3.31 × 102 1.46 × 104 3.75 × 104

ABC 2.68 × 101 7.11 × 103 1.96 × 104

SSA 1.93 × 10−135 4.62 × 102 2.31 × 102

Bentcigar

CASSA 0 2.97 × 101 4.01 × 102

WOA 8.59 × 10−86 7.47 × 108 5.85 × 109

PSO 1.37 × 106 1.47 × 106 1.29 × 1010

ABC 1.45 × 102 1.05 × 100 2.43 × 109

SSA 1.40 × 10−156 1.27 × 102 1.75 × 103

Ackley

CASSA 0 4.7 × 10−03 8.92 × 10−2

WOA 3.55 × 10−15 5.92 × 10−1 2.79 × 100

PSO 5.55 × 100 6.37 × 100 2.75 × 100

ABC 3.16 × 10−1 3.67 × 100 1.82 × 100

SSA 0 8.29 × 10−4 9.8 × 10−3

Griewank

CASSA 0 2.37 × 10−5 4.61 × 10−4

WOA 0 5.40 × 100 4.52 × 101

PSO 2.51 × 10−5 2.56 × 102 1.91 × 102

ABC 3.63 × 10−6 6.65 × 104 2.76 × 103

SSA 0 5.43 × 100 4.57 × 101

Rastrigrin

CASSA 0 4.35 × 10−2 9.70 × 10−1

WOA 0 1.58 × 101 5.92 × 101

PSO 7.95 × 10−2 7.55 × 10+01 2.47 × 101

ABC 3.83 × 10−4 4.60 × 100 2.06 × 101

SSA 0 4.06 × 10−1 8.55 × 10−1

Rastrigrinnon

CASSA 0 2.97 × 10−2 6.12 × 10−1

WOA 0 4.44 × 101 7.89 × 101

PSO 7.41 × 10−1 7.52 × 101 2.30 × 101

ABC 5.33 × 10−3 3.26 × 10−01 5.56 × 100

SSA 0 4.46 × 10+01 7.39 × 101

Penalized1

CASSA 3.38 × 10−19 2.04 × 10−6 2.28 × 10−5

WOA 1.27 × 10−2 3.38 × 106 3.85 × 107

PSO 1.14 × 104 1.17 × 104 2.23 × 102

ABC 3.52 × 10−2 7.35 × 105 1.46 × 106

SSA 1.56 × 10−12 7.43 × 10−7 6.21 × 10−6

Dminima

CASSA 0 2.04 × 10−6 2.28 × 10−5

WOA 0 3.43 × 106 3.85 × 107

PSO 2.80 × 102 4.92 × 107 7.63 × 106

ABC 1.92 × 10−1 3.52 × 103 1.63 × 102

SSA 0 7.43 × 10−7 6.21 × 10−6
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In terms of convergence value and convergence speed, CASSA is better than the
other four test algorithms. As is shown in Table 4, the test results of unimodal functions
and multi-modal functions show that the mean and variance of CASSA are much smaller
than those of the other four algorithms, which shows that the optimal values obtained by
the algorithm are highly stable and robust and can be effectively implemented to avoid
premature convergence.

With the purpose of further assessing the performance of these heuristic algorithms
and proving a significant improvement of CASSA compared with the other four algorithms,
a non-parametric statistical test is performed with the Wilcoxon [38] rank sum test set at a
significance level of α = 5%. It is generally considered that when p < 5%, it is significantly
different, while when p ≥ 5%, it is not significantly different. As is shown in Table 5, p of
CASSA are all less than 5%, which means that compared with the search ability of SSA,
that of CASSA has been greatly improved. Additionally, the optimization accuracy and
robustness of CASSA are better than other popular intelligent algorithms.

Table 5. Comparison of significance level results between CASSA and each algorithm.

Pair of Algorithms p-Value

CASSA vs. WOA 1.9491 ×10−4

CASSA vs. PSO 5.9836 × 10−5

CASSA vs. ABC 2.4544 × 10−4

CASSA vs. SSA 7.9143 × 10−3

4. UAV Route Planning Strategy

In this section, the application of CASSA to 3d UAV route planning will be discussed
in detail. The UAV route planning aims to minimize the cost function in the task space,
which can be defined as an optimization problem with multi-constraint. Generally, the
UAV route generated by meta-heuristic algorithms is composed of the line segments, which
is unsuitable for exact flight. To solve this problem, some methods are used to further
optimize the route generated, such as the B-spline curve [39], the Bezier curve [40], and
the simple circular arcs [41]. The B-spline curve has the unique superiority in many ways,
such as locality, geometrical invariability, symmetry, recursion, continuity, convex hull
characters, and convexity-preservation. It is highly appropriate to use the B-Spline curves
in the process of optimization, because merely a few variables are required to define the
complex curved routes. Therefore, in this paper, the B-Spline curves smoothing strategy is
used to smooth the generated route. With the given departure point and target point, some
control points in the map space are set and applied to generate the B-Spline curve. The
points on the B-Spline curve serve as the waypoints, of which the coordinates can evaluate
the cost of the UAV route.

4.1. B-Spline Curve

The construction of B-Spline curve is made up of blending functions, which denotes
that B-Spline curve is a parametrized curve. In a whole route, the number of waypoints is
n, the number of control points of the corresponding curve is n + 1, with the coordinates
(x0, y0, z0), . . . , (xp, yp, zp), . . . , (xn, yn, zn); then, the coordinates (xe, ye, ze) of the B-Spline
curve can be defined as follows: 

xe =
n
∑

i=1
xi × Ci,p(e)

ye =
n
∑

i=1
yi × Ci,p(e)

ze =
n
∑

i=1
zi × Ci,p(e)

with

ei =


0, i < p + 1
i− p, p + 1 ≤ i ≤ n
n− p + 1, n < i

, (11)
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where p represents the order of the curve, which influences the smoothness of the B-Spline
curve; the free parameter e varies from 0 to n− p + 1, which generates a series of discrete
points. The blending functions are designed by a knot vector E = {e0, . . . , em} recursively
as follows: 

Ci,p = e−ei
ei+p−ei

Ci,p−1(e) +
ei+p−1−e

ei+p+1−ei+1
Ci+1,p−1(e)

Ci,0 =

{
1, ei ≤ e ≤ ei+1
0, otherwise

, (12)

The B-Spline curve is used to determine the flight route, and it has the advantage of
illustrating a complex non-monotonic 3d curve with controlled smoothness through a few
designed parameters. Figure 6 shows a 3d cubic B-Spline curve (k = 3) with its control
points and the corresponding control polygon (the green line). After this procedure, the
original route (the blue line) could be replaced by the new smooth route (the red curve).

Figure 6. A 3d cubic (k = 3) B-Spline curve.

4.2. Cost Function

The problem of UAV route planning is defined by a series of optimization criteria and
constraints, which consist of the minimization of the threats of damage of the UAV, the
constraints imposed by the UAV’s dynamic property and the flight environment. The cost
function is described as the total of three functions, given as follows:

Jcos t = w1 Jpath + w2 Jheight + w3 Jturn, (13)

where Jcos t represents the total cost function; Jpath denotes the length cost of the route
of UAV; Jheight denotes the height cost of UAV; Jturn denotes the smoothness cost of the
planning route; wi is the weights of the above functions, which are given as follows:

wi ≥ 0
3
∑

i=1
wi = 1

, (14)

In the process of UAV route planning, it is obvious that the shorter route needs less
time and less fuel consumption for flight. In the meanwhile, it is less likely to encounter an
unknown danger. The route length is calculated with the following expressions:

Jpath =

{
∞, passtheobstacles
∑n−1

i=1 li, otherwise
with
li = ‖(xi+1, yi+1, zi+1)− (xi, yi, zi)‖2

, (15)

where (xi, yi, zi) denotes the ith waypoint within the whole UAV route. If the line segment
between every two waypoints passes the obstacles, the cost of the route needs to be
processed by the penalty function. However, it is hard to express the infinite function in the
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practical experiment. Therefore, a large value, like 107, can be added to solve this problem
in the simulation.

In the meantime, the suitable flying height also has an important impact on the UAV
route planning process. For most kinds of UAV, the flying height should not be changed
too frequently and drastically. The stable flying height can save more fuel and ensure more
security. Additionally, when UAV flies at a low height, it can benefit from the terrain mask
effect, which can help to avoid unknown threats [42]. Therefore, the cost function of height
is described as below: 

Hheight =

√
1
n

n−1
∑

i=0
(zi − z)2

z = 1
n

n−1
∑

i=0
zi

, (16)

The stability and maneuverability of UAV are constrained by the maximum turning angle
at each waypoint. In the process of UAV route planning, the maximum turning angle should
not be bigger than the maximum preset angle. Furthermore, when the UAV flight efficiency is
considered, it is obvious that the UAV work condition will be inefficient when UAV does the
turning maneuvers. The cost function of the turning angle can be defined as below:

Jturn =


n
∑
i=i

(cos ϕ− cos θi), ϕ ≥ θi

∞, ϕ < θi
with

cos θ =
aT

i ai+1
|ai ||ai+1|

, (17)

where ϕ denotes the maximum angle; θ denotes the current angle; and ai represents a
vector of the ith part of the whole route.

4.3. CASSA for 3d UAV Route Planning

After the above discussion, the detailed implementation procedure of CASSA for UAV
three-dimensional route planning is illustrated in Algorithm 2, and the flowchart is shown
in Figure 7.

Algorithm 2 CASSA for 3d UAV route planning

/*Initialization*/
1. Set the parameters of CASSA same as Algorithm 1;
2. Set the start point (xS, yS), target point (xT , yT), the boundaries of the map space, and
the number of control points n;
3. Set the position(xthreat, ythreat) and the range of threats;
/*Iterative search*/
4. while (t < Tmax)
5. Each sparrow represents a route; sort the population of sparrows from best to worst by
order of cost function Equation (10) for each sparrow
6. G = rand(1);
7. for i = 1 : Fd
8. Update the finder’s position using Equation (7);
9. end for
10. for i = (Fd + 1) : n
11. Update the entrant’s position using Equation (3);
12. end for
13. for i = 1 : Sd
14. Update the threatened sparrow’s position using Equation (4);
15. end for
16. Evaluate the cost for each route by Equation (13), then select the top S elite sparrows with the
best fitness value and implement adaptive mutation for them by Equation (9);
17. Get the current new route;
18. If the new route is better than before, update it;
19. Generate the B-Spline curve with the n waypoints.
20. t = t + 1;
21. end while
22. Output the best route and its cost value.
23. Post-process results and visualization
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Figure 7. Flowchart of CASSA for 3d UAV route planning.

5. Simulation Experiment

In this section, the capability of CASSA in solving the 3d UAV route planning prob-
lem will be assessed by a series of computational simulations. To conduct a fair com-
parison, all the experiments are performed on the PC with Intel (R) Core (TM) i5-9400
@2.40 GHz CPU and 16 GB RAM, and the simulations are compiled using Matlab-2016b
under Win-10 platform.

5.1. Experimental Parameters

The UAV mission region is [0, 150] km long, [0, 100] km wide, and [0, 8] km high, and
UAV knows the terrain and threat’s position. The terrain is modeled by a processing eleva-
tion map of real terrain, while the threats are modeled as black columns. The coordinates
value of the start point is (10.0,90.0,2.3 km), the coordinates value of the target point is
(140.0,10.0,2.9 km). The 3d UAV route planning environment is shown in Figure 8.

Figure 8. The scene of the 3d UAV route planning space.
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There are five algorithms in the experiments, including CASSA, SSA, PSO, ABC,
and WOA. In all experiments, the parameters of those algorithms are set according to
their references respectively. To make a fair comparison, the maximum iterations of those
algorithms is set as 200, while the population size is set as 50. For CASSA and SSA, using
the same parameters setting is necessary, which are the number of the finders (Fd = 0.2),
the number of the threatened sparrows (Sd = 0.15), and the alarm value (G = 0.8). In
consideration of the randomness nature of heuristic algorithms, each tested algorithm is
executed 30 times independently, and the experimental results are used for the evaluation
and comparison of their performance.

5.2. Analysis of Experimental Results

For the objective of comparison, the best UAV routes generated by CASSA, SSA, PSO,
ABC, and WOA during 30 independent runs are displayed in Figure 9, and the statistic
results are showed in Figure 10. To show the difference between the tested algorithms
intuitively, the best cost curves for each algorithm are displayed in Figure 11.

Figure 9. The best route of each algorithm. (a,b) Route comparison in three-dimensional space; (c) overhead view of Route
comparison in three-dimensional space; (d) side view of route comparison.

Figure 10. The statistical results of CASSA, ABC, PSO, SSA, and WOA.
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Figure 11. The best results of CASSA, ABC, PSO, SSA, and WOA.

As the test results reveal, all the five tested algorithms found the safe flight route
for UAV, but they have different performance on route length, flight altitude, and route
smoothness. As experimental results display in Figure 9, it is apparent that among all the
five algorithms, CASSA can find the best route for the UAV. The route generated by CASSA
has a more suitable altitude, which can help UAV to benefit more from the terrain mask,
and its length and smooth criteria are also better than other four algorithms. In Figure 10,
it can be seen that CASSA has the best performance on the best cost value, mean cost
value, and worst cost value, which shows that CASSA is superior to other four algorithms
with regard to searching ability and stability. Among all the five algorithms, PSO takes
the shortest running time and WOA takes the longest running time. The running time of
CASSA is a little longer than SSA, mainly due to the variation operations added during
the iteration of the algorithm. For offline route planning problems, the accuracy of the
algorithm is more important than the running time, so the time taken to run CASSA is
acceptable. In Figure 11, it should be noticed that CASSA not only has the best convergence
value, but also has a good initial solution and the fastest convergence speed.

The 3d UAV route planning problem has many local solutions, making it challenging to
solve by classical optimization algorithms. The reason why CASSA performed excellently
on this complex optimization problem is due to the integration of the adaptive inertia
weight and the Cauchy–Gaussian mutation operator. In the searching process, the adaptive
inertial weight can control the search ability and convergence speed of CASSA, and the
integration of the Cauchy–Gaussian mutation operator can avoid the local optimal solutions
by suddenly changing the location of the elite sparrows in the search space. Therefore, the
excellent exploration ability and local minimums avoidance of the proposed CASSA helps
it to improve the drawbacks and surpass the original SSA.

6. Conclusion and Future Work

This paper proposed a modified sparrow search algorithm called CASSA and success-
fully applied it for solving the 3d UAV route planning problem in complex task space. In the
proposed CASSA, the chaotic strategy is used to enhance the stability of the algorithm, and
an adaptive inertia weight is used to balance the convergence speed and exploration ability.
The original SSA usually suffers from local optimal stagnation, but the Cauchy–Gaussian
mutation operator integrated is able to help CASSA avoid this drawback by suddenly
changing the position of the elite sparrows in the search space. Those modified strategies
lead to the better performance of CASSA on the 3d UAV route planning problem. In order
to make the route more viable for practical UAV flight mission, the B-Spline curve is used
for smoothing the route generated by CASSA. The experimental results demonstrate that
CASSA is an efficient and viable method in the field of UAV route planning.

There are many challenges for future work. For example, more constraints can be
introduced, such as flight speed constraint, different types of obstacles, and dynamic
threats. Moreover, it would be meaningful to apply CASSA for solving other optimization
problems in the field of UAV, such as task assignment and formation control.



Sensors 2021, 21, 1224 20 of 21

Author Contributions: Conceptualization: G.L. and C.S.; methodology: G.L. and C.S.; software:
G.L., C.S., and B.P.; validation: G.L., C.S., B.P., and L.C.; formal analysis: G.L., C.S., and Z.L.;
investigation: C.S.; resources: G.L. and C.S.; writing—original draft preparation: C.S.; writing—
review and editing: G.L., C.S., Z.L., B.P., and L.C. All authors have read and agreed to the published
version of the manuscript.

Funding: The author acknowledges funding received from the following science foundations: The
National Natural Science Foundation of China (61403089, 51975136, 51575116, U1601204, 52075109),
The 2020 Department of Education of Guangdong Province Innovative and Strong School Project
(Natural Sciences)—Young Innovators Project (Natural Sciences) under Grant 2020KQNCX054,
National Key Research and Development Program of China (2018YFB2000501), The Science and
Technology Innovative Research Team Program in Higher Educational Universities of Guangdong
Province (2017KCXTD025), The Innovative Academic Team Project of Guangzhou Education System
(1201610013), The Special Research Projects in the Key Fields of Guangdong Higher Educational
Universities (2019KZDZX1009), The Science and Technology Research Project of Guangdong Province
(2017A010102014, 2016A010102022), and The Science and Technology Research Project of Guangzhou
(201707010293) are all appreciated for supporting this work.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huo, L.; Zhu, J.; Wu, G.; Li, Z. A Novel Simulated Annealing Based Strategy for Balanced UAV Task Assignment and Path

Planning. Sensors-Basel 2020, 20, 4769. [CrossRef] [PubMed]
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