
����������
�������

Citation: Yin, Z.; Xu, F.; Li, Y.;

Fan, C.; Zhang, F.; Han, G.; Bi, Y. A

Multi-Objective Task Scheduling

Strategy for Intelligent Production

Line Based on Cloud-Fog Computing.

Sensors 2022, 22, 1555. https://

doi.org/10.3390/s22041555

Academic Editor: Kim Phuc Tran

Received: 12 January 2022

Accepted: 15 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Multi-Objective Task Scheduling Strategy for Intelligent
Production Line Based on Cloud-Fog Computing
Zhenyu Yin 1,2,3,*,†, Fulong Xu 1,2,3,† , Yue Li 1,2,3, Chao Fan 1,2,3, Feiqing Zhang 1,2,3, Guangjie Han 4,5

and Yuanguo Bi 6,7

1 School of Computer Science and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China; xufulong16@mails.ucas.ac.cn (F.X.); liyue161@mails.ucas.ac.cn (Y.L.);
fanchao18@mails.ucas.ac.cn (C.F.); zhangfeiqing17@mails.ucas.ac.cn (F.Z.)

2 Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China
3 Liaoning Key Laboratory of Domestic Industrial Control Platform Technology on Basic Hardware and

Software, Shenyang 110168, China
4 College of Internet of Things Engineering, Hohai University, Changzhou 213022, China;

hanguangjie@gmail.com
5 Changzhou Key Laboratory of Internet of Things Technology for Intelligent River and Lake,

Changzhou 213022, China
6 School of Computer Science and Engineering, Northeastern University, Shenyang 110167, China;

biyuanguo@mail.neu.edu.cn
7 Engineering Research Center of Security Technology of Complex Network System, Ministry of Education,

Shenyang 110167, China
* Correspondence: congmy@163.com
† These authors contributed equally to this work.

Abstract: With the widespread use of industrial Internet technology in intelligent production lines,
the number of task requests generated by smart terminals is growing exponentially. Achieving rapid
response to these massive tasks becomes crucial. In this paper we focus on the multi-objective task
scheduling problem of intelligent production lines and propose a task scheduling strategy based
on task priority. First, we set up a cloud-fog computing architecture for intelligent production lines
and built the multi-objective function for task scheduling, which minimizes the service delay and
energy consumption of the tasks. In addition, the improved hybrid monarch butterfly optimization
and improved ant colony optimization algorithm (HMA) are used to search for the optimal task
scheduling scheme. Finally, HMA is evaluated by rigorous simulation experiments, showing that
HMA outperformed other algorithms in terms of task completion rate. When the number of nodes
exceeds 10, the completion rate of all tasks is greater than 90%, which well meets the real-time
requirements of the corresponding tasks in the intelligent production lines. In addition, the algorithm
outperforms other algorithms in terms of maximum completion rate and power consumption.

Keywords: industrial internet of things; intelligent production line; cloud-fog computing; task
scheduling; hybrid heuristics

1. Introduction

With the development of information and communication technologies, such as wire-
less sensor networks [1], industrial Internet of Things (IIoT) [2,3], and cloud computing [4],
the transformation and upgrading of manufacturing technology has been promoted, which
makes traditional manufacturing shift to intelligent manufacturing. The production equip-
ment, transmission devices, sensors, and other terminal devices in the intelligent production
lines have been connected based on various heterogeneous communication networks, mak-
ing the traditional information islands evolve to the interconnection model. Meanwhile, the
extensive use of intelligent devices has generated large amounts of tasks requiring real-time
processing [5]. Cloud computing was initially considered the primary enabler capable of

Sensors 2022, 22, 1555. https://doi.org/10.3390/s22041555 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041555
https://doi.org/10.3390/s22041555
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8690-4649
https://orcid.org/0000-0002-6921-7369
https://doi.org/10.3390/s22041555
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041555?type=check_update&version=2

Sensors 2022, 22, 1555 2 of 21

processing the massive data generated by IIoT devices. However, there are many problems
in cloud computing, the most prominent of which are mainly manifested in the following
two aspects: transferring large-scale data from the IIoT devices to the cloud may not be
effective, and in some cases, it may not even be feasible due to bandwidth limitations. On
the other hand, the more considerable geographic distance between the intelligent edge
device and the cloud service center may lead to higher service delays [6], which violates the
quality of service requirements for customer requests, such as ultra-low latency requests in
intelligent production lines.

A computing paradigm closer to connected devices is needed to solve the problems
mentioned above. Fog computing/edge computing, an extension and improvement of
cloud computing, deploys fog nodes with certain computing and storage capabilities
near terminal devices, enabling cloud services to migrate to the edge of the network for
faster response to requests for time-sensitive tasks [7]. However, fog computing cannot
completely replace cloud computing. In contrast, both technologies can work together
to improve latency and reliability, reduce response time, and are widely used in many
fields [8]. For example, in [9], one strategy based on cloud-fog computing was proposed
for the virtual reality system of the Industry 4.0 shipyard.

There are some urgent problems in cloud-fog computing and intelligent production
line task scheduling. There are considerable differences in computing power, storage, and
communication capabilities among various fog nodes in a cloud-fog computing environ-
ment. The tasks generated by terminal devices are highly heterogeneous in real time and
energy consumption [10,11]. In the intelligent production line, different task service se-
quences bring different delays. In particular, some time-sensitive tasks, such as production
line early warning and high delays caused by unreasonable task scheduling strategies, can
result in catastrophic results.

On the other hand, in intelligent production lines where batteries power many fog
nodes, different task scheduling strategies lead to different energy consumption, which
inevitably brings many problems. For example, a study found that when a device cannot
be charged in time, frequent data exchange, transmission, and processing can cause the
battery’s life to be significantly reduced due to instantaneous discharge, thereby causing a
data leakage security risk [12]. It is a tremendous challenge for intelligent production lines
to ensure low delay to complete tasks and effectively reduce the power consumption of fog
nodes. However, there are still few studies on task scheduling for intelligent production
lines in our literature survey. In the intelligent production line, we take latency and
energy minimization as the optimization direction for task scheduling, considering the
time-sensitive differences of various types of tasks and heterogeneity of the running power
consumption of different computing nodes.

The task scheduling problem is a challenging non-deterministic polynomial difficulty
(NP-hard) problem [13]. To date, the hybrid heuristic algorithm can combine the advantages
of various heuristic algorithms to solve the task scheduling problem with high accuracy [14].
Therefore, we use a hybrid heuristic algorithm to solve the proposed optimization problem,
realize the efficient use of cloud computing resources, and reduce the overall consumption
of computing resources while satisfying low latency. The main contributions of our study
are listed as follows:

1. We present a multi-objective task scheduling optimization problem in intelligent
production lines. A multi-priority task scheduling strategy based on a cloud-fog
computing architecture is used to solve this problem, achieving a fast response to
intelligent production line tasks and reducing energy consumption.

2. A new task scheduling algorithm hybridizing the MBO and ACO is implemented in
our study. The improved MBO and ACO more easily converge. More importantly, this
is the first time that MBO has been applied to task scheduling scenarios in intelligent
production lines.

Sensors 2022, 22, 1555 3 of 21

3. We establish an intelligent production line simulation experiment platform based on
C++ and evaluate the proposed algorithm. The results show that it is superior to other
strategies in terms of average delay and power consumption.

The remainder of the paper is organized as follows. In Section 2, we describe the
related work. In Section 3, we introduce the system model and problem formulation. In
Section 4, we propose a task scheduling algorithm. Section 5 discusses the performance
evaluation. Finally, in Section 6, we give a brief conclusion.

2. Related Work

In recent years, with the continuous development of fog computing and the require-
ments of terminal equipment for real-time performance and energy consumption, cloud-fog
computing has become a trend, and task scheduling under cloud-fog computing has be-
come a necessary research hotspot. We reviewed many studies on task scheduling for cloud
and fog computing and listed them below.

2.1. Cloud Computing Task Scheduling

Cloud computing provides rich computing, storage, and other application services
for industrial production, bringing huge energy consumption. With increasing attention
being paid to carbon neutrality [15], it is imperative to improve the task allocation effi-
ciency of cloud computing and reduce energy consumption in the industry. To obtain the
best performance of task scheduling in cloud computing, Rajakumari et al. [16] proposed
a fuzzy hybrid particle swarm parallel ant colony algorithm. This algorithm improved
task scheduling with the objectives of minimizing execution and waiting time, increasing
system throughput, and maximizing resource utilization. However, the study did not
consider energy efficiency. Under the premise of ensuring cloud computing service quality,
Rao et al. [17] completed the coordination and energy consumption minimization of data
center scheduling. Lin et al. [18] proposed two IoT-Aware multi-resource task scheduling al-
gorithms to reorder tasks based on priority, and task scheduling using heuristic algorithms.
The simulation results showed that this method could reduce energy consumption as
much as possible while ensuring the response time and load balancing results of IoT tasks.
Although the above two studies guide task allocation, the difference in power consumption
of the computing unit itself was not considered for task scheduling.

2.2. Fog Computing Task Scheduling

Fog nodes have differences in distribution and computing capacity. Effectively schedul-
ing tasks requested by terminal devices can reduce service delay and energy consump-
tion [19]. In the field of intelligent manufacturing, Mithun et al. [20] proposed a solution
to the fog computing task offloading problem. This solution modelled the optimiza-
tion problem mathematically and used quadratic constraint quadratic programming to
solve the de-weighting problem, and finally solved the optimization problem by the semi-
deterministic relaxation method. Chekired et al. [21] proposed a self-adaptive fog comput-
ing multi-objective optimization task scheduling method, which solved the multi-objective
optimization problem of fog computing task scheduling with the total execution time and
resource cost of tasks as the optimization objectives. Both studies provided excellent ideas
for reducing task processing and waiting time, but neither reduced the task processing
power consumption. In the research of Hang et al. [22], a joint computing offloading and
wireless resource allocation algorithm based on Lyapunov optimization was proposed to
minimize system delay, energy consumption, MDs weighting, and other associated costs.
However, the study ignored the interaction between the cloud center and fog nodes and
only divided the main problem into several sub-problems in each time slot and then allo-
cated them to different fog nodes for calculation. Suppose we encounter a task that requires
a large number of computing resources and is not divided, such as intelligent production
line image processing. In that case, the resource-constrained fog node cannot process it,
resulting in the task being unable to be completed. For the task offloading problem in fog

Sensors 2022, 22, 1555 4 of 21

computing, Keshavarznejad et al. [23] proposed a multi-objective optimization problem of
energy consumption and delay, which was solved using a hybrid heuristic algorithm. The
results showed that the best trade-off was obtained between the probability of offloading
and the energy consumption required for data transmission. Regrettably, this approach did
not categorize tasks to respond to urgent tasks quickly.

2.3. Cloud-Fog Computing Environment Task Scheduling

In cloud-fog computing, scheduling IoT tasks to reduce the delay and energy of time-
sensitive tasks has attracted the attention of researchers [24]. Abdelmoneem et al. [25]
proposed a mobile-aware task scheduling and allocation method under the cloud-fog
computing paradigm, which greatly reduced the energy consumption of task processing
and task delay. This method effectively solved the task assignment of the sensing device in
the mobile scene. However, it was unsuitable for intelligent production lines, etc., where
the sensors were mostly fixed. Mokney et al. [26] studied IoT tasks with dependencies
under cloud-fog computing, proposed modeling workflow planning as a multi-objective
optimization problem, and designed a compromise solution regarding response time, cost,
and maximum completion time. The proposed algorithm was superior in solving the
scheduling problem that depended on task flow. However, it did not solve the scheduling
problem of independent tasks. The algorithm obtained the Pareto optimal solution, which
could not meet the urgent tasks that require ultra-low time response. Bisht et al. [27]
studied the problem of rapid task response in the cloud-fog computing environment. They
proposed a workflow scheduling method with the smallest maximum completion time and
energy consumption. The research was based on task length for scheduling, and could not
respond quickly to urgent and complex tasks.

Based on the above studies, we find that the task scheduling problem in the cloud-fog
computing environment is a research hotspot in the IoT field, and the existing research
cannot meet the requirements of low latency and low power consumption for multi-priority
task scheduling in intelligent production lines.

2.4. Heuristic Algorithm to Solve the Task Scheduling Problem

Heuristic algorithms are a subset of the artificial intelligence field, which is popular in
solving different optimization problems and is often used to solve task scheduling prob-
lems [28,29]. Common heuristic algorithms include ant colony optimization (ACO) [30],
genetic algorithm (GA) [31], particle swarm optimization (PSO) [32], simulated annealing
algorithm (SAA) [33], Grey Wolf Optimizer (GWO) [34], monarch butterfly optimization
algorithm (MBO) [35], and so on. The MBO, with simple computational procedures and
fewer parameters, is more easily to implement in these algorithms. MBO is suitable for
solving small-scale search problems and is widely used in many fields [36]. The ACO can
search on a large scale. To improve its search process, it can have excellent exploration and
development capabilities at the stage of generating the optimal solution [28].

Many scholars have proposed that multiple single heuristics should be combined into
a hybrid algorithm to obtain better task scheduling performance. In [37], a meta-heuristic-
based service allocation framework was designed to schedule edge service requests using
three meta-heuristic techniques, PSO, binary PSO, and Bat algorithm (Bat). The experimen-
tal results showed that the framework solved the dual objective minimization problem
of energy consumption and maximum completion time. Ref et al. [38] proposed a hy-
brid bionic algorithm for cloud computing task scheduling and resource management.
Fu et al. [39] improved the service quality of cloud computing by adopting the task schedul-
ing optimization algorithm of hybrid PSO and GA. There are many documents on cloud
computing task scheduling algorithms, but few studies on hybrid heuristic scheduling
algorithms for task scheduling under cloud-fog computing.

Inspired by the above studies, we use a hybrid heuristic algorithm of MBO and ACO
to solve the intelligent production line task scheduling problem.

Sensors 2022, 22, 1555 5 of 21

3. System Model and Problem Formulation

In this section, we present the mathematical description of the task scheduling problem
for intelligent production lines under cloud-fog computing.

3.1. System Architecture

We built a cloud-fog computing architecture to solve the increasing problems of
delay-sensitive and computationally intensive tasks in intelligent production lines. The
system architecture is given in Figure 1; it consists of three layers: infrastructure layer, fog
computing layer, and cloud computing layer.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 21

3. System Model and Problem Formulation

In this section, we present the mathematical description of the task scheduling prob-

lem for intelligent production lines under cloud-fog computing.

3.1. System Architecture

We built a cloud-fog computing architecture to solve the increasing problems of de-

lay-sensitive and computationally intensive tasks in intelligent production lines. The sys-

tem architecture is given in Figure 1; it consists of three layers: infrastructure layer, fog

computing layer, and cloud computing layer.

Manufacturing
quipments Sensor nodes Smart terminals

Cloud

computing

layer

Fog

computing

layer

Infrastructure

layer

Data flow

Figure 1. The architecture of intelligent production line system architecture based on cloud-fog com-

puting.

Infrastructure layer: The infrastructure layer consists of terminal devices with differ-

ent functions, such as various sensors, processing devices and various smart terminals.

Smart terminals handle simple tasks locally but are unable to perform complex tasks in

real time.

Fog computing layer: The fog computing layer is mainly composed of fog nodes.

These are servers with certain computing, communication, and storage capabilities in in-

telligent production lines, such as smart sensors, smart processing devices, and intelligent

multimedia devices. This layer can sense the requests of intelligent production line termi-

nals and provide various services in real time, which can greatly reduce the delay of task

processing and ensure the quality of service of real-time applications.

Cloud computing layer: The cloud computing layer consists of clusters with huge

computing and storage capacity, providing remote services for intelligent production

lines to handle complex computing tasks.

3.2. System Model

3.2.1. Description of System Model

In fields that require high real-time task processing, such as intelligent production

lines and smart hospitals, ensuring the task processing reliability has always been a crucial

issue [40]. It is necessary to analyze and process various data tasks in real time, such as

material information reading and multi-axis robot posture analysis, when the intelligent

production line is running. For example, the intelligent production line for personalized

production of candy packaging realizes any combination of different shapes, colors and

quantities of candy packaging. The machine vision-based candy sorting system is the key

to complete the candy packaging, and the data uploaded by its image acquisition module

Figure 1. The architecture of intelligent production line system architecture based on cloud-fog
computing.

Infrastructure layer: The infrastructure layer consists of terminal devices with different
functions, such as various sensors, processing devices and various smart terminals. Smart
terminals handle simple tasks locally but are unable to perform complex tasks in real time.

Fog computing layer: The fog computing layer is mainly composed of fog nodes.
These are servers with certain computing, communication, and storage capabilities in
intelligent production lines, such as smart sensors, smart processing devices, and intelli-
gent multimedia devices. This layer can sense the requests of intelligent production line
terminals and provide various services in real time, which can greatly reduce the delay of
task processing and ensure the quality of service of real-time applications.

Cloud computing layer: The cloud computing layer consists of clusters with huge
computing and storage capacity, providing remote services for intelligent production lines
to handle complex computing tasks.

3.2. System Model
3.2.1. Description of System Model

In fields that require high real-time task processing, such as intelligent production
lines and smart hospitals, ensuring the task processing reliability has always been a crucial
issue [40]. It is necessary to analyze and process various data tasks in real time, such as
material information reading and multi-axis robot posture analysis, when the intelligent
production line is running. For example, the intelligent production line for personalized
production of candy packaging realizes any combination of different shapes, colors and
quantities of candy packaging. The machine vision-based candy sorting system is the key
to complete the candy packaging, and the data uploaded by its image acquisition module
need to be analyzed and processed in real time during the operation. Figure 2 depicts the
flow of image processing.

Sensors 2022, 22, 1555 6 of 21

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21

need to be analyzed and processed in real time during the operation. Figure 2 depicts the

flow of image processing.

Image acquisition module

Detection object

Detection object

Detection object

Image
acquisition

Image
acquisition

Image
acquisition

Smart terminals

Smart terminals

Smart terminals

 Smart Gateway

Cloud

Fog node 1Task Information
Scheduling Strategy

Task Information
Scheduling Strategy

Fog node n

Figure 2. The image processing process of intelligent production lines.

However, the processing and analysis capabilities of fog nodes are limited. With the

increasing number of tasks to be processed, an unreasonable task allocation mechanism

often leads to an increase in task delay, a decrease in completion and an increase in energy

consumption. Consequently, we propose a task scheduling algorithm based on cloud-fog

computing. The proposed algorithm uses a hybrid heuristic scheduling algorithm to rea-

sonably allocate tasks to fog nodes and cloud servers, and thus solves the above problems.

The tasks generated by the terminals of the intelligent production line are processed in

the cloud-fog computing environment as shown in Figure 3. We classify the tasks gener-

ated by the terminal device according to their urgency and sort them according to their

priority. The scheduling algorithm distributes the sorted tasks to the fog nodes and cloud

servers to ensure that the tasks will be served as much as possible.

S
en

so
r n

o
d

es

M
an

u
factu

rin
g

eq

u
ip

m
en

ts

T1 T2 T3 T4 T5

T5 T4T3 T2 T1

Task reordering

Cloud-fog computing environmentQueuing

Q1 T2

Q2 T3

Q3 T1

Q4 T5

Q5 T4

Task queue

Fog nodes

Fog computing

Cloud computing

Figure 3. Task processing flow in the cloud-fog computing environment.

3.2.2. Latency Model and Energy Consumption Mode

First, we assume that there are 𝑘 tasks 𝑇 = {T1, 𝑇2, … , 𝑇𝑘}, the priority of each task

is 𝑃𝐿𝑖𝑠𝑡 = {𝜆1, 𝜆2, … 𝜆𝑘}, and they are independent of each other. Among them, each task

𝑇𝑖 can be expressed as a three tuple 𝑇𝑖 = {D𝑖𝑛(𝑖), 𝑌(𝑖), 𝐷𝑜𝑢𝑡(𝑖)}. D𝑖𝑛(𝑖) represents the in-

put data volume of the task, in kbit, 𝑌(𝑖) defines the load of the task, in MIPS, and 𝐷𝑜𝑢𝑡(𝑖)

indicates the output of the task, in kbit. Denote 𝑛 as the number of service nodes 𝐹 =

 {𝐹1, 𝐹2, . . . , 𝐹𝑛}, which includes fog nodes and a cloud service. For the convenience of num-

bering, we let 𝐹𝑛 denote the cloud service. We define a non-negative integer variable 𝑋𝑖,𝑗

to indicate whether the node 𝑖 can handle service request number 𝑗, such as:

𝑋𝑖,𝑗 = {
1, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 ℎ𝑎𝑛𝑑𝑙𝑒 𝑡𝑎𝑠𝑘 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑠

. (1)

Since fog nodes have heterogeneous resources, they provide different types of com-

puting services for terminal devices. To allow each task to be served, we ensure that at

least one node can serve each task when setting up the nodes. Formally, we have:

Figure 2. The image processing process of intelligent production lines.

However, the processing and analysis capabilities of fog nodes are limited. With the
increasing number of tasks to be processed, an unreasonable task allocation mechanism
often leads to an increase in task delay, a decrease in completion and an increase in energy
consumption. Consequently, we propose a task scheduling algorithm based on cloud-
fog computing. The proposed algorithm uses a hybrid heuristic scheduling algorithm
to reasonably allocate tasks to fog nodes and cloud servers, and thus solves the above
problems. The tasks generated by the terminals of the intelligent production line are
processed in the cloud-fog computing environment as shown in Figure 3. We classify the
tasks generated by the terminal device according to their urgency and sort them according
to their priority. The scheduling algorithm distributes the sorted tasks to the fog nodes and
cloud servers to ensure that the tasks will be served as much as possible.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21

need to be analyzed and processed in real time during the operation. Figure 2 depicts the

flow of image processing.

Image acquisition module

Detection object

Detection object

Detection object

Image
acquisition

Image
acquisition

Image
acquisition

Smart terminals

Smart terminals

Smart terminals

 Smart Gateway

Cloud

Fog node 1Task Information
Scheduling Strategy

Task Information
Scheduling Strategy

Fog node n

Figure 2. The image processing process of intelligent production lines.

However, the processing and analysis capabilities of fog nodes are limited. With the

increasing number of tasks to be processed, an unreasonable task allocation mechanism

often leads to an increase in task delay, a decrease in completion and an increase in energy

consumption. Consequently, we propose a task scheduling algorithm based on cloud-fog

computing. The proposed algorithm uses a hybrid heuristic scheduling algorithm to rea-

sonably allocate tasks to fog nodes and cloud servers, and thus solves the above problems.

The tasks generated by the terminals of the intelligent production line are processed in

the cloud-fog computing environment as shown in Figure 3. We classify the tasks gener-

ated by the terminal device according to their urgency and sort them according to their

priority. The scheduling algorithm distributes the sorted tasks to the fog nodes and cloud

servers to ensure that the tasks will be served as much as possible.

S
en

so
r n

o
d

es

M
an

u
factu

rin
g

eq

u
ip

m
en

ts

T1 T2 T3 T4 T5

T5 T4T3 T2 T1

Task reordering

Cloud-fog computing environmentQueuing

Q1 T2

Q2 T3

Q3 T1

Q4 T5

Q5 T4

Task queue

Fog nodes

Fog computing

Cloud computing

Figure 3. Task processing flow in the cloud-fog computing environment.

3.2.2. Latency Model and Energy Consumption Mode

First, we assume that there are 𝑘 tasks 𝑇 = {T1, 𝑇2, … , 𝑇𝑘}, the priority of each task

is 𝑃𝐿𝑖𝑠𝑡 = {𝜆1, 𝜆2, … 𝜆𝑘}, and they are independent of each other. Among them, each task

𝑇𝑖 can be expressed as a three tuple 𝑇𝑖 = {D𝑖𝑛(𝑖), 𝑌(𝑖), 𝐷𝑜𝑢𝑡(𝑖)}. D𝑖𝑛(𝑖) represents the in-

put data volume of the task, in kbit, 𝑌(𝑖) defines the load of the task, in MIPS, and 𝐷𝑜𝑢𝑡(𝑖)

indicates the output of the task, in kbit. Denote 𝑛 as the number of service nodes 𝐹 =

 {𝐹1, 𝐹2, . . . , 𝐹𝑛}, which includes fog nodes and a cloud service. For the convenience of num-

bering, we let 𝐹𝑛 denote the cloud service. We define a non-negative integer variable 𝑋𝑖,𝑗

to indicate whether the node 𝑖 can handle service request number 𝑗, such as:

𝑋𝑖,𝑗 = {
1, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 ℎ𝑎𝑛𝑑𝑙𝑒 𝑡𝑎𝑠𝑘 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑠

. (1)

Since fog nodes have heterogeneous resources, they provide different types of com-

puting services for terminal devices. To allow each task to be served, we ensure that at

least one node can serve each task when setting up the nodes. Formally, we have:

Figure 3. Task processing flow in the cloud-fog computing environment.

3.2.2. Latency Model and Energy Consumption Mode

First, we assume that there are k tasks T = {T1, T2, . . . , Tk}, the priority of each
task is PList = {λ1, λ2, . . . , λk}, and they are independent of each other. Among them,
each task Ti can be expressed as a three tuple Ti = {Din(i), Y(i), Dout(i)}. Din(i) represents
the input data volume of the task, in kbit, Y(i) defines the load of the task, in MIPS, and
Dout(i) indicates the output of the task, in kbit. Denote n as the number of service nodes
F = {F1, F2, . . . , Fn}, which includes fog nodes and a cloud service. For the convenience of
numbering, we let Fn denote the cloud service. We define a non-negative integer variable
Xi,j to indicate whether the node i can handle service request number j, such as:

Xi,j =

{
1, i f node i handle task j
0, others

. (1)

Since fog nodes have heterogeneous resources, they provide different types of com-
puting services for terminal devices. To allow each task to be served, we ensure that at least
one node can serve each task when setting up the nodes. Formally, we have:

∑
j∈T

Xi,j ≥ 1 ∀ i ∈ F. (2)

Sensors 2022, 22, 1555 7 of 21

Data transmission in the task from the terminal device to the node is often limited by
the transmission speed, and the transmission rate is usually defined as follows:

Transi = C× log2

(
1 +

pi×H
N0 + H ×∑j∈I,j 6=i pj

)
, ∀i ∈ T (3)

where pi is the transmission power of the fog node, N0 is the Gaussian noise power in
the channel, C is the bandwidth provided by the access network, and H is the channel
gain parameter between the fog nodes. In this study, we assume that the information gain
parameters between all fog nodes are the same. In addition, it can be seen from Equation (3)
that when a channel is used at the same time, the data transmission rate will be reduced.

Then, the total transmission time of the node Fi receiving the task and sending the task
after processing is expressed as:

Timetrans
i = ∑k

j Xi,j × ((Din(j) + Dout(j))/Transi), ∀i ∈ F. (4)

We use f = { f1, f2, . . . , fn} to define the ability of each node to process tasks, and the
unit is MPIS. The time to complete a process in the node should be the time it is served, so
we can obtain this formula:

Timedeal
i = ∑k

j Xi,j × (Y(j)/(fi)), ∀i ∈ F (5)

Since all tasks are served in the allocated order, the subsequent tasks in each node
must wait for the previous processing to be completed before being served. Therefore, the
queuing time of task j in each node i is:

Timequeue
i,j = ∑t−1

j=1 Xi,j × Timedeal
i , Xi,t = 1, ∀i ∈ F, ∀t ∈ T. (6)

Then, the total queue time of each node task is:

Timequeue
i = ∑k

j=1 Xi,j × Timequeue
i,j , ∀i ∈ F. (7)

Obviously, we can find from Equations (4)–(7) that the total time for each node to
complete all scheduled tasks can be expressed as:

Timetotal
i = Timetrans

i + Timedeal
i + Timequeue

i , ∀i ∈ F. (8)

It should be noted here that since the work of each node is independent of each other,
the time for all tasks to complete is equivalent to the longest time the task takes. The
maximum delay can be expressed as:

Timemax = argmaxi∈I

(
Timetotal

i

)
(9)

In this study, we use ptrans =
{

ptrans
1 , ptrans

2 , . . . , ptrans
n

}
to represent the transmission

power of the node. Combined with Equation (4), we can obtain the transmission energy
consumption of each node as:

Etrans
i = Timetrans

i × ptrans
i , ∀i ∈ F. (10)

As above, pdeal =
{

pdeal
1 , pdeal

2 , . . . , pdeal
n

}
represents the service power of node i.

Taking into account Equation (5), the energy consumption of each node when providing
services is:

Edeal
i = Timedeal

i × pdeal
i , ∀i ∈ F. (11)

Sensors 2022, 22, 1555 8 of 21

The power consumption generated by the task in queuing is extremely small, and we
do not calculate the energy consumption when the task is waiting. Then, the total energy
consumption of each node is:

Etotal
i = Edeal

i + Etrans
i , ∀i ∈ F. (12)

From Equations (10)–(12), we can easily know that the total energy consumption
generated by nodes in the entire task scheduling cycle can be expressed as:

Etotal = ∑n
i Etotal

i , ∀i ∈ T. (13)

3.2.3. Time Delay and Power Consumption Evaluation Model Based on Task Priority

In intelligent production lines, tasks with different degrees of urgency have different
response time requirements, yet usually the time tolerance for urgent tasks is low. To ensure
that urgent tasks are processed quickly, we classify the tasks in the buffer list according to
their time tolerance. We simply classify the tasks into two categories: the tasks with lower
time delay requirements are considered high-priority tasks, and the others are considered
low-priority tasks. The priority of a task is denoted by λ,

λ =

{
1, high− priority tasks
2, lower− priority tasks

(14)

The delay and power consumption of different nodes in the fog computing layer
differ when processing the same task. When using heuristics to search for potentially good
solutions, the search direction should be adaptively adjusted according to the priority of
the task. For high-priority tasks, lower service latency should be the main search direction,
while for low-priority tasks with lower latency requirements, lower power consumption
should be the search target. Therefore, we construct a latency-power evaluation model
based on the different requirements of latency and power consumption for the two priority
tasks using the properties of the exponential function.

The evaluation formula is:

Γ =
1

ϑ× eTimemax×(2−λ) + µ× eEtotal×(λ−1)
(15)

From the formula, we can find that when it is a high-priority task, the value of the
evaluation function is affected by the time delay. In the opposite case, it is affected by
energy consumption parameters. Among them, ϑ and µ represent the coefficients of latency
and energy consumption, respectively.

Through the description of the above formula, our goal formula becomes clear, includ-
ing the completion time of all tasks and the energy consumption of all nodes. Our goal is
to ensure that all are completed on time while minimizing energy consumption, namely:

Minimize {Γ}. (16)

s.t. (c1) : ∑
j∈T

Xi,j ≥ 1 ∀ i ∈ F,

(c2) : ∑
i∈F

Xi,j ≥ 1 ∀ j ∈ T,

(c3) : ∑
i∈F

∑
j∈T

quei,j = 1,

(c4) : Timemax ≤ MaxTime,

(c5) : Etotal
i ≤ MaxPower, ∀ i ∈ F.

Sensors 2022, 22, 1555 9 of 21

where we use constraints (c1) and (c2) to ensure that each task can be served, and each
node will provide at least one service. In (c3), quei,j represents the correspondence between
node i and task j after scheduling, and we constrain each task to be served by only one
node. (c4) and (c5) constrain the latency and energy consumption, respectively.

4. Task Scheduling Algorithm Design

The task scheduling problem in cloud-fog computing has difficulty obtaining the
optimal solution in polynomial time due to the many variables and constraints in the
objective function [41]. To minimize the delay of all tasks and reduce the energy con-
sumption of nodes, we combined the advantages of the MBO and ACO to design a hy-
brid heuristic algorithm. It solves the optimal task scheduling problem in the cloud-fog
computing environment.

4.1. Task Rescheduling Strategy

The traditional task scheduling sequence usually adopts the first-come, first-served
method, which is suitable for tasks with the same priority. However, this is generally not
feasible for time-sensitive tasks because the sequential service will cause time-sensitive
tasks to be ranked after non-sensitive jobs. We use a merge sorting algorithm to prioritize
the tasks to avoid this problem. The sorted sequence ensures that the high-priority tasks
can be served first. We take Figure 4 as an example. The blue stripes denote the priority of
each task, and the service order of their initial jobs is T1→ T2→ T3→ T4→ T5 . After
the task rescheduling strategy is adjusted, the order assigned to the cloud before computing
is changed to T5→ T3→ T2→ T1→ T4 .

Sensors 2022, 22, x FOR PEER REVIEW 9 of 21

(𝑐5): 𝐸𝑖
𝑡𝑜𝑡𝑎𝑙 ≤ 𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟, ∀ i 𝜖 𝐹.

where we use constraints (𝑐1) and (𝑐2) to ensure that each task can be served, and each

node will provide at least one service. In (𝑐3), 𝑞𝑢𝑒𝑖,𝑗 represents the correspondence be-

tween node 𝑖 and task 𝑗 after scheduling, and we constrain each task to be served by only

one node. (𝑐4) and (𝑐5) constrain the latency and energy consumption, respectively.

4. Task Scheduling Algorithm Design

The task scheduling problem in cloud-fog computing has difficulty obtaining the op-

timal solution in polynomial time due to the many variables and constraints in the objec-

tive function [41]. To minimize the delay of all tasks and reduce the energy consumption

of nodes, we combined the advantages of the MBO and ACO to design a hybrid heuristic

algorithm. It solves the optimal task scheduling problem in the cloud-fog computing en-

vironment.

4.1. Task Rescheduling Strategy

The traditional task scheduling sequence usually adopts the first-come, first-served

method, which is suitable for tasks with the same priority. However, this is generally not

feasible for time-sensitive tasks because the sequential service will cause time-sensitive

tasks to be ranked after non-sensitive jobs. We use a merge sorting algorithm to prioritize

the tasks to avoid this problem. The sorted sequence ensures that the high-priority tasks

can be served first. We take Figure 4 as an example. The blue stripes denote the priority

of each task, and the service order of their initial jobs is T1 → T2 → T3 → T4 → T5. After

the task rescheduling strategy is adjusted, the order assigned to the cloud before compu-

ting is changed to T5 → T3 → T2 → T1 → T4.

Figure 4. Rescheduling process based on the order of task priority.

4.2. Monarch Butterfly Optimization

The MBO algorithm [35] is a novel population intelligence algorithm that simulates

the migration process of monarch butterflies in nature. The MBO algorithm is often used

to solve some optimal solution problems with small solution spaces [42]. Based on these

studies, we improve the MBO algorithm to address small-scale task scheduling problems

to improve efficiency. The implementation process of the improved monarch butterfly is

shown in Algorithm 1.

Algorithm 1: The Improved Monarch Butterfly Optimization

Input: 𝑇𝑎𝑠𝑘 𝑞𝑢𝑒𝑢𝑒, 𝑁𝑜𝑑𝑒 𝑙𝑖𝑠𝑡 𝛵, 𝛮, 𝑀

Output: The optimal path

 1: Initialize: 𝑃, 𝑀1, 𝑀2, 𝑝𝑒𝑟𝑖, 𝑝, 𝐵𝐴𝑅, 𝜗, 𝜇

 2: Reorder task priority using merge sorting method to get queue Ψ.

 3: for mb = 1; mb <= M; mb++ do

 4: Set an initial value for each monarch butterfly.

 5: end

 6: for t = 1; t <= Τ; t++ do

Figure 4. Rescheduling process based on the order of task priority.

4.2. Monarch Butterfly Optimization

The MBO algorithm [35] is a novel population intelligence algorithm that simulates
the migration process of monarch butterflies in nature. The MBO algorithm is often used
to solve some optimal solution problems with small solution spaces [42]. Based on these
studies, we improve the MBO algorithm to address small-scale task scheduling problems
to improve efficiency. The implementation process of the improved monarch butterfly is
shown in Algorithm 1.

Sensors 2022, 22, 1555 10 of 21

Algorithm 1: The Improved Monarch Butterfly Optimization

Input: Task queue, Node list T, N, M
Output: The optimal path
1: Initialize: P, M1, M2, peri, p, BAR, ϑ, µ

2: Reorder task priority using merge sorting method to get queue Ψ.
3: for mb = 1; mb <= M; mb++ do
4: Set an initial value for each monarch butterfly.
5: end
6: for t = 1; t <= T; t++ do
7: According to Equation (25) get the task assignment sequence.
8: Evaluate the fitness value of each individual according to Equation (14).
9: Sort according to the fitness value of the individual.
10: Select the optimal path.
11: Save the two monarch butterflies with the best fitness values.
12: for mb = 1; mb <= M1; mb++ do
13: Use the DMMO to update SP1.
14: end
15: for mb = 1 + M1; mb <= M1 + M2; mb++ do
16: Use the BAO to update SP2.
17: end
18: Combine SP1 and SP2 to generate a new population.
19: Use the two elites to replace the worst two.
20: end

4.2.1. Differential Mutation Transfer Operator

The differential evolution algorithm [43] was proposed by American scholars Storn
and Price in 1995. It uses mutation, crossover, and selection operations to simulate gene
mutation behavior during biological evolution. Generally, heuristic algorithms searching
near the better solution can have a greater chance of finding the optimal global solution.
Inspired by this, we propose replacing the original migration operator of MBO with a
differential mutation migration operator. Using this strategy, we can perform differential
evolution mutation operations on the better individuals in the population to achieve the
search near the better solution. The differential mutation migration operator (DMMO) can
be expressed as:

st+1
i,k =

 st
r1,k + γ×

(
st

best,k − st
r1,k + ∆

)
, r ≤ p

st
r2,k + γ×

(
st

best,k − st
r2,k + ∆

)
, r > p

(17)

where γ = [0, 2] represents the coefficient of variation, st
best,k is the position of the best

individual in each round of iteration, and ∆ represents the difference vector, which is
expressed as:

∆ = st
q1,k − st

q2,k (18)

where st
q1,k, st

q2,k represent the positions of two monarch butterflies randomly selected, and
the constraints are:

q1 = {1, 2, · · · , M}, q2 = {1, 2, · · · , M}, q1 6= q2 6= r1 6= r2. (19)

From Equation (21), the fitness value of the mutation position and the fitness values
corresponding to the other three different parts can be calculated according to the difference
to obtain the mutation vector, and the weight of the mutation vector is added to a randomly
selected monarch butterfly position. In terms of the fitness value, a mutation fitness
value carrying diversified information is generated so that the mutation location accepts
the mutation fitness value, increasing the diversity of the population and significantly
improving the ability of the algorithm to search globally.

Sensors 2022, 22, 1555 11 of 21

4.2.2. Hybrid Encoding

The MO and BAO operators in the MBO algorithm are similar to the calculation of
the continuous problem. However, each feasible solution to the task scheduling problem
corresponds to a set of positive integers representing node numbers. Then, it is not possible
to directly apply the basic MBO algorithm to solve such problems.

We design a simple and effective hybrid coding mechanism based on the task require-
ments in cloud-fog computing. We represent each candidate solution as a two-tuple 〈X, Y〉.
Among them, ln(X) ∈ [−a, a]n is a real-valued vector, which constitutes the search space.
In this paper, the parameter a takes a value of 5.0. Y ∈ [1, N] represents the solution space
of the problem and is a vector of positive integers, and N denotes the number of nodes. We
construct a mapping relationship from continuous space to discrete space:

h(x) = k, when(k− 1)/N ≤ sig(x) < k/N, k ∈ [1, N] (20)

where sig(x) = 1/(1 + e−x) is the sigmoid function.
Therefore, the candidate solution S = {s1, s2, · · · , sM} can be evaluated by the objec-

tive function Γ.

4.3. Improved Ant Colony Algorithm

The probabilistic algorithm ACO was designed by Marco Dorigo to find an optimal
path, inspired by the behavior of ants in the process of searching for food. The ACO algo-
rithm has many excellent properties and is mainly used to solve task scheduling problems
with complex solution set [28,30]. We improved the ACO algorithm to address large-scale
task scheduling problems, and it is convenient to obtain the optimal task service strategy
faster. The implementation of the improved ACO algorithm is shown in Algorithm 2.

Algorithm 2: The Improved Ant Colony Optimization

Input: Task queue, Node list T, Nant
Output: The optimal path
1: Initialize: α, β, ρ, ϕ0, ϑ, µ

2: Reorder task priority using merge sorting method to get queue Ψ.
3: for t = 1; t <= T; t++ do
4: for ant = 1; ant <= N; ant++ do
5: Select the first task in the task queue.
6: Randomly select node j to start the first task, and X1,j = 1.
7: end
8: for ant = 1; ant <= N; ant++ do
9: for i ∈ Ψ do
10: Select the next node based on Xi,j = 1.
11: Calculate the probability based on Equation (21).
12: Determine the node and record the route.
13: Update local information based on Equation (26).
14: end
15: Select the current optimal path.
17: end
18: Update global information according to Equation (23).
19: Select the optimal path.
20: end

4.3.1. Path Construction

In the ACO algorithm, each artificial ant randomly selects a position as the starting
point before leaving and maintains a path memory vector to store the positions that the
artificial ant passes in turn. The position here refers to cloud and fog nodes. In each step of
constructing the path, the artificial ant chooses the following location to reach according

Sensors 2022, 22, 1555 12 of 21

to the rule of random proportion. The random probability is calculated according to the
following formula:

Pk
ij(t) =

[ιij(t)]

α×[ηij(t)]
β

∑k∈allowedk [ιij(t)]
α×[ηij(t)]

β , i f j ∈ allowedk

0, others
(21)

where Pk
ij(t) represents the probability that node j needs to provide services when node i

provides services at time t. ιij(t) denotes the intensity of the pheromone from node i to
j at time t, ηij(t) indicates the visibility from node i to j at time t, allowedk represents the
set of nodes that have not been visited, and α and β are two constants, that represent the
weighted value of pheromone and visibility, respectively.

ηij(t) is determined by Equation (14):

ηij(t) =
1

ϑ× eτij(t)×(2−λ) + µ× eπij(t)×(λ−1)
(22)

where τij(t) represents the time spent from nodes i to j at time t, and πij(t) represents
energy consumption. λ is the priority of the task mentioned in Equation (13), where the
multi-objective task scheduling is the denominator of Equation (22), and the larger the
value of the fitness function is, the better the solution.

4.3.2. Pheromone Update

The pheromone update method is the key to the colony ant algorithm. A certain
amount of pheromone is assigned to each route at the beginning of the algorithm. The
pheromone is an incentive that encourages ants to explore close to the optimal solution,
and the management of pheromones directly affects the algorithm’s efficiency. If there are
too many pheromones in the current best path, the result may not jump out of the local
optimum. In contrast, it might cause the algorithm to converge too slowly. In the following,
we introduce the pheromone update strategy we adopted, which can obtain the global
optimal solution and accelerate the convergence speed of the algorithm.

Global Pheromone Update

When each generation of artificial ants completes the iteration, all trajectories will be
updated globally as follows:

ϕk
ij = (1− ρ)× ϕk

ij + ∆ϕk
ij. (23)

where ρ is the proportion of disappearing pheromones, and ∆ϕk
ij is the newly generated

pheromones in the trajectory from node i to j. The generation of a new pheromone depends
on whether it is the trajectory of the optimal solution, namely:

∆ϕk
ij =

{
1/χ, i f i→ j is involved in the best solution
0, others

. (24)

where χ represents the length of the path.

Local Pheromone Update

After each artificial ant chooses a path, the pheromones of the two targets will evap-
orate in a particular proportion to prevent premature convergence. The local update
procedure is as follows:

ϕk
ij = (1− ρ)× ϕk

ij + ϕ0. (25)

Sensors 2022, 22, 1555 13 of 21

where ρ is the evaporation rate of the pheromone set in advance, and ϕ0 is the initial
pheromone concentration. With the local renewal of pheromones, artificial ants tend to
seldom untraveled paths, thereby potentially increasing the diversity of solutions.

4.4. Hybrid Heuristic Task Scheduling Algorithm

The MBO algorithm and the ACO algorithm are introduced in detail above, and
we improved these two algorithms. However, each algorithm has its shortcomings in
solving the task scheduling problem. For example, when a large number of tasks must be
scheduled, although the search speed of the MBO algorithm is relatively fast, the global
search capability becomes weaker, and the search accuracy also decreases. However, for
the ACO algorithm, although it has high accuracy, the search speed is low. To obtain
critical values for the performance of the two algorithms, we conduct several comparison
experiments and find that better scheduling is obtained using the improved MBO algorithm
when the number of tasks is less than or equal to 30, while the ACO algorithm performs
well in other cases. Based on this, we design a new hybrid MBO–ACO (HMA) algorithm
to fully utilize the performance of both algorithms. The threshold is set to 30, and the
improved MBO (IMBO) algorithm is used for task scheduling when the number of tasks is
less than or equal, and the improved ACO (IACO) algorithm is used when it is greater than.
This enables adaptive selection of the optimal scheduling algorithm based on the number
of tasks. The flowchart of the HMA algorithm is shown in Figure 5.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21

number of tasks is less than or equal to 30, while the ACO algorithm performs well in

other cases. Based on this, we design a new hybrid MBO–ACO (HMA) algorithm to fully

utilize the performance of both algorithms. The threshold is set to 30, and the improved

MBO (IMBO) algorithm is used for task scheduling when the number of tasks is less than

or equal, and the improved ACO (IACO) algorithm is used when it is greater than. This

enables adaptive selection of the optimal scheduling algorithm based on the number of

tasks. The flowchart of the HMA algorithm is shown in Figure 5.

Start

Number of

tasks 30

Use Algorithm 1. Use Algorithm 2.

Output the optimal task

scheduling strategy.

End

Yes No

Figure 5. The flowchart of HMA algorithm.

Time Complexity Analysis

The time complexity of our strategy depends on:

• The time complexity of the task classification strategy.

Task sorting is performed by the merge sort algorithm, so the average time complex-

ity of task sorting is 𝑂(𝑛 ∗ log 𝑛).

• The time complexity of task scheduling.

The task scheduling strategy is based on MBO and ACO, whose complexity is usually

measured in terms of average convergence and is influenced by the number of popula-

tions and the number of iterations. However, the randomness and group nature of these

algorithms lead to complex and variable stochastic processes, which adds difficulties to

the time complexity analysis of the algorithms [44]. We can only approximate the time

complexity. The time complexity of the MBO algorithm is approximately 𝑂(𝑚 × 𝑛 × 𝑚 ×

𝑇), and the ACO is approximately 𝑂((𝑛 − 1) × 𝑛 × 𝑚 × 𝑇). Here, n represents the number

of tasks, m is the number of populations, and T denotes the number of iterations.

5. Performance Evaluation

In this section, we perform simulations to verify the feasibility of the proposed

method. We present the simulation environment and compare its performance with that

of the conventional method. The results further validate the effectiveness of the proposed

strategy.

5.1. Simulation Settings

The experiment is conducted on a computer with a 3.7 GHz AMD Ryzen 5, 3400 G

CPU and 16 G memory storage space. We build a cloud-fog computing architecture and

task scheduling model simulation platform using C++ based on a task scheduling scenario

in the intelligent production line. To facilitate the performance comparison between

Figure 5. The flowchart of HMA algorithm.

Time Complexity Analysis

The time complexity of our strategy depends on:

• The time complexity of the task classification strategy.

Task sorting is performed by the merge sort algorithm, so the average time complexity
of task sorting is O(n ∗ log n).

• The time complexity of task scheduling.

The task scheduling strategy is based on MBO and ACO, whose complexity is usually
measured in terms of average convergence and is influenced by the number of populations
and the number of iterations. However, the randomness and group nature of these algo-
rithms lead to complex and variable stochastic processes, which adds difficulties to the time
complexity analysis of the algorithms [44]. We can only approximate the time complexity.
The time complexity of the MBO algorithm is approximately O(m× n×m× T), and the

Sensors 2022, 22, 1555 14 of 21

ACO is approximately O((n− 1)× n×m× T). Here, n represents the number of tasks, m
is the number of populations, and T denotes the number of iterations.

5. Performance Evaluation

In this section, we perform simulations to verify the feasibility of the proposed method.
We present the simulation environment and compare its performance with that of the
conventional method. The results further validate the effectiveness of the proposed strategy.

5.1. Simulation Settings

The experiment is conducted on a computer with a 3.7 GHz AMD Ryzen 5, 3400 G CPU
and 16 G memory storage space. We build a cloud-fog computing architecture and task
scheduling model simulation platform using C++ based on a task scheduling scenario in the
intelligent production line. To facilitate the performance comparison between algorithms,
we set the transmission rate between fog nodes as 3 M/s and that between cloud nodes
and fog nodes as 10 M/s. The simulation parameters are shown in Table 1. The parameter
settings in Algorithm 1 and Algorithm 2 are shown in Table 2.

Table 1. Simulation parameters.

Symbol Value Description

K [10, 100] Number of the tasks.
CloudN 1 Number of cloud nodes.

FogN [5, 10, 20] Number of fog nodes.
TerminalN 10 Number of terminal services.

Din [1, 1024] Kb Amount of data input for each task.
Dout [1, 50] Kb Amount of data output by each task.

Y [1, 10] MIPS Load of each task.
Ccloud 204, 800 MIPS Processing rate of the cloud node.
C f og [800, 15000] MIPS Processing rate of fog nodes.
Pcloud 800 W Energy consumption of cloud node.
Pf og [20, 40] W Energy consumption of fog nodes.
Pt [3, 5] W Transmission energy consumption of nodes.

Discloud 3000 m Distance between the cloud and other fog nodes.
Dis f og [10, 100] m Distance between the fog nodes.

MaxTime1 2 s Maximum tolerable time for high-priority tasks.
MaxTime2 4 s Maximum tolerable time for low-priority tasks.

ϑ 5.0 Latency weight coefficient.
µ 1.0 Energy consumption weight coefficient.
λ [1, 2] Task priority.

Table 2. Parameters set in Algorithm 1 and Algorithm 2.

Symbol Value Description

M 30 Monarch butterfly population size.
TMob 50 Algorithm 1 maximum generation.

p 5/12 Migration ratio.
peri 1.2 Migration period.

BAR 5/12 Butterfly adjusting rate.
Smax 1 Max walk step.
Nant 30 Ant population size.

TACO 300 Algorithm 2 maximum generation.
α 1 Pheromone weight coefficient.
β 5 Weight factor of heuristic information.
ρ 0.5 Pheromone volatilization rate.
ϕ0 1.0 Initial pheromone concentration.

Sensors 2022, 22, 1555 15 of 21

5.2. Performance Evaluations

To highlight our proposed HMA task scheduling algorithm, we compare two existing
scheduling methods: first-come-first-served (FCFS) scheduling [45] and only cloud service
methods [18]. We also compare the performance of the IMBO algorithm or the IACO
algorithm running alone. Finally, we experiment with a priority-based task reordering
strategy. We execute all the algorithms 30 times and average the results to reduce the error
due to randomness.

We summarize the results of previous studies and identify three evaluation indicators
to evaluate the experimental results. The first is the maximum completion time [37,46–49],
which is the time required to complete the last task. The second is energy consump-
tion [37,47,48], which is the sum of energy required in completing all tasks. The third
is the task completion rate (CR), which is the number of tasks successfully completed
within the maximum tolerance time divided by the total tasks, and can be expressed by the
following formula:

CR =
Numcomplete

Numtotal
(26)

Next, we compare five algorithms under three performance indicators. The number of
fog nodes is set to 5, 10 and 20, and the task amount is set to 10, 20, 30, 40, 50, 60, 70, 80, 90,
and 100.

5.2.1. Maximum Completion Time

For each experiment, before the task scheduling is completed without execution, we
set a timer for each cloud/fog node that starts when the first task arrives and stops when
the last task is completed. At the end of a task cycle, we compare the times recorded
by each node and select the largest one as the maximum completion time for that task
scheduling method. Figure 6 illustrates the performance comparison of the maximum
completion time between the five task scheduling strategies. Here, Figure 6A–C are the
result of sorting tasks, and Figure 6D–F are before sorting. As the number of tasks increases,
the task completion time increases. In contrast, as the number of fog nodes increases, it
decreases. Furthermore, the cloud has the highest completion time, which may be due
to network congestion caused by long-distance transmission between the cloud and the
terminal device. While the cloud server has the most robust processing performance,
it takes the most time. The remaining algorithms can reduce the huge latency caused
by communication by offloading the tasks to the fog nodes. The cloud-fog computing
architecture is an effective way to reduce the latency of intelligent production line tasks.
When our proposed task rescheduling strategy is used, the latency of IMBO, IACO, and
HMA is lower than that of the unused strategy. This shows that the task rushing sequencing
strategy based on task priority can reduce the time-sensitive task latency. The proposed
HMA can ensure that all tasks can be completed within the maximum tolerance time when
the number of tasks is less than or equal to 30 after the tasks are sorted. Furthermore, FCFS
scheduling ignores the performance differences between different nodes, resulting in the
second-highest delay cost.

Sensors 2022, 22, 1555 16 of 21

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21

consumption [37,47,48], which is the sum of energy required in completing all tasks. The

third is the task completion rate (CR), which is the number of tasks successfully completed

within the maximum tolerance time divided by the total tasks, and can be expressed by

the following formula:

𝐶𝑅 =
𝑁𝑢𝑚complete

𝑁𝑢𝑚𝑡𝑜𝑡𝑎𝑙
 (26)

Next, we compare five algorithms under three performance indicators. The number

of fog nodes is set to 5, 10 and 20, and the task amount is set to 10, 20, 30, 40, 50, 60, 70, 80,

90, and 100.

5.2.1. Maximum Completion Time

For each experiment, before the task scheduling is completed without execution, we

set a timer for each cloud/fog node that starts when the first task arrives and stops when

the last task is completed. At the end of a task cycle, we compare the times recorded by

each node and select the largest one as the maximum completion time for that task sched-

uling method. Figure 6 illustrates the performance comparison of the maximum comple-

tion time between the five task scheduling strategies. Here, A–C are the result of sorting

tasks, and D–F are before sorting. As the number of tasks increases, the task completion

time increases. In contrast, as the number of fog nodes increases, it decreases. Further-

more, the cloud has the highest completion time, which may be due to network congestion

caused by long-distance transmission between the cloud and the terminal device. While

the cloud server has the most robust processing performance, it takes the most time. The

remaining algorithms can reduce the huge latency caused by communication by offload-

ing the tasks to the fog nodes. The cloud-fog computing architecture is an effective way

to reduce the latency of intelligent production line tasks. When our proposed task resched-

uling strategy is used, the latency of IMBO, IACO, and HMA is lower than that of the

unused strategy. This shows that the task rushing sequencing strategy based on task pri-

ority can reduce the time-sensitive task latency. The proposed HMA can ensure that all

tasks can be completed within the maximum tolerance time when the number of tasks is

less than or equal to 30 after the tasks are sorted. Furthermore, FCFS scheduling ignores

the performance differences between different nodes, resulting in the second-highest de-

lay cost.

Figure 6. Comparison of the maximum completion time. (A) Completion time of 5 fog nodes

(sorted); (B) Completion time of 10 fog nodes (sorted); (C) Completion time of 20 fog nodes

(sorted); (D) Completion time of 5 fog nodes (unsorted); (E) Completion time of 10 fog nodes (un-

sorted); (F) Completion time of 20 fog nodes (unsorted).

Figure 6. Comparison of the maximum completion time. (A) Completion time of 5 fog nodes
(sorted); (B) Completion time of 10 fog nodes (sorted); (C) Completion time of 20 fog nodes (sorted);
(D) Completion time of 5 fog nodes (unsorted); (E) Completion time of 10 fog nodes (unsorted);
(F) Completion time of 20 fog nodes (unsorted).

5.2.2. Energy Consumption

During the experiment, when the task starts to execute, we calculate the energy
consumption required to process each task according to Equation (12). After the task
is completed, we use Equation (13) to obtain the energy consumed by all tasks to com-
plete in one task cycle. Figure 7 compares the energy consumption performance between
the five task scheduling strategies. Similarly, Figure 7A–C are the result of sorting tasks,
and Figure 7D–F are before sorting. We can clearly understand that energy consumption
increases with the number of tasks and fog nodes. Here, only the running power con-
sumption of cloud processing tasks is calculated, and the static power consumption of
the server is ignored, so the energy consumption brought by cloud services is the lowest.
Generally, energy consumption is related to power and running time and decreases as the
completion time shortens. The energy consumption of Figure 7A–C is much lower than
that of Figure 7D–F, which shows that our proposed task reordering strategy reduces the
overall execution time of tasks. It is also worth noting that the energy consumption of
HMA is significantly lower than that of FCFS. Traditional scheduling strategies such as
FCFS do not consider the load of the fog nodes in the task allocation process, resulting in
unbalanced load distribution and higher energy consumption. Equation (14) enables the
HMA to adaptively adjust the search direction according to the priority of the task, thus
reducing energy consumption. The energy consumption of HMA is less than that of IACO
but more than that of IMBO. This shows that in large-scale search problems, HMA has
more vital searchability than IMBO. The results obtained better balance time constraints
and power consumption, resulting in a slight increase in energy consumption. We believe
this is acceptable.

Sensors 2022, 22, 1555 17 of 21

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

5.2.2. Energy Consumption

During the experiment, when the task starts to execute, we calculate the energy con-

sumption required to process each task according to Equation (12). After the task is com-

pleted, we use Equation (13) to obtain the energy consumed by all tasks to complete in

one task cycle. Figure 7 compares the energy consumption performance between the five

task scheduling strategies. Similarly, A–C are the result of sorting tasks, and D–F are be-

fore sorting. We can clearly understand that energy consumption increases with the num-

ber of tasks and fog nodes. Here, only the running power consumption of cloud pro-

cessing tasks is calculated, and the static power consumption of the server is ignored, so

the energy consumption brought by cloud services is the lowest. Generally, energy con-

sumption is related to power and running time and decreases as the completion time

shortens. The energy consumption of A–C is much lower than that of D–F, which shows

that our proposed task reordering strategy reduces the overall execution time of tasks. It

is also worth noting that the energy consumption of HMA is significantly lower than that

of FCFS. Traditional scheduling strategies such as FCFS do not consider the load of the

fog nodes in the task allocation process, resulting in unbalanced load distribution and

higher energy consumption. Equation (14) enables the HMA to adaptively adjust the

search direction according to the priority of the task, thus reducing energy consumption.

The energy consumption of HMA is less than that of IACO but more than that of IMBO.

This shows that in large-scale search problems, HMA has more vital searchability than

IMBO. The results obtained better balance time constraints and power consumption, re-

sulting in a slight increase in energy consumption. We believe this is acceptable.

Figure 7. Comparison of the energy consumption. (A) Energy consumption of 5 fog nodes

(sorted); (B) Energy consumption of 10 fog nodes (sorted); (C) Energy consumption of 20 fog

nodes (sorted); (D) Energy consumption of 5 fog nodes (unsorted); (E) Energy consumption of 10

fog nodes (unsorted); (F) Energy consumption of 20 fog nodes (unsorted).

5.2.3. Task Completion Rate

In our experiments, we set a timer for each task to keep track of the time it takes from

being assigned to completion. We set a counter that counts the number of tasks that can

be completed within 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 after all tasks are completed. If the task completion time

is less than 𝑀𝑎𝑥𝑇𝑖𝑚𝑒, then the counter is incremented by one. 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 is different for

tasks with different priorities, which are listed in Table 1. Finally, we calculate the task

completion rate using Equation (26). Figure 8 shows the completion rate of all tasks within

the task tolerance time. We still use A–C to indicate the performance results after sorting

the tasks, and D–F to indicate the results before sorting. According to Equation (26), we

Figure 7. Comparison of the energy consumption. (A) Energy consumption of 5 fog nodes (sorted);
(B) Energy consumption of 10 fog nodes (sorted); (C) Energy consumption of 20 fog nodes (sorted);
(D) Energy consumption of 5 fog nodes (unsorted); (E) Energy consumption of 10 fog nodes
(unsorted); (F) Energy consumption of 20 fog nodes (unsorted).

5.2.3. Task Completion Rate

In our experiments, we set a timer for each task to keep track of the time it takes from
being assigned to completion. We set a counter that counts the number of tasks that can be
completed within MaxTime after all tasks are completed. If the task completion time is less
than MaxTime, then the counter is incremented by one. MaxTime is different for tasks with
different priorities, which are listed in Table 1. Finally, we calculate the task completion
rate using Equation (26). Figure 8 shows the completion rate of all tasks within the task
tolerance time. We still use Figure 8A–C to indicate the performance results after sorting the
tasks, and Figure 8D–F to indicate the results before sorting. According to Equation (26), we
know that the trend of the task completion rate is consistent with the maximum completion
time. In other words, as the number of tasks increases, the completion rate decreases again,
and as the number of fog nodes increases, the task completion rate increases. Whether the
task reschedule strategy is adopted, the task completion rate of HMA is always the highest.
This is because HMA balances time and task delay through task priority when processing
task scheduling, ensuring the priority execution of time-sensitive tasks. When the number
of tasks exceeds 30, the completion rate of the IMBO strategy is ranked behind FCFS. As
the solution set space increases, the IMBO algorithm is prone to poor performance caused
by falling into suboptimal solutions. IACO is the same as HMA in terms of completion rate.
Cloud computing is ranked last due to large latency, which results in a low completion rate.

We compared the completion rates of high-priority tasks to show the responsiveness
of different algorithms to urgent tasks, as shown in Figure 9. Comparing Figure 9A–C and
Figure 9D–F, we find that the task rescheduling strategy can improve the completion rate
of high-priority tasks, which ensures the requirements of the intelligent production line
for time-sensitive tasks. From the information of Figure 9A–C, we can conclude that when
the number of tasks is less than 60, the HMA algorithm ensures that all high-priority tasks
are completed within the fault tolerance time. This verifies that the task priority-based
strategy takes time delay and energy consumption as the optimization goal and converges
to the optimal solution better than other algorithms. When the number of fog nodes is 20,
all high-priority tasks within 100 are completed. For large-scale tasks, adding a certain
number of service nodes can effectively improve the task success rate. The task completion
rate of nodes 5 and 10 proves that HMA is superior under the limitation of the number of
service nodes. Similar to the total completion rate, IACO ranks second, FCFS leads IMBO
when the number of tasks is large, and cloud always ranks last.

Sensors 2022, 22, 1555 18 of 21

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21

know that the trend of the task completion rate is consistent with the maximum comple-

tion time. In other words, as the number of tasks increases, the completion rate decreases

again, and as the number of fog nodes increases, the task completion rate increases.

Whether the task reschedule strategy is adopted, the task completion rate of HMA is al-

ways the highest. This is because HMA balances time and task delay through task priority

when processing task scheduling, ensuring the priority execution of time-sensitive tasks.

When the number of tasks exceeds 30, the completion rate of the IMBO strategy is ranked

behind FCFS. As the solution set space increases, the IMBO algorithm is prone to poor

performance caused by falling into suboptimal solutions. IACO is the same as HMA in

terms of completion rate. Cloud computing is ranked last due to large latency, which re-

sults in a low completion rate.

Figure 8. Comparison of the total task completion rate. (A) Total tasks completion rate of 5 fog

nodes (sorted); (B) Total tasks completion rate of 10 fog nodes (sorted); (C) Total tasks completion

rate of 20 fog nodes (sorted); (D) Total tasks completion rate of 5 fog nodes (unsorted); (E) Total

tasks completion rate of 10 fog nodes (unsorted); (F) Total tasks completion rate of 20 fog nodes

(unsorted).

We compared the completion rates of high-priority tasks to show the responsiveness

of different algorithms to urgent tasks, as shown in Figure 9. Comparing A–C and D–F,

we find that the task rescheduling strategy can improve the completion rate of high-pri-

ority tasks, which ensures the requirements of the intelligent production line for time-

sensitive tasks. From the information of A–C, we can conclude that when the number of

tasks is less than 60, the HMA algorithm ensures that all high-priority tasks are completed

within the fault tolerance time. This verifies that the task priority-based strategy takes

time delay and energy consumption as the optimization goal and converges to the optimal

solution better than other algorithms. When the number of fog nodes is 20, all high-prior-

ity tasks within 100 are completed. For large-scale tasks, adding a certain number of ser-

vice nodes can effectively improve the task success rate. The task completion rate of nodes

5 and 10 proves that HMA is superior under the limitation of the number of service nodes.

Similar to the total completion rate, IACO ranks second, FCFS leads IMBO when the num-

ber of tasks is large, and cloud always ranks last.

Figure 8. Comparison of the total task completion rate. (A) Total tasks completion rate of 5 fog nodes
(sorted); (B) Total tasks completion rate of 10 fog nodes (sorted); (C) Total tasks completion rate
of 20 fog nodes (sorted); (D) Total tasks completion rate of 5 fog nodes (unsorted); (E) Total tasks
completion rate of 10 fog nodes (unsorted); (F) Total tasks completion rate of 20 fog nodes (unsorted).

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21

Figure 9. Comparison of the high-priority task completion rates. (A) Hight-priority tasks comple-

tion rate of 5 fog nodes (sorted); (B) Hight-priority tasks completion rate of 10 fog nodes (sorted);

(C) Hight-priority tasks completion rate of 20 fog nodes (sorted); (D) Hight-priority tasks comple-

tion rate of 5 fog nodes (unsorted); (E) Hight-priority tasks completion rate of 10 fog nodes (un-

sorted); (F) Hight-priority tasks completion rate of 20 fog nodes (unsorted).

In this paper, the proposed HMA scheduling strategy reduces energy consumption

as much as possible by reducing the task delay and increasing the completion rate. The

experimental results in terms of completion time, energy consumption, and task comple-

tion rate show the same trend, proving the feasibility of the proposed strategy in task

scheduling. In summary, the experimental results show that the proposed cloud-fog com-

puting architecture and the HMA algorithm based on task priority can provide a rapid

response in the intelligent production line. The energy consumption of the intelligent pro-

duction line system was also reduced.

6. Conclusions

This paper highlights the task scheduling problem in intelligent production lines. For

the requirement of ultra-low latency, we establish a mathematical model for intelligent

production line task scheduling to achieve ultra-low latency and low power consumption

of time-sensitive tasks. We transform it into a multi-objective optimization of time delay

and energy consumption. Combining the advantages of cloud computing and fog com-

puting, we propose a cloud-fog computing architecture for intelligent production lines

and develop a priority-based task rescheduling strategy to ensure that time-sensitive tasks

are prioritized services. In addition, we propose the HMA algorithm with a mixture of

IMBO and IACO algorithms to solve the optimization problem. This is the first time that

the MBO algorithm is used to solve the task scheduling problem of intelligent production

lines. We evaluate the performance of HMA in a simulation environment. We find that as

the number of tasks increases, the performance improvement also increases. When the

number of tasks is 100 and the number of nodes is 10, the maximum completion time is

only 37.8% of cloud, 59.6% of IMBO, and 69.9% of FCFS, while the power consumption is

82.9% of FCFS, and the task completion rate is 5.3 times better than cloud, 1.5 times better

than IMBO, and 1.25 times better than FCFS. The experimental results show that our pro-

posed strategy can respond quickly to tasks and reduce energy consumption. In the fu-

ture, we will enhance the proposed task scheduling strategy in the cloud-fog computing

architecture to solve the task flow scheduling problem of intelligent production lines.

Author Contributions: Conceptualization, Z.Y. and F.X.; methodology, Z.Y. and F.X.; software, F.X.;

validation, Z.Y., F.X. and Y.L.; investigation, F.X. and F.Z.; data curation, Y.L. and C.F.; writing—

Figure 9. Comparison of the high-priority task completion rates. (A) Hight-priority tasks completion
rate of 5 fog nodes (sorted); (B) Hight-priority tasks completion rate of 10 fog nodes (sorted); (C) Hight-
priority tasks completion rate of 20 fog nodes (sorted); (D) Hight-priority tasks completion rate of
5 fog nodes (unsorted); (E) Hight-priority tasks completion rate of 10 fog nodes (unsorted); (F) Hight-
priority tasks completion rate of 20 fog nodes (unsorted).

In this paper, the proposed HMA scheduling strategy reduces energy consumption
as much as possible by reducing the task delay and increasing the completion rate. The
experimental results in terms of completion time, energy consumption, and task completion
rate show the same trend, proving the feasibility of the proposed strategy in task schedul-
ing. In summary, the experimental results show that the proposed cloud-fog computing
architecture and the HMA algorithm based on task priority can provide a rapid response in
the intelligent production line. The energy consumption of the intelligent production line
system was also reduced.

Sensors 2022, 22, 1555 19 of 21

6. Conclusions

This paper highlights the task scheduling problem in intelligent production lines. For
the requirement of ultra-low latency, we establish a mathematical model for intelligent
production line task scheduling to achieve ultra-low latency and low power consumption of
time-sensitive tasks. We transform it into a multi-objective optimization of time delay and
energy consumption. Combining the advantages of cloud computing and fog computing,
we propose a cloud-fog computing architecture for intelligent production lines and develop
a priority-based task rescheduling strategy to ensure that time-sensitive tasks are prioritized
services. In addition, we propose the HMA algorithm with a mixture of IMBO and IACO
algorithms to solve the optimization problem. This is the first time that the MBO algorithm
is used to solve the task scheduling problem of intelligent production lines. We evaluate
the performance of HMA in a simulation environment. We find that as the number of
tasks increases, the performance improvement also increases. When the number of tasks is
100 and the number of nodes is 10, the maximum completion time is only 37.8% of cloud,
59.6% of IMBO, and 69.9% of FCFS, while the power consumption is 82.9% of FCFS, and
the task completion rate is 5.3 times better than cloud, 1.5 times better than IMBO, and
1.25 times better than FCFS. The experimental results show that our proposed strategy can
respond quickly to tasks and reduce energy consumption. In the future, we will enhance
the proposed task scheduling strategy in the cloud-fog computing architecture to solve the
task flow scheduling problem of intelligent production lines.

Author Contributions: Conceptualization, Z.Y. and F.X.; methodology, Z.Y. and F.X.; software, F.X.;
validation, Z.Y., F.X. and Y.L.; investigation, F.X. and F.Z.; data curation, Y.L. and C.F.; writing—
original draft preparation, F.X.; writing—review and editing, Z.Y., F.X., G.H. and Y.B.; visualization,
Y.L. and C.F.; supervision, Z.Y., F.X. and F.Z.; project administration, Z.Y., G.H. and Y.B.; funding ac-
quisition, Z.Y. and G.H. All authors have read and agreed to the published version of the manuscript.

Funding: National Key R&D Program of China under Grant No. 2017YFE0125300.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. They are restricted to experimental results.

Acknowledgments: This work is supported by the National Key R&D Program of China under Grant
No. 2017YFE0125300.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khalid, N.; Mirzavand, R.; Saghlatoon, H.; Honari, M.M.; Mousavi, P. A three-port zero-power RFID sensor architecture for IoT

applications. IEEE Access 2020, 8, 66888–66897. [CrossRef]
2. Serror, M.; Hack, S.; Henze, M.; Schuba, M.; Wehrle, K. Challenges and opportunities in securing the industrial internet of things.

IEEE Trans. Ind. Inform. 2021, 17, 2985–2996. [CrossRef]
3. Xu, L.D.; He, W.; Li, S.C. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [CrossRef]
4. Alhaidari, F.; Rahman, A.; Zagrouba, R. Cloud of things: Architecture, applications and challenges. J. Ambient Intell. Humaniz.

Comput. 2020, 1–19. [CrossRef]
5. Wang, J.; Li, D.; Hu, Y. Fog nodes deployment based on space–time characteristics in smart factory. IEEE Trans. Ind. Inform. 2021,

17, 3534–3543. [CrossRef]
6. Alqahtani, F.; Amoon, M.; Nasr, A.A. Reliable scheduling and load balancing for requests in cloud-fog computing. Peer Peer Netw.

Appl. 2021, 14, 1905–1916. [CrossRef]
7. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog

computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]
8. Mijuskovic, A.; Chiumento, A.; Bemthuis, R.; Aldea, A.; Havinga, P. Resource management techniques for cloud/fog and edge

computing: An evaluation framework and classification. Sensors 2021, 21, 1832. [CrossRef]
9. Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Vilar-Montesinos, M. A fog computing and cloudlet based

augmented reality system for the industry 4.0 shipyard. Sensors 2018, 18, 1798. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2985711
http://doi.org/10.1109/TII.2020.3023507
http://doi.org/10.1109/TII.2014.2300753
http://doi.org/10.1007/s12652-020-02448-3
http://doi.org/10.1109/TII.2020.2999310
http://doi.org/10.1007/s12083-021-01125-2
http://doi.org/10.1016/j.sysarc.2019.02.009
http://doi.org/10.3390/s21051832
http://doi.org/10.3390/s18061798

Sensors 2022, 22, 1555 20 of 21

10. Wang, J.; Xiao, J.; Li, D. Computing modes-based task processing for industrial internet of things. Int. J. Auton. Adapt. Commun.
Syst. 2019, 12, 343–357. [CrossRef]

11. Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A comprehensive survey on fog computing:
State-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 2017, 20, 416–464. [CrossRef]

12. Shim, Y.; Park, H.; Shin, W. Joint time allocation for wireless energy harvesting decode-and-forward relay-based IoT networks
with rechargeable and nonrechargeable batteries. IEEE Internet Things J. 2020, 8, 2792–2801. [CrossRef]

13. Bjerkevik, H.B.; Botnan, M.B.; Kerber, M. Computing the interleaving distance is NP-hard. Found. Comput. Math. 2020, 20,
1237–1271. [CrossRef]

14. Wang, J.; Li, D. Task scheduling based on a hybrid heuristic algorithm for smart production line with fog computing. Sensors
2019, 19, 1023. [CrossRef]

15. Iacobucci, G. Government should commit to making GP premises carbon neutral by 2030, say leaders. BMJ 2021, 373, n1228.
[CrossRef]

16. Rajakumari, K.; Kumar, M.V.; Verma, G.; Balu, S.; Sharma, D.-K.; Sengan, S. Fuzzy based ant colony optimization scheduling in
cloud computing. Comput. Syst. Sci. Eng. 2022, 40, 581–592. [CrossRef]

17. Rao, L.; Liu, X.; Ilic, M.D.; Liu, J. Distributed coordination of internet data centers under multiregional electricity markets. Proc.
IEEE 2011, 100, 269–282.

18. Lin, W.; Peng, G.; Bian, X.; Xu, S.; Chang, V.; Li, Y. Scheduling algorithms for heterogeneous cloud environment: Main resource
load balancing algorithm and time balancing algorithm. J. Grid Comput. 2019, 17, 699–726. [CrossRef]

19. Laghari, A.A.; Jumani, A.K.; Laghari, R.A. Review and state of art of fog computing. Arch. Comput. Methods Eng. 2021, 28,
3631–36433. [CrossRef]

20. Mukherjee, M.; Kumar, S.; Mavromoustakis, C.X.; Mastorakis, G.; Matam, R.; Kumar, V.; Zhang, Q. Latency-driven parallel task
data offloading in fog computing networks for industrial applications. IEEE Trans. Ind. Inform. 2020, 16, 6050–6058. [CrossRef]

21. Chekired, D.A.; Khoukhi, L.; Mouftah, H.T. Industrial IoT data scheduling based on hierarchical fog computing: A key for
enabling smart factory. IEEE Trans. Ind. Inform. 2018, 14, 4590–4602. [CrossRef]

22. Chang, Z.; Liu, L.; Guo, X.; Sheng, Q. Dynamic resource allocation and computation offloading for IoT fog computing system.
IEEE Trans. Ind. Inform. 2021, 17, 3348–3357. [CrossRef]

23. Keshavarznejad, M.; Rezvani, M.H.; Adabi, S. Delay-aware optimization of energy consumption for task offloading in fog
environments using metaheuristic algorithms. Clust. Comput. J. Netw. Softw. Tools Appl. 2021, 24, 1825–1853. [CrossRef]

24. Huang, T.; Lin, W.; Xiong, C.; Pan, R.; Huang, J. An ant colony optimization-based multiobjective service replicas placement
strategy for fog computing. IEEE Trans. Cybern. 2020, 51, 5595–5608. [CrossRef] [PubMed]

25. Abdelmoneem, R.M.; Benslimane, A.; Shaaban, E. Mobility-aware task scheduling in cloud-fog IoT-based healthcare architectures.
Comput. Netw. 2020, 179, 107348. [CrossRef]

26. Mokni, M.; Yassa, S.; Hajlaoui, J.E.; Chelouah, R.; Omri, M.N. Cooperative agents-based approach for workflow scheduling on
fog-cloud computing. J. Ambient Intell. Humaniz. Comput. 2021, 1–20. [CrossRef]

27. Bisht, J.; Subrahmanyam, V.V. Energy efficient and optimized makespan workflow scheduling algorithm for heterogeneous
resources in fog-cloud-edge collaboration. In Proceedings of the 6th IEEE International Women in Engineering (WIE) Conference
on Electrical and Computer Engineering (WIECON-ECE), Bhubaneswar, India, 26–27 December 2020; pp. 78–83.

28. Tang, J.; Liu, G.; Pan, Q. A review on representative swarm intelligence algorithms for solving optimization problems: Applications
and trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [CrossRef]

29. Gharehchopogh, F.S.; Shayanfar, H.; Gholizadeh, H. A comprehensive survey on symbiotic organisms search algorithms. Artif.
Intell. Rev. 2020, 53, 2265–2312. [CrossRef]

30. Dorigo, M.; di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; pp. 1470–1477.

31. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2020, 80,
8091–8126. [CrossRef]

32. Bonyadi, M.R. A theoretical guideline for designing an effective adaptive particle swarm. IEEE Trans. Evol. Comput. 2019, 24,
57–68. [CrossRef]

33. Suman, B.; Kumar, P. A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 2006,
57, 1143–1160. [CrossRef]

34. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
35. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [CrossRef]
36. Nalluri, M.R.; Kannan, K.; Gao, X.-Z.; Roy, D.S. Multiobjective hybrid monarch butterfly optimization for imbalanced disease

classification problem. Int. J. Mach. Learn. Cybern. 2020, 11, 1423–1451. [CrossRef]
37. Mishra, S.K.; Puthal, D.; Rodrigues, J.J.; Sahoo, B.; Dutkiewicz, E. Sustainable service allocation using a metaheuristic technique

in a fog server for industrial applications. IEEE Trans. Ind. Inform. 2018, 14, 4497–4506. [CrossRef]
38. Fu, X.; Sun, Y.; Wang, H.; Li, H. Task scheduling of cloud computing based on hybrid particle swarm algorithm and genetic

algorithm. Clust. Comput. 2021, 1–10. [CrossRef]
39. Domanal, S.G.; Guddeti, R.M.R.; Buyya, R. A hybrid bio-inspired algorithm for scheduling and resource management in cloud

environment. IEEE Trans. Serv. Comput. 2017, 13, 3–15. [CrossRef]

http://doi.org/10.1504/IJAACS.2019.103673
http://doi.org/10.1109/COMST.2017.2771153
http://doi.org/10.1109/JIOT.2020.3020960
http://doi.org/10.1007/s10208-019-09442-y
http://doi.org/10.3390/s19051023
http://doi.org/10.1136/bmj.n1228
http://doi.org/10.32604/csse.2022.019175
http://doi.org/10.1007/s10723-019-09499-7
http://doi.org/10.1007/s11831-020-09517-y
http://doi.org/10.1109/TII.2019.2957129
http://doi.org/10.1109/TII.2018.2843802
http://doi.org/10.1109/TII.2020.2978946
http://doi.org/10.1007/s10586-020-03230-y
http://doi.org/10.1109/TCYB.2020.2989309
http://www.ncbi.nlm.nih.gov/pubmed/32452779
http://doi.org/10.1016/j.comnet.2020.107348
http://doi.org/10.1007/s12652-021-03187-9
http://doi.org/10.1109/JAS.2021.1004129
http://doi.org/10.1007/s10462-019-09733-4
http://doi.org/10.1007/s11042-020-10139-6
http://doi.org/10.1109/TEVC.2019.2906894
http://doi.org/10.1057/palgrave.jors.2602068
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1007/s00521-015-1923-y
http://doi.org/10.1007/s13042-019-01047-9
http://doi.org/10.1109/TII.2018.2791619
http://doi.org/10.1007/s10586-020-03221-z
http://doi.org/10.1109/TSC.2017.2679738

Sensors 2022, 22, 1555 21 of 21

40. De Brito, M.S.; Hoque, S.; Steinke, R.; Willner, A.; Magedanz, T. Application of the fog computing paradigm to smart factories
and cyber-physical systems. Trans. Emerg. Telecommun. Technol. 2018, 29, e3184. [CrossRef]

41. Kaur, N.; Kumar, A.; Kumar, R. A systematic review on task scheduling in fog computing: Taxonomy, tools, challenges, and
future directions. Concurr. Comput. Pract. Exp. 2021, 33, e6432. [CrossRef]

42. Faris, H.; Aljarah, I.; Mirjalili, S. Improved monarch butterfly optimization for unconstrained global search and neural network
training. Appl. Intell. 2018, 48, 445–464. [CrossRef]

43. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

44. Ma, W.; Zhou, X.; Zhu, H.; Li, L.; Jiao, L. A two-stage hybrid ant colony optimization for high-dimensional feature selection.
Pattern Recognit. 2021, 116, 107933. [CrossRef]

45. Alfa, A.S. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2010.

46. Wang, S.; Zhao, T.; Pang, S. Task scheduling algorithm based on improved firework algorithm in fog computing. IEEE Access
2020, 8, 32385–32394. [CrossRef]

47. Yang, M.; Ma, H.; Wei, S.; Zeng, Y.; Chen, Y.; Hu, Y. A multi-objective task scheduling method for fog computing in cyber-physical-
social services. IEEE Access 2020, 8, 65085–65095. [CrossRef]

48. Li, X.; Li, D.; Wan, J.; Liu, C.; Imran, M. Adaptive transmission optimization in SDN-based industrial internet of things with edge
computing. IEEE Internet Things J. 2018, 5, 1351–1360. [CrossRef]

49. Chiu, T.-C.; Pang, A.-C.; Chung, W.-H.; Zhang, J. Latency-driven fog cooperation approach in fog radio access networks. IEEE
Trans. Serv. Comput. 2018, 12, 698–711. [CrossRef]

http://doi.org/10.1002/ett.3184
http://doi.org/10.1002/cpe.6432
http://doi.org/10.1007/s10489-017-0967-3
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1016/j.patcog.2021.107933
http://doi.org/10.1109/ACCESS.2020.2973758
http://doi.org/10.1109/ACCESS.2020.2983742
http://doi.org/10.1109/JIOT.2018.2797187
http://doi.org/10.1109/TSC.2018.2858253

	Introduction
	Related Work
	Cloud Computing Task Scheduling
	Fog Computing Task Scheduling
	Cloud-Fog Computing Environment Task Scheduling
	Heuristic Algorithm to Solve the Task Scheduling Problem

	System Model and Problem Formulation
	System Architecture
	System Model
	Description of System Model
	Latency Model and Energy Consumption Mode
	Time Delay and Power Consumption Evaluation Model Based on Task Priority

	Task Scheduling Algorithm Design
	Task Rescheduling Strategy
	Monarch Butterfly Optimization
	Differential Mutation Transfer Operator
	Hybrid Encoding

	Improved Ant Colony Algorithm
	Path Construction
	Pheromone Update

	Hybrid Heuristic Task Scheduling Algorithm

	Performance Evaluation
	Simulation Settings
	Performance Evaluations
	Maximum Completion Time
	Energy Consumption
	Task Completion Rate

	Conclusions
	References

