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Abstract: This paper presents two novel swarm intelligence algorithms for gene selection, HHO-SVM
and HHO-KNN. Both of these algorithms are based on Harris Hawks Optimization (HHO), one
in conjunction with support vector machines (SVM) and the other in conjunction with k-nearest
neighbors (k-NN). In both algorithms, the goal is to determine a small gene subset that can be
used to classify samples with a high degree of accuracy. The proposed algorithms are divided into
two phases. To obtain an accurate gene set and to deal with the challenge of high-dimensional
data, the redundancy analysis and relevance calculation are conducted in the first phase. To solve
the gene selection problem, the second phase applies SVM and k-NN with leave-one-out cross-
validation. A performance evaluation was performed on six microarray data sets using the two
proposed algorithms. A comparison of the two proposed algorithms with several known algorithms
indicates that both of them perform quite well in terms of classification accuracy and the number of
selected genes.

Keywords: bio-inspired algorithms; bioinformatics; cancer classification; evolutionary algorithm;
feature selection; gene expression; Harris Hawks Optimization; k-nearest neighbor; support
vector machine

1. Introduction

Approximately 10 million people worldwide die from cancer every year, or one in
every six deaths, according to the WHO [1]. Early diagnosis and treatment can reduce
the cancer mortality rate. Wrong classifications and predictions cause serious harm to
patients and their families [2]. Generally, microarray data are employed in cancer research,
where early detection of cancer can greatly influence the treatment and survival rate [3].
Nevertheless, microarray data suffer from high dimensionality issues since the number
of genes far outnumbers the number of samples, with the result of the so-called “curse of
dimensionality”. When the dimensionality of a data set rises significantly, it can be difficult
to demonstrate the statistical significance of the results [4].

There have been four approaches to solving the “curse of dimensionality”: filtering,
wrapper, embedded, and hybrid methods [5]. The filtering method evaluates the relevance
of features as scores based only on property values. It is possible to sort features by their
scores and to remove low-scoring features. In wrapper methods, the analysis model is
embedded within the search for appropriate features. Embedded methods search for an
optimal subset of features as part of the analysis algorithm. Hybrid methods combine two
methods for selecting features to take advantage of both [6].

Two feature-selection methods based on wrapper-based algorithms are presented
in this paper, both of which employ the Harris Hawks Optimizer (HHO) to select the
most informative genes for classification and achieve high accuracy: HHO-SVM works in
conjunction with support vector machines (SVM), and HHO-KNN works in conjunction
with the k-nearest neighbors (k-NN) algorithm. To evaluate the effectiveness of both HHO-
SVM and HHO-KNN, we compared the results from six microarray cancer data sets to
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several recently published techniques. In both binary and multiclass classifications, HHO-
KNN and HHO-SVM appear to be able to achieve higher classification accuracy with a
smaller number of genes selected. This paper aim test HHO as a feature selection method
and view its effectiveness. This paper will answer those two questions: Can we use HHO
as a feature selection method on well-known cancer gene microarray datasets? In addition,
which classifier works best with HHO?

The paper is structured as follows: Section 2 describes how HHO was inspired and
the mathematical modeling that went into it. In Section 3, we introduce our proposed
HHO-SVM and HHO-KNN approaches to gene selection. Discussions and experimental
results are presented in Section 4. Finally, the conclusion is given in Section 5.

2. The Harris Hawks Optimizer
2.1. Inspiration

The Harris Hawks Optimizer (HHO) is a swarm computation method that was de-
veloped by Heidari et al. in 2019 [7]. This algorithm was inspired by the cooperative
hunting and chasing behavior exhibited by Harris’s hawks, particularly “surprise pounces”
or “the seven kills.” In a cooperative attack, numerous hawks coordinate their efforts and
simultaneously attack a rabbit that has shown itself.

The attack could well be accomplished quickly by catching the surprised prey in a
matter of seconds; however, depending on the prey’s actions and ability to flee, the attack
may include repeated, short, fast dives near the prey over the course of many minutes.
According to the changing circumstances and the prey’s escape patterns, Harris’s hawks
can demonstrate a variety of chasing styles. Generally, tactics are changed when the party’s
strongest hawk (leader) goes after the prey but loses it, at which point another party
member continues the chase. It is common to observe these switches in a variety of settings
because they are used to confuse escaping rabbits. Moreover, the rabbit has no way of
regaining its defensive abilities when a new hawk begins to chase it, and it is unable to
escape the attacking team since any hawk, usually the most experienced and powerful,
captures the exhausted rabbit and shares it with the rest of the team.

2.2. Mathematical Modeling

Hawks are known to chase their prey by tracing, encircling, and eventually striking and
killing. The mathematical model, which is based on hawks’ hunting behaviors, comprises
three various stages: exploration, transition between exploration and exploitation, and
exploitation. At each stage of the hunt, the Harris’s hawks are the candidate solutions, and
the targeted prey is the best candidate solution (almost the optimal).

As they search for prey, Harris’s hawks use two different exploration techniques.
Candidate solutions are designed to be as close to the prey as possible, while the best is
the one that is the intended prey. First, Harris’s hawks choose a spot by considering the
locations of other hawks and their prey. In the second method, the hawks wait on random
tall trees. Using Equation (1), the two methods can be simulated with equal odds of q:

x(t + 1) =
{

xrandom(t)− r1|xrandom(t)− 2r2x(t)| q > 0.5
xrabbit(t)− xmean(t)− r3(LB + r4(UB− LB)) q < 0.5

(1)

• Vector x(t) is the current hawk position, whereas vector x(t + 1) is the hawk’s position
at the next iteration.

• The hawk xrandom(t) is selected at random from the population.
• The rabbit position is xrabbit(t).
• q, r1, r2, r3 and r4 are randomly generated numbers inside (0,1).
• LB and UB are the upper and lower bounds of variables.
• xmean(t) is the average position of the current population of hawks, which is calculated

as shown in Equation (2).
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xmean(t) =
1
N

N

∑
i=1

xi(t) (2)

• t is the total number of iterations.
• xi(t) is the position for each hawk in iteration t.
• The total number of hawks is represented by N.

The algorithm switches from exploration to exploitation (transition from exploration
to exploitation) depending on the rabbit’s running or escaping energy, as shown in
Equation (3).

E = 2E0(1−
t

Max_iter
) (3)

• E represents the prey’s escaping energy.
• The initial state of the energy is indicated by E0, which changes randomly inside

(−1, 1) at each iteration.

When |E| > 1, hawks seek out more areas to investigate the rabbit’s whereabouts;
alternatively, the exploitation stage begins. The algorithm formulates the rabbit’s escape
success p > 0.5 or failure p < 0.5 with an equal chance p. The Hawks also will also carry
out a soft |E| > 0.5 or hard siege |E| < 0.5, based on the rabbit’s energy. The soft siege is
defined as in Equations (4)–(6).

x(t + 1) = ∆x(t)− E|J · xrabbit(t)− x(t) (4)

∆x(t) = xrabbit(t)− x(t) (5)

J = 2(1− random) (6)

• The difference between the hawk and rabbit positions is represented by ∆x(t).
• J is a random number used to generate the rabbit’s random jump force.

A hard siege, on the other hand, can be calculated as follows in Equation (7):

x(t + 1) = x(t)− E|∆x(t)| (7)

A soft siege with repeated fast dives is attempted when |E| > 0.5 and p < 0.5, as the
rabbit could successfully escape. The hawks have the option of selecting the best dive. Lévy
flight is employed to imitate the prey’s hopping. The hawks’ next action is calculated as
shown in Equation (8) to determine whether the dive is successful or not.

k = xrabbit(t)− E|J · xrabbit(t)− x(t)| (8)

The hawks will dive following Equation (9), the Lévy flight L pattern, if the previous
dive turns out to be ineffective.

z = k + RandomVector · L(dim) (9)

• The problem dimension dim is the size of the random vector RandomVector, and dim
is the dimension of the problem.

Equation (10) has been used to update the final soft-siege rapid dives

x(t + 1) =
{

k i f f (k) < f (x(t))
z i f f (z) < f (x(t))

(10)

Equations (8) and (9) are used to calculate k and z, respectively. A hard siege with
progressive rapid dives occurs when |E| > 0.5 and p < 0.5 are not sufficient for the rabbit
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to flee, as it no longer possesses enough energy. The rabbit’s z is calculated via Equation (9),
while k is updated using Equation (11).

k = xrabbit(t)− E|J · xrabbit(t)− xmean(t)| (11)

3. Proposed Algorithm

In this section, how the two proposed algorithms work will be described in detail. We
combined HHO with SVM and k-NN to develop two approaches, HHO-SVM and HHO-
KNN, for solving the microarray high dimensionality issue to find the most meaningful
genes and compare between SVM and k-NN classifiers to find which one gives the best
accuracy and selects the fewest genes. The fitness function that is used is the error rate.

The steps of both the HHO-SVM and HHO-KNN algorithms are shown in Figure 1. In
addition, in Algorithm 1, we present pseudo code for the HHO algorithm.

To evaluate the performance of the two proposed approaches, leave-one-out cross-
validation (LOOCV) was used to avoid model overfitting of both classifiers to calculate the
accuracy. All samples except one are used as testing data in LOOCV, with the remaining
sample used as training data. This is repeated until all samples have been tested. Based on
N times of classification, the LOOCV calculates the average accuracy.

Algorithm 1: Pseudo-Code of HHO Algorithm.
Input: The population size N and maximum number of iterations T
Output: The location of the rabbit and its fitness value initialize the random

population xi(i = 1, 2, . . ., N)
while (stopping condition is not met) do

Calculate the fitness values of hawks;
Set xrabbit as the location of rabbit (best location);
for (each hawk (xi)) do

Update the initial energy E0 and jump strength J;
Update the E using Equations (3);
if (|E| > 1) then

Update the location vector using Equation (1);
end
if (|E| < 1) then

if (r > 0.5 and |E| > 0.5) then
Update the location vector using Equation (4);

end
else if (r > 0.5 and |E| < 0.5) then

Update the location vector using Equation (7);
end
else if (r < 0.5 and |E| > 0.5) then

Update the location vector using Equation (10);
end
else if (r < 0.5 and |E| < 0.5) then

Update the location vector using Equation (10);
end

end
end

end
return xrabbit
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Figure 1. HHO-SVM and HHO-KNN flowchart.
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4. Experimental Results and Discussions

The exploratory approach, the findings of implementing the proposed algorithms to
microarray cancer data sets, and the gene expression data sets used in the study are all
described in this section.

4.1. Data Sets

In our study, we used two publicly available microarray cancer data sets and binary
and multiclass data sets. The performance and effectiveness of the two algorithms were
evaluated by evaluating six benchmark microarray data sets. The three binary data sets
used were for colon tumors [8], lung cancer [9], and leukemia3 [10]. In addition, there
were three multiclass data sets, which were leukemia2 [8], lymphoma [11], and SRBCT [11].
A detailed breakdown of the experimental data sets on the basis of diverse samples and
classes can be found in Table 1.

Table 1. Description of microarray data sets.

Data Set No. Total Genes No. Samples No. Classes

Colon Tumor [8] 2000 62 2
Lung Cancer [9] 7129 96 2
Leukemia2 [8] 7129 72 3
Leukemia3 [10] 7129 72 2

SRBCT [11] 2308 83 4
Lymphoma [11] 4026 66 3

4.2. Parameter Settings

To determine the most suitable solution, SVM and k-NN classifiers were used. Since
k = 7 performed well across all test sets, it was used in the experiments. There are two
significant factors that influence the practicality of a method: its iterations (Max_iter) and
its dimensions. In addition to k, dimensions, UB, and LB, there are other parameters, which
can be found in Table 2.

Table 2. Parameter settings for HHO-SVM and HHO-KNN.

Parameter Value

Dimension No. genes in data set
No. iterations (Max_iter) 100

Lower bound (LB) 0
Upper bound (UB) 1

No. Harris’s hawks (SearchAgents_no) 10
No. runs (m) 30

k 7

4.3. Results and Analysis

Features are selected to improve the accuracy of the classification while lowering the
number of features being used. Each data set was processed with the two algorithms on a
different number of features. We applied the proposed techniques in each cancer data set
by using 1 to 30 genes. For evaluating the experimental results, both HHO-KNN and HHO-
SVM were applied to binary and multiclass high-dimensional microarray cancer data sets
for selecting genes. There were two metrics used in our comparison: classification accuracy
and the number of genes selected for cancer classification. Here are the experimental results
for all of the cancer data sets that were used.

On the colon data set, Table 3 shows the best, worst, and average classification accuracy
using the HHO-KNN and HHO-SVM algorithms. Interestingly, the highest classification
accuracy obtained was the same when either the k-NN or the SVM classifier was applied
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with 90.32%. However, with SVM, the number of selected genes was 10 genes that is lower
than the selected genes for k-NN, with 16 genes.

Table 3. Colon data set results.

No. Genes Best Average Worst

HHO-KNN

20 82.26% 75.92% 64.52%

16 90.32% 74.42% 53.23%

10 88.71% 74.65% 61.29%

5 83.87% 68.12% 53.23%

2 79.03% 64.01% 48.39%

HHO-SVM

20 85.48% 76.21% 62.90%

16 87.10% 74.48% 56.45%

10 90.32% 73.94% 51.61%

5 83.87% 69.02% 56.45%

2 74.19% 64.16% 51.61%

Looking at Table 4 for Leukemia2 data set results , we can see both HHO-KNN and
HHO-SVM by selecting the same number of genes (11 genes); the SVM classifier is more
accurate, 97.22%.

Table 4. Leukemia2 data set results.

No. Genes Best Average Worst

HHO-KNN

16 66.67% 61.25% 54.17%

11 94.44% 64.29% 52.78%

6 73.61% 64.12% 55.56%

2 72.22% 61.62% 48.61%

HHO-SVM

16 68.06% 64.95% 62.50%

11 97.22% 66.17% 58.33%

6 72.22% 65.09% 58.33%

2 72.22% 65.32% 59.72%

The results of implementing HHO-SVM and HHO-KNN algorithms in the leukemia3
data set are shown in Table 5. When k-NN was used, the best classification accuracy was
achieved when 25 genes were selected. The classification accuracy increased to 90.28% for
k-NN and 84.72% for SVM.

The accuracy performance of best, average, and worst HHO-SVM and HHO-KNN
algorithms in the Lung data set is presented in Table 6. It shows the highest accuracy of
100% when 2 or 10 genes are selected for both the k-NN and SVM classifiers.

Table 7 shows the best, worst, and average classification accuracy of Lymphoma data
set for applying the HHO-KNN and HHO-SVM algorithms. It achieve an accuracy of 100%
in most cases for both classifiers, but the selected genes for k-NN was lower than SVM to
achieve 100% accuracy with 2 genes in k-NN and 3 genes for SVM.
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Table 5. Leukemia3 data set results.

No. Genes Best Average Worst

HHO-KNN

30 69.44% 59.07% 50.00%

25 90.28% 58.52% 45.83%

20 63.89% 55.42% 44.44%

15 59.72% 52.69% 43.06%

5 61.11% 52.82% 43.06%

HHO-SVM

30 69.44% 55.97% 37.50%

25 84.72% 58.19% 50.00%

20 65.28% 53.43% 38.89%

15 63.89% 53.33% 38.89%

5 66.67% 55.00% 40.28%

Table 6. Lung data set results.

No. Genes Best Average Worst

HHO-KNN

19 98.96% 92.38% 83.33%

10 100.00% 93.70% 86.46%

2 100.00% 91.57% 84.38%

1 97.92% 89.65% 85.42%

HHO-SVM

19 95.83% 90.25% 89.58%

10 100.00% 90.90% 87.50%

2 100.00% 92.09% 86.46%

1 97.92% 89.76% 86.46%

Table 7. Lymphoma data set results.

No. Genes Best Average Worst

HHO-KNN

12 98.48% 92.31% 80.30%

10 100.00% 92.22% 77.27%

3 100.00% 77.23% 60.61%

2 100.00% 73.63% 60.61%

1 75.76% 66.36% 56.06%

HHO-SVM

12 100.00% 93.43% 80.30%

10 100.00% 92.66% 72.73%

3 100.00% 78.35% 65.15%

2 96.97% 74.01% 65.15%

1 81.82% 70.61% 66.67%

Table 8 compares the average, best, and worst accuracy performance on the imple-
mentation of HHO-SVM and HHO-KNN algorithms in the SRBCT data set. The highest
accuracy was when 29 genes are selected with 92.77% for SVM and 91.57% for k-NN.
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Table 8. SRBCT data set results.

No. Genes Best Average Worst

HHO-KNN

30 83.13% 60.64% 39.76%

29 91.57% 56.43% 37.35%

20 83.13% 53.41% 39.76%

10 75.90% 47.83% 28.92%

5 59.04% 42.41% 30.12%

HHO-SVM

30 90.36% 59.92% 33.73%

29 92.77% 57.35% 40.96%

20 83.13% 53.21% 34.94%

10 78.31% 45.26% 21.69%

5 69.88% 39.92% 24.10%

4.4. Comparative Evaluations

Comparing and evaluating the performance of HHO-SVM and HHO-KNN against
the other bio-inspired metaheuristic gene selection algorithms was an important part of our
evaluation. Table 9 shows how our findings compare based on accuracy and the number of
genes selected.

As can be seen in Table 9 for lung and lymphoma, the HHO-KNN accuracy outper-
formed the other bio-inspired gene selection algorithms since it reached 100% classification
accuracy, and the number of selected genes is smaller than the other methods. HHO-SVM
for the lung data set outperformed the other bio-inspired gene selection algorithms. In
addition, as can be seen from the table, HHO-KNN and HHO-SVM performed better than
their competitor (BQPSO) on the colon data set.

Table 9. Comparison between the proposed selection methods and previous methods in terms of the
number of selected genes and accuracy.

Algorithms Colon Lung Leukemia2 Leukemia3 Lymphoma SRBCT

HHO-KNN 90.32%(16) 100%(2) 94.44%(11) 90.28%(25) 100%(2) 91.57%(29)
HHO-SVM 90.32%(10) 100%(2) 97.22%(11) 84.72%(25) 100%(3) 92.77%(29)
HS-GA [12] 95.9%(20) - 97.5%(20) - - -
FF-SVM [13] 92.7%(22) 100%(2) 99.5%(11) - 92.6%(19) 97.5%(14)

GBC [14] 98.38%(20) - 100%(5) - - -
MIM-mMFA [15] 100%(20) 100%(20) 100%(6) 100%(15) 100%(4) 100%(23)

QMFOA [16] 100%(27) 100%(20) 100%(32) 100%(30) - 100%(23)
BQPSO [17] 83.59%(46) 100%(46) 93.1%(48) - 100%(49) -

PCC-GA [18] 91.94%(29) 97.54%(42) 100%(35) - 100%(39) 100%(20)

5. Conclusions

Our study proposes two new feature selection techniques using Harris Hawks Opti-
mization (HHO) combined with support vector machines (SVM) and the k-nearest neigh-
bors (k-NN) algorithm for high-dimensional cancer gene selection and classification. The
objective of this study was to devise a new algorithm for solving gene selection problems
based on bio-inspired principles. Using HHO-SVM and HHO-KNN on six binary and
multiclass high-dimensional cancer microarray data sets, we have shown that in terms of
classification accuracy and the number of chosen genes, our two algorithms are better than
several other algorithms in finding useful informative genes.
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The experimental findings are displayed by using gene expression data sets, and
with all of the data sets, we observe that we only achieved 100% accuracy for the lung
and lymphoma datasets. Additionally, the accuracy obtained for the entire dataset with
the KNN classifier and the SVM classifier is greater than 90%. Last but not least, on all
datasets except the Leukemia3 dataset, HHO-KNN outperformed HHO-SVM. As well as
discovering the tremendous promise for HHO when used alone, we recommend combining
HHO with another wrapper bio-inspired feature selection methodology to produce a hybrid
method that enhances HHO accuracy for future works while picking fewer genes.
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