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Abstract: Clustering is presently one of the main routing techniques employed in randomly deployed
wireless sensor networks. This paper describes a novel centralized unequal clustering method for wireless
sensor networks. The goals of the algorithm are to prolong the network lifetime and increase the reliability
of the network while not compromising the data transmission. In the proposed method, the Base Station
decides on the cluster heads according to the best scores obtained from a Type-2 Fuzzy system. The input
parameters of the fuzzy system are estimated by the base station or gathered from the network with a
careful design that reduces the control message exchange. The whole network is controlled by the base
station in a rounds-based schedule that alternates rounds when the base station elects cluster heads, with
other rounds in which the cluster heads previously elected, gather data from their contributing nodes and
forward them to the base station. The setting of the number of rounds in which the Base Station keeps
the same set of cluster heads is another contribution of the present paper. The results show significant
improvements achieved by the proposal when compared to other current clustering methods.

Keywords: wireless sensor networks; clustering; fuzzy system

1. Introduction

Wireless Sensor Networks (WSN) are composed of multiple nodes, which are deployed randomly in
most situations. Although there are some commercial solutions for this kind of network in e-health, smart
grids or surveillance [1], there are still some technological aspects that could be addressed to improve
their performance. Presently, their main failing is the durability of the network in an autonomous and
reliable way. For this reason, there are several proposals to reduce the energy consumption of the nodes
while it operates correctly. This energy consumption is mainly caused by the data gathering and the
data transmission.

The formation of groups or clusters in this kind of network helps in the reduction of the energy
dissipation during the data transmission especially when considering scalability and robustness [2]. As a
consequence, the network autonomous lifetime (without the need for replacing the nodes’ batteries) is
prolonged when clustering is conveniently applied. In a cluster, there is a node, referred to as the Cluster
Head (CH), which is in charge for the communication with other CHs or with the Base Station. It recollects
the data from the nodes belonging to its cluster, it aggregates this information and then proceeds to send it
to the Base Station (BS). The base station or sink decides the actions to take according to the data.
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The decision about which nodes are the CHs can be taken centrally by the BS or in a distributed mode
by the sensor nodes. Centralized clustering algorithms demonstrated their ability to have an optimal
behaviour in comparison with their distributed counterparts as more information can be used to create the
clusters appropriately [3].

Another important issue related to clustering is how long the cluster structure is going to be
maintained. The initial proposals on clustering algorithms set that the clusters should be periodically
formed. In particular, they opted for deciding about the CHs in each round. A round is the interval of
time into which the network lifetime is divided. In a round, the inter-cluster communication, the data
fusion/aggregation and the intra-cluster communication sequentially take place to send the measurements
to the BS. Therefore, the first proposals (e.g., LEACH-C [4]) included the determination of the CHs at the
beginning of each round.

An alternative and novel approach consists of including the execution of the selection of the CHs
only in some rounds. The skip stands for the number of rounds in which the cluster heads will be kept [5].
The work in [5] sets the skip as a constant parameter and equal to 2. However, the appropriate value for
this parameter is related to the network density, the nodes’ positions and the traffic pattern.

In the present paper, we propose a novel centralized clustering algorithm that decides the cluster
heads while it sets an optimized skip. The algorithm, named as “Centralized Skip Based Algorithm”
or CSBA, is based on two hypotheses. The first hypothesis, or H1, relies on the fact that when a CH is
conveniently elected, maintaining it during some rounds will make the network lifetime longer as the
control information (and the consumption related to the transmission and reception of these frames) does
not need to be exchanged. However, the second hypothesis on which CSBA is based, or H2, is that keeping
a node as a CH indefinitely degrades the network performance in terms of reliability, that is, not all the
measurements are collected from the nodes. This happens because the node acting as CH will receive
information from the nodes which are ascribed to it. As a consequence, the energetic dissipation of this
node increases, especially when this operation is prolonged over several rounds. The measurements that
should be collected by this node cannot be guaranteed to be transmitted. In our proposal, the selection of
the cluster heads is modelled by a Type-2 Fuzzy system incorporated into the Base Station. Then, the skip
is set by an experimental evaluation of the network performance in terms of reliability and durability.
The implementation of the technique demonstrates the extension of the network lifetime when compared
with other clustering algorithms. Therefore, this paper presents the following contributions:

• The demonstration of the benefits obtained when a skip is set. As described in hypothesis H1, a
carefully selected skip value significantly improves the lifetime of a WSN.The paper also verifies that
nodes elected as CHs cannot keep this role for an undetermined period because they will deplete
their batteries prematurely and degrade network reliability. This last behaviour is compliant with
hypothesis H2.

• The definition and validation of a Type-2 fuzzy system to manage the uncertainty of the network
information when deciding the CHs with reduced control messages.

• The proposed algorithm was tested in a wide set of scenarios and compared with a significant number
of clustering algorithms.

The rest of the paper is structured as follows. The next section presents a review and a classification
on the algorithms used to select the CHs. Section 3 describes the proposed fuzzy system, giving a
detailed explanation about how this system was designed. Section 4 describes the simulation results
obtained to evaluate the proposed algorithm. Finally, Section 5 includes the conclusions and the future
research guidelines.
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2. Related Work

Clustering in wireless sensors networks has recently been the objective of deep research [6] because of
its suitability for this type of network as it was stated by Liu in [2]. Moreover, clustering allows for many
other important performance improvements in a WSN, such as scalability, reduction of the traffic load,
decrement of the energy consumption, load balancing and fault tolerance. In [7] the taxonomy presented
for cluster head election establishes three categories: preset, random and attribute-based. However,
preset election relies on a predefined node deployment that usually uses a previous selection based on
an attribute-based algorithm so this category can be included in the last one. Therefore, in general terms,
we can state that the method to select the CHs can be classified in two main groups: stochastic and
attribute-based. Moreover, taking into account recent publications, attribute-based methods are commonly
based on computational intelligence. Specifically, they use a fuzzy logic system because of its simplicity.
Alternatively, stochastic protocols are those in which nodes convert into CH basing on a certain random
value or a determined mathematical function related with a value provided by the nodes (energy, distance
to the base station, etc.). This value is then compared with another random value to finally decide about
being CH or not. In Fuzzy Logic Based algorithms, the mathematical function is replaced by computational
intelligence. This taxonomy is presented in Figure 1.

Figure 1. Simple taxonomy of clustering in wireless sensor networks.

Additionally, it is common that the methods to elect CHs are also classified into centralized and
distributed ones [7]. In centralized methods, a central node, called base station or sink, which usually
has improved computation capabilities, accomplishes all the process and calculation to select the CH in
the network based on information gathered from all the nodes. In contrast, in distributed methods, each
node decides whether it should be a CH or not. For this, the nodes relies on an internal process with only
local information.

One of the most important and referenced stochastic algorithm is Low-Energy Adaptive Clustering
Hierarchy or LEACH [4]. LEACH is also a distributed method in which nodes convert themselves into CH
if a probability value (p), is lower than a random value generated by the nodes internally. That threshold
value is computed in each round, based on a simple equation of p. This probability increases with the
number of rounds in which the nodes has not been selected as CH and that probability is reset only if the
node is selected as CH. The probability reaches 1 after a constant number of rounds, which ensures that all
the nodes become CHs within a given interval. This interval is based on the parameter k, which defines the
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number of desired CHs in the network. The value of k is defined in [4] as n ∗ p where n is the total number
of nodes in the WSN and p is set to 0.05. This means that 5% of the nodes play the role of CH. There is
also a centralized version by the same authors. This is called LEACH-C [8]. In LEACH-C, an artificial
intelligence technique (simulating an annealing algorithm) is used to choose the optimal clusters from
those with the highest energy. Another centralized technique is the one known as Base Station Controlled
Dynamic Clustering Protocol (BCDCP) [9]. It is designed to have the same number of nodes attached to
each CH. To do so, the CHs must communicate among them in some phases of the protocol. A different
stochastic method is the one presented in [10], Multi-Threshold Long Lifetime Protocol (MTLLP), in which
each node computes a probability threshold to be elected as a CH in a similar way that LEACH does.
These thresholds are based in four variables related to the energy and distance. Nodes with a low energy
level are not allowed to be CH.

One of the first clustering works that proposed a Fuzzy-I logic-based and centralised algorithm is
described in [11]. Referred to as Cluster-head Election using Fuzzy Logic Algorithm (CHEF), it uses
three input variables: energy, concentration and centrality. With a Fuzzy-I logic-based system, the output
chance models the appropriateness of a node to become a CH. An alternative algorithm is Energy-Efficient
Distributed Clustering based on Fuzzy (EEDCF) [12]. In this distributed algorithm, the close nodes
coordinate to determine the CHs from the chances computed by each node. This computation is based on
a Fuzzy-I logic-based system.

The proposal shown in [13], Type-2 Fuzzy Logic (Tyep2FL), classifies the nodes in different levels
according to their distance to the BS. Then, the best cluster is chosen using a Type-2 fuzzy system.
A centralized method that uses the Type-2 Fuzzy logic is analysed in [14], named Clustering Routing
Protocol for WSN Based on Type-2 Fuzzy Logic and Ant Colony Optimization (CRT2FLACO). These
techniques show that the use of the Type-2 Fuzzy logic improves the performance when compared with
Type-I fuzzy logic systems. This improvement is due to the best management of the existing uncertainty,
which is intrinsically present in this kind of network, as it is shown in the Cluster Head Enhanced Election
Type-2 fuzzy Algorithm (CHEETAH) [15] or Enhanced Unequal Distributed Type-2 Fuzzy Clustering
Algorithm (EUDCF) in [5].

Hybrid clustering algorithms are also possible. In this kind of algorithm, both stochastic and fuzzy
logic systems are employed to elect the CHs in the network. In this way, Fuzzy-based Hyper Round Policy
Clustering Algorithm [16] starts choosing the CH in a stochastic way (based on residual energy) and later it
uses a fuzzy system that establishes how many rounds each node is going to be as CH in a distributed way.

From the studied bibliography, we have verified that centralized methods outperform the distributed
ones. However, the works defining the centralized methods do not address how the information that the
BS uses for the clustering is obtained. In particular, they commonly rely on residual energy and precise
locations of the nodes. This implies that the nodes should be equipped with complex hardware (e.g., GPS),
which could be a strong limitation in some WSN applications such as those in indoor infrastructures,
subterranean environments or dense forests. Moreover, even in those applications where GPS is possible,
its inclusion supposes an increment in the cost. In addition, most of the discussed papers do not provide a
complete description about how some parameters (like coverage radius, transmission power of the advice
message, etc.) are computed without inferring in additional control messages. We also concluded that
Type-2 fuzzy systems are able to work with estimations better than Type-1 system. These estimations are
necessary to reduce the control messages in real implementations.

In this paper we present a detailed description of a novel centralized method without incurring
in additional hardware costs for the nodes. The Base Station decides, based on a Type-2 fuzzy system
with data gathered from the wireless sensor network, which nodes are going to be CHs while setting
an optimised skip. In contrast to the previous works, this method introduces a new scoring method for
selecting CHs in a WSN based on a Type-2 Fuzzy system. it was designed to allow that the same elected
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CHs can keep in their role for several rounds. That behaviour is based on the inertia of those types of
networks and it is supposed, as was stated in the hypothesis H1, that several skipped rounds greater
than 2 can prolong the network lifetime. In addition, due to the high uncertainty observed in this kind of
problem, we propose the use of a Type-2 fuzzy system whose output interval can give further versatility
and adaptability to different networks layouts. The description about how the input parameters of the
fuzzy system are computed is included in the next Section.

3. Proposed Method

The proposed method is a centralized algorithm that combines the decision about the CHs and the
skip setting. The selection of the CHs is made by the identification of the best scores obtained from the
inferred results of a fuzzy system. The BS runs this system applied to each node. The inputs for each
fuzzy system are parameters that the base station gathers or estimates from the information obtained from
the network. The output score ranges from 0 to 1. Thus, the BS manages the network in a rounds-based
schedule that updates the score of the nodes after a variable interval of rounds called skip. The exact round
scheduling is detailed in Section 3.2.

As previously commented, the way that the BS sorts the nodes to elect the CHs is based on the output
of a Type-2 Fuzzy inference system (T2FIS) or score. Precisely, a high value implies a high probability
of converting a node into a CH. Finally, the BS only selects k nodes with the highest value to be CH and
informs all the nodes of their role: cluster head or contributing node. The T2FIS is explained in the next
section. The parameter k is set in the configuration process.

Concerning the skip configuration, this parameter is set in the configuration phase of the WSN.
The goal of this setting is obtaining a good performance of the network in terms of reliability (making
all the measurements from all the sensors available as long as possible) and durability (keeping the
functionality of most sensors).

3.1. Node Scoring

The fuzzy system used to infer a score for each node is a Type-2 one. This kind of artificial intelligence
is especially suitable for WSN, in which there is no mathematical function to model its performance and
in which the uncertainty degree is really high. Type-2 Fuzzy sets also work better in those applications
whose input variables also have uncertainty because they could be estimations from measurements with a
high level of tolerance. In WSN, it is necessary to rely on estimations to decrease the control information
exchanged among the nodes and, as a consequence, the consumption due to the control tasks is jointly
decremented. Type-2 Fuzzy systems are also applied in other technological fields such as decision in Mobile
Ad hoc Networks [17], risk analysis in Marine Power [18], wireless indoor location [19] and PID control [20].

The block diagram of a Type-2 Fuzzy inference system is shown in Figure 2. As can be noticed, Type-2
Fuzzy systems differ from Type-1 systems only in the output processing block. Each input is fuzzified
before entering into the inference system, that is connected to the knowledge base. The knowledge base
includes the rules that link input and output variables to be used by the output processor. This last block
differs from the Type-1, because the reducer is added before the final defuzzification is accomplished.
Besides, the output of the T2FIS is an interval (sl ,sh) instead of a crisp value obtained by a Type-I fuzzy
system. Both limits of the interval are used when computing the best CHs according to the following rule:
if the node was elected as CH in the previous round, then the lowest value of the interval, sl , is chosen
for a comparison operation. Otherwise, the highest value of the interval, sh, is used in the comparison.
This strategy was followed in some previous works such as [5,15]. This rule avoids that a node with a
high output value could be selected continuously as a CH. This setting should be avoided as it would
eventually deplete its battery.
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Figure 2. Block diagram of Type-2 fuzzy logic (T2FIS).

The input variables of the T2FIS was carefully selected to achieve an efficient balance between energy
consumption, performance and reliability (availability of the measurements from all the sensors in the
network). Therefore, the input variables captures the evolution of the energy spent in every node and the
behaviour of each node. Consequently, the T2FIS was designed with the following input variables:

• Residual Energy (Ri) of node i, measured as the ratio between the current energy and the initial energy
of each node. The current energy of a node is estimated by the BS basing on the energy consumption
model explained in Section 3.3.

• Normalized Distance (Di), computed as the distance from the BS to the node i divided into the
maximum one.

• The degree of deviation of the energy (DDEi) in a node i (Ri) compared with the average energy of
all the alive nodes (Ra). As the input variable of the fuzzy system must be kept between 0 and 1,
this ratio is normalized according to Equation (1). Nodes with a high residual energy charge could
saturate this value. For the normalization of DDEi, the value 1.5 was set because it is assumed that a
node with more than the 50% of the average energy should be a good candidate to be elected as CH
and it is desirable to avoid higher levels of unbalanced battery charges in the network.

DDEi =

{
1 i f Ri ≥ 1.5 × Ra

Ri
1.5Ra

i f Ri < 1.5 × Ra
(1)

• Normalized number of rounds without being a CH (RnoCHi). It is defined as the number of rounds
without being CH (roundsnoCHi) compared with a threshold (RnoCHth). This input is established
according to Equation (2).

RnoCHi =

{
1 i f roundsnoCHi ≥ RnoCHth
roundsnoCHi

RnoCHth
i f roundsnoCHi < RnoCHth

(2)

where roundsnoCHi is zero when the node i is elected as a CH and is incremented by one in each
round in the opposite case.

This set of input variables makes the T2FIS exportable to a wide range of applications because they
are application independent. Other parameter such as the on duty or idle periods or the rate of event
detection could be considered in the configuration phase but without altering the T2FIS. As it will be
discussed in the next section, the duration of a round could be adjusted for this purpose.

These variables, all of them normalized between 0 and 1, are the input of the fuzzy system depicted in
Figure 2. Each of these variables are fuzzified with the Type-2 member function layouts that are depicted
in Figure 3.
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Figure 3. Membership functions of interval type-2 fuzzy system.

Once they are fuzzified, the values will interrelate between them through the knowledge base that
contains the IT-THEN rules of the expert system. Each rule is defined as follows: IF Ri is Value1 and Di
is Value2 and DDEi is Value3 and RnoCHi is Value4, THEN scorei is Output Value, where Values1, Value2,
Value3 and Value4 belong to low, medium, high as shown in Figure 3. The Output Value belongs to very low
(VL), low (L), medium (M), high (H), very high (VH) as illustrated in Figure 4.

The rule base designed for the proposed method (see Table 1) is composed of 81 rules and, as can be
observed, the effect of the qualitative value of each variable in the output score is different. For instance,
high values of distance variable Di affect more negatively in the score than low values of residual energy
Ri due to the higher cost of long range communications compared with the threat of a low battery charge.
Consequently, if rule 1 (L L L L -> L) is compared with rule 73 (H H L L -> VL), the output scores differ
even when they share the same values for DDEi and RnoCHi. For rule 1, the output is L however being far
from the BS is penalized as modelled by rule 73. In rule 73, the output score is VL because Di is also high
(a node far from the BS) even if the node has an almost full battery (Ri is high). In the case of input variable
RnoCH, its purpose is trying to achieve a good score even in the worst conditions (low battery and long
distances e.g., rules 12, 15 or 21) for nodes that have not been CH for several rounds, whereas DDEi tries
to exclude nodes that are supposed to be bad CHs candidates when the average available energy in the
network is still high (e.g., rules 25–27 or 79–80).

Figure 4. Output Membership functions of interval Type-2 fuzzy system.
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Table 1. Rule base for the type-2 fuzzy controller.

Rule Ri Di DDEi RnoCHi Score Rule Ri Di DDEi RnoCHi Score

1 L L L L L 42 M M M H H
2 L L L M L 43 M M H L M
3 L L L H M 44 M M H M H
4 L L M L M 45 M M H H H
5 L L M M M 46 M H L L L
6 L L M H L 47 M H L M L
7 L L H L L 48 M H L H L
8 L L H M M 49 M H M L VL
9 L L H H M 50 M H M M L
10 L M L L VL 51 M H M H M
11 L M L M VL 52 M H H L M
12 L M L H L 53 M H H M H
13 L M M L VL 54 M H H H VH
14 L M M M L 55 H L L L VL
15 L M M H L 56 H L L M VL
16 L M H L VL 57 H L L H L
17 L M H M L 58 H L M L VL
18 L M H H L 59 H L M M VL
19 L H L L VL 60 H L M H L
20 L H L M VL 61 H L H L VL
21 L H L H L 62 H L H M VL
22 L H M L L 63 H L H H L
23 L H M M L 64 H M L L M
24 L H M H L 65 H M L M M
25 L H H L L 66 H M L H H
26 L H H M L 67 H M M L M
27 L H H H M 68 H M M M M
28 M L L L L 69 H M M H H
29 M L L M M 70 H M H L M
30 M L L H H 71 H M H M H
31 M L M L M 72 H M H H VH
32 M L M M M 73 H H L L VL
33 M L M H H 74 H H L M L
34 M L H L M 75 H H L H L
35 M L H M H 76 H H M L L
36 M L H H VH 77 H H M M L
37 M M L L L 78 H H M H M
38 M M L M M 79 H H H L M
39 M M L H M 80 H H H M M
40 M M M L M 81 H H H H H
41 M M M M M

Table key: VL = very low, L = Low, M = medium, H = high and VH = very high.

The fuzzy system is a Mamdani one, in which the output variable is also a Type-2 fuzzy set like in
Figure 4.

In the last block of the T2FIS (see Figure 2), the defuzzification is made and the output interval for the
score (sl ,sh), is obtained. Then, the intervals obtained for each node are used by the BS to elect the CHs
accordingly to the process outlined in the next section.
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3.2. Cluster Head Election Algorithm

As previously commented, the BS rules the network in a round-based schedule to minimize the
message exchange necessary to decide the CHs and, as a result, the energy consumption of the nodes
is reduced.

The overall process has two main phases: an initial setup phase and an operation round-based phase.
This rounds-based scheduling must be synchronized with the desired event detection or measurement
rate in order to fullfil the application requirements. Hence, the duration of any round must be carefully
set to effectively detect the events or measure the physical magnitude under study. However, the time
chosen for a round does not impact on the proposed algorithm because the energy spent in idle periods or
node measurement is taken into account by variables Ri and DDEi respectively. Thus, the design of the
algorithm allows that the WSN has an effective adaptation to the timing requirements.

Once the initial setup is accomplished (see below for further details), the BS begins the operation
phase. First, in order to elect the set of CHs for a round, it has to infer the scores for each node. Once it
knows the scores for each node, it chooses the k nodes with the highest score to convert them into CH.
To do so, it broadcasts that information to the network. The election of the next CHs is skipped a certain
number of rounds (defined by the skip parameter), which is set by the BS in the initial phase. The different
steps of the overall process are depicted in Figure 5 and detailed as follows.

Initial Setup

In the initial phase, the BS broadcasts a startup message to all the nodes in the covered area. Next,
the nodes send to the BS a message at maximum power so that the BS candetermine the distance of each
node to it. For this determination, the Received Signal Strength Indicator (RSSI) is used. Due to the method
design, the exact position, and its corresponding hardware, is not needed as the system can work with an
approximation thanks to the Type-2 fuzzy system. All the nodes hear this message and their replies so that
they can compute the distances to the rest of the nodes too. In this way, in a future phase they can decide
which node is the nearest CH.

Figure 5. Proposed algorithm.
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CHs Selection

This is the first step of the operation phase. The BS computes the score value for all the nodes with
the T2FIS. For previous CHs, the score corresponds to the lower limit in the output interval obtained
by the T2FIS. Alternatively, for non-CHs, the score is the higher limit of the T2FIS output. With this
selection of the score, we aim at assigning the role of CHs to most nodes during the complete WSN lifetime.
In this way, a fair energy consumption is possible. Once the BS computes all the scores, it selects the best k
nodes (according to their scores) to nominate them as CHs with a future message. The value of k indicates
the optimal number of cluster heads. It was established in the 5% of the total number of nodes as was
recommended in [4].

Cluster Configuration

The BS sends a broadcast message indicating which nodes are CH to all the nodes. With this message,
the nodes join to the closest CH. The number of nodes in a cluster is not the same for all the structures, so
the proposal is considered an unequal clustering method. The nodes joining a cluster adjusts their power
transmission in order to just communicate with their corresponding CH.

Data Gathering

With this information, the rest of the nodes will send their information to the nearest CH. Each CH
aggregates the data from the ascribed nodes, in such a way that it can also inform the BS if a node is not
ascribed (death of a node). Additional information about the residual energy is also sent, so that the BS
does not have to estimate those values for a future CH selection.

Skip Loop Iteration

In our proposal all the nodes are maintained as CHs during a skip number of rounds. In this phase,
the BS updates a counter each time it receives information from the CHs. Once the counter equals the skip
value, the BS steps on a new calculation of the scores of each node to restart the operation phase.

3.3. Computation of the Skip Value

The skip parameter tries to model the inertia of the network avoiding unnecessary CHs updates. In a
previous work [5,15], we detected that the CHs election process tends to throw the same results from one
round to the following one. Thus, it is commonly unnecessary to recompute the CHs. Consequently, we
added the skip parameter to find a trade off between the consumption of the communications and the
CHs actualization.

When determining the optimal value for the skip parameter, it is necessary to know the metrics used
in wireless sensor networks, which are mainly referred to the lifetime of the network. The most used
three parameters checked in the WSN analysis are (i) the round when the first node dies o First Node Dies
(FND), (ii) the round when at least half of the nodes are death or Half Nodes Death (HND), and (iii) the
round when the last node dies or Last Node Dies (LND). Depending on the application requirements, it
will be of interest to favour one of these metrics or all of them. For instance, in the case of medical sensors
the first death should be used, because a bad working of the network could imply lost measurements
with severe consequences on the health’s patient. In other scenarios, like a WSN to measure/control the
humidity of a terrain, the first death is not relevant because the WSN usually counts on with redundant
sensors. If a high precision is not required, the other two performance metrics could be enough in this
kind of application.
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The computation of the optimal value for the skip parameteris going to be done through simulation.
For this, the energy model to simulate data communications follows the first order radio model widely
used in the related literature since its proposal in [4]. The model is described with Equations (3)–(5).

ETx(l, d) = f (x) =

{
l · (Eelec + E f s · d2), d ≤ d0

l · (Eelec + Emp · d4), d > d0
(3)

d0 =

√
E f s

Emp
(4)

ERx(l) = Eelec · l (5)

where:

• l is the number of bits of any message.
• Eelec the energy consumed in the transmitter or receiver circuitry for one bit.
• d is the distance that any message must cover.
• E f s is the energy consumed by the amplifier in free space model (d ≤ d0) to get an acceptable bit

error rate.
• Emp is the energy consumed by the amplifier in th multi-path (mp) model (d ≤ d0) to obtain an

acceptable bit error rate.

When a CH receives data from a contributing node, in addition to the energy spent in receiving the
data, the CHs must spend energy in the data aggregation process. Therefore, the amount of energy spent
in the reception process of l-bits is defined by Equation (6) for a CH:

ERx−DA = (Eelec + EDA) · l (6)

where EDA is the energy spent by the processing unit of a CH when aggregating the data received from a
contributing node.

In a similar way to [4], the configuration values for the first order radio model used in Equations (3)–(6)
are summarised in Table 2:

Table 2. Parameters for the losses in the first order radio model and data aggregation.

Parameter Value

Eelec 50 nJ/bit
E f s 10 pJ/bit/m2
Emp 0.0013 pJ/bit/m4
EDA 5 nJ/bit

Two other configuration parameters are shown in Table 3. First, parameter k (the desired number
of nodes to select by the BS) is calculated based on the estimation presented in [4], as it was previously
commented in Section 2. Finally, parameter RnoCHth was set to 20 based on the value of p and taking into
account the amount of nodes in the network. Thus it is assumed that a node should be elected as CH in
no more than 20 consecutive rounds (see Equation (2)). In addition the length of the control and the data
packets, lcontrol and ldata, are 200 bits and 4000 bits respectively. These are common values in most of the
research papers about clustering in WSN.
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Table 3. Parameter configuration for skip estimation.

Parameter k RnoCHth

Value 7 (150 × p) 20 (1/p)

To effectively calculate the value of the parameter skip, it is necessary to estimate the energy spent
by normal nodes and by the CHs during that period. Consequently, two equations were developed to
model both processes. The energy consumed by a normal node (not elected as CH) during skip rounds is
modelled by Equation (7):

Esensor = ERx(lcontrol) + ETx(ldata, d)× skip; (7)

It includes the energy cost due to the reception of a control packet (in which the BS informs which nodes
are CHs) and the energy cost of sending a data packet multiplied by the number of times that this process
must be repeated (the value of the skip parameter). After the node joins a CH, it adjusts the transmission
power according to the distance to the CH. In this case, we suppose that the distance d is small because
normal nodes send the information to their closest CH, not to the BS.

The energy consumed by a node selected as CH is higher as can be noticed in Equation (8). To compute
this consumption, we consider that the distance from the CH to the BS is usually greater than the distance
to its contributing nodes.

ECH = ERx(lcontrol) + (ERx−DA(ldata)× X + ETx(ldata, dSB))× skip; (8)

Apart from the energy cost of the control message from the BS as in Equation (7), it includes the cost
of reception and aggregation of X data packets from its contributing nodes, plus the message that must
send to the BS each round with the aggregated data. It must be taken into account that the distance to the
BS from the CH could be considerable, which converts that factor into the main energy cost.

It is evident that for high values of skip, a CH could spend enough energy to deplete its battery, even
in the first rounds. This would eventually lead to a really low FND. Therefore, the present approach is
based on the best balance between the number of CHs and the skip parameter because nodes that are not
CH spend much less energy during skipped rounds. The evolution of the average energy spent by the
nodes, acting as a normal node and as a CH can be studied in Figure 6. As can be noticed, the effect of being
CH is clearly worse in terms of energy consumption when compared with a normal node. Consequently,
the election of the value for the skip parameter is of paramount importance in CSBA.

As was commented above, to estimate the most appropriate value for the skip parameter, an empirical
method, based on the simulation of three different scenarios of a wireless sensor network, was applied. All
the scenarios are composed of 150 nodes randomly deployed over a deployment field of 100 m × 100 m
and the initial energy of each node is set to 0.5 J. The difference among them is the location of the BS which
was deployed as follows:

• Scenario 1. The BS is in position (100, 0) m, that means that it is in the border of the sensing area.
• Scenario 2. The BS is in position (150, 50) m, that means that it is outside the sensing area.
• Scenario 3. The BS is in position (50, 50) m, that means that it is in the centre of the sensing area.
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Figure 6. Energy consumed by CH and nodes.

To achieve a statistically consistent result for the skip value a set of 30 different networks were
simulated for any of the scenarios above. The average value of FND, HND and LND obtained for skip
values from 0 to 140 are shown in Figures 7–9.

The values for FND, shown in Figure 7 reveals that for the initial increments in the value of the skip,
an improvement in this metric is achieved. Hence, this behaviour validates the first hypothesis exposed
in the introduction. However, for higher values of the skip (over 10), this behaviour does not hold and
the FND dramatically deteriorates. This second type of behaviour was also predicted by the second
hypothesis mentioned previously.
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Figure 7. Round when the first node dies (FND) versus skip.

The values obtained for HND can be seen in Figure 8. Here it can be observed that, when the skip
value increases, HND values also increase, as predicted by the first hypothesis. This improvement is kept
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nearly constant when skip gets to 100 rounds. This behaviour is coherent with the second hypothesis with
which we have been working.
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Figure 8. Round where half of the nodes are dead (HND) versus skip.

The values obtained for LND are presented in Figure 9. LND increases almost linearly as the value of
skip does, but when the skip gets to 100, LND is also kept almost unaltered. Consequently, the performance
of the metrics confirms the hypothesis exposed in our introduction Section.

As a result, from the analysis of Figures 7–9 it can be concluded that the effects of the increase of the
skip value is inverse for FND than for HND and LND. This occurs because the energy cost of being CH is
much higher than being a contributing node as is depicted in Figure 6. Thus, when the skip value is high,
the CHs selected in the initial stages deplete their battery faster than any other node, which eventually
drives to a premature FND value. However, if the CHs are selected more often (low values of skip),
the balance of energy is better, but better nodes will die sooner than in other scenarios with higher skip
values. Hence, a trade off between a high value of FND (reliability) and both HND and LND (network
lifetime) is necessary in order to achieve the best performance of the network and its application.
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Figure 9. Round when at least 90% nodes are dead (LND) versus skip.
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Therefore, considering reliable applications to be deployed in the WSN, we take into account those
three metrics when choosing the value of the skip parameter. Analysing the three metrics altogether, we
focus on Figure 7, because FND is the most restrictive metric. From the simulations results, we set the
skip parameter to 7 as the FND starts to deteriorate for higher values. The behaviour is similar for the
three scenarios.

4. Results

The validity of the skip setting is verified with three different configurations related to BS positions
corresponding to the scenarios described in the previous section. With these configurations, the algorithm
is tested in the three modes commonly evaluated in the literature. The initial energy of each node is 0.5 J.

To check the performance of the proposed Centralized Skip Based Algorithm (CSBA), it is compared
with other relevant proposals widely used in the literature. The evaluated algorithms are:

• A distributed stochastic algorithm referred to as LEACH [4]. In this well-known technique, the nodes
have a probability of converting into CH. This probability increases with the number of rounds in
which the nodes has not been selected as CH (see Section 2 for further detail).

• A centralized Type-2 fuzzy system algorithm known as Clustering Routing Protocol for Wireless
Sensor Networks Based on Type-2 Fuzzy Logic and ACO (CRT2FLACO) [21]. The nodes that will be
CH are selected with a fuzzy system in which the input variables are residual energy, distances to
the BS and the number of neighbours. Later, the routers between CH are found using ACO to save
energy sending data to the BS from the nodes.

• A centralized Type-1 fuzzy algorithm known as Cluster Head Election mechanism using Fuzzy logic
(CHEF) [11]. A group of nodes is selected that are converted into CH from the output of the fuzzy
system, that has residual energy, centrality and the number of near nodes, as inputs.

• A distributed Type-1 fuzzy system known as EEDCF [12]. In this case, the close nodes coordinate
among them to decide the CH. For that operation, they exchange information about the output of
the fuzzy system based on the residual energy, the number of close nodes and the average energy
of those nodes. These last parameters constitute the inputs of the fuzzy system. The node with the
higher output value becomes the CH for the close nodes.

• A distributed Type-2 Fuzzy system algorithm presented in [5]. The Enhanced Unequal Distributed
Type-2 Fuzzy Clustering Algorithm (EUDCF) uses the residual energy, BS distance, the average
number of nodes connected to the CH and the number of rounds without being CH as input variables.

These algorithms were implemented in Matlab according to their specifications described in the
corresponding papers. The simulations are all run with the same energy model (see Equations (3)–(6)).
In order to allow a statistically significant comparison, 30 simulations were made for each of the mentioned
algorithms to obtain the average values for FND, HND and LND.

For the first set of simulations, the wireless sensor network corresponds to the Scenario 1. The results
are shown in Figure 10. As it is observed, centralized methods get better metrics than the distributed ones.
Moreover, the methods based on Type-2 fuzzy logic outperform their counterparts of Type-1. The results
obtained by our proposal, CSBA, are the best in terms of FND, HND and LND when compared with
all the other methods. Moreover, the result of FND in CSBA is greater than the LND value obtained
with most methods. This implies that the network performance was improved in terms of reliability and
durability when CSBA was applied.
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The simulations performed with the BS outside the covered area, that is, when the BS is at (150, 50) m,
are in Figure 11. From these results, we can conclude that the centralized fuzzy systems outperfom the
centralized ones. In addition, the Type-2 Fuzzy systems achieve a better performance than the type-I fuzzy
systems. We can highlight that CSBA still gets the best results. A similar behaviour is reflected when the
BS is at position (50, 50) m. The obtained metrics are in Figure 12.

Figure 10. FND, HND and LND for 150 nodes in a 100 m × 100 m area with BS at (100, 0) m.

Figure 11. FND, HND and LND for 150 nodes in a 100 m × 100 m area with BS at (150, 50) m.
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Figure 12. FND, HND and LND for 150 nodes in a 100 m × 100 m area with BS at (50, 50) m.

5. Conclusions

In the present paper, we propose a new centralized clustering algorithm based on a Type-2 Fuzzy
system. This method schedules the CH selection in a round manner, so that the control message exchange
is reduced (executed every ’skip’ rounds) but the data transmission is not compromised. The most
appropriate value for the skip parameter was judiciously determined according to the reliability and
durability of the network. It was demonstrated that the proposed algorithm outperforms the other tested
algorithms (including centralized and distributed methods). The results depicted in Figures 10–12 also
show that algorithms based on Type-2 Fuzzy system are more capable of adapting to different network
layouts when compared with the algorithms that use Type-1 fuzzy systems. Moreover, the centralized
clustering algorithms obtained better results than the distributed ones due to the common knowledge that
the base station has about the whole network. However, as can be observed in Figures 7–9 when achieving
higher values of HND and LND with CSBA, FND will suffer a serious decrease. This will impact on the
reliability of the network. The value chosen for the skip parameter may not suit other network layouts
with a different amount of nodes or field dimensions (even when the selected skip value was valid for
the three tested scenarios). In addition, CSBA does not take into account nodes which die during skip
intervals. If those nodes are CHs, the reliability of the system could be seriously compromised and some
information collected by those CHs could be lost.

Therefore, as future work, we will address the dynamic determination of the skip value with an
additional intelligence-based system in order to achieve a better adaptability for different network layout,
number of nodes and network dynamics. That new intelligent system, hosted in the BS, would monitor the
evolution of the network (e.g., number of node deaths, average energy in network areas or concentration of
alive nodes), to adapt the skip value in order to increase the network lifetime. Moreover, the BS could take
into account events, such as the death of a CH during the skip interval or new thresholds and variables to
elect CHs dynamically (even during a skip). From the behaviour observed in the input variables of the
T2FIS, a new design of those fuzzy variables would be necessary in order to tune the design of the fuzzy
sets and their fuzzification.



Sensors 2019, 19, 4391 18 of 19

Author Contributions: Conceptualization, A.-J.Y.-D., J.-C.C.-M., A.T.-C. and A.-J.L.-S.; methodology, A.-J.Y.-D.,
J.-C.C.-M. and A.-J.L.-S.; software, A.-J.Y.-D., J.-C.C.-M. and A.-J.L.-S.; validation, A.-J.Y.-D., J.-C.C.-M., A.T.-C. and
A.-J.S.-C.; formal analysis, A.-J.Y.-D. and A.-J.S.-C.; investigation, A.-J.Y.-D., J.-C.C.-M., and A.T.-C.; resources, A.-J.Y.-D.
and J.-C.C.-M.; data curation, A.-J.Y.-D. and J.-C.C.-M.; writing–original draft preparation, A.-J.Y.-D., A.-J.L.-S. and
J.-C.C.-M.; writing–review and editing, J.-C.C.-M., and A.T.-C.

Funding: This research was partially funded by Plan Propio de Investigación de la Universidad de Málaga (Spain).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

References

1. Cuevas-Martinez, J.C.; Gadeo-Martos, M.A.; Fernandez-Prieto, J.A.; Canada-Bago, J.; Yuste-Delgado, A.J.
Wireless Intelligent Sensors Management Application Protocol-WISMAP. Sensors 2010, 10, 8827–8849. [CrossRef]
[PubMed]

2. Liu, X. A Survey on Clustering Routing Protocols in Wireless Sensor Networks. Sensors 2012, 12, 11113–11153.
[CrossRef] [PubMed]

3. Cenedese, A.; Luvisotto, M.; Michieletto, G. Distributed Clustering Strategies in Industrial Wireless Sensor
Networks. IEEE Trans. Ind. Inf. 2017, 13, 228–237. [CrossRef]

4. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless
microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences,
Maui, HI, USA, 4–7 January 2000; Volume 2, p. 10. [CrossRef]

5. Yuste-Delgado, A.J.; Cuevas-Martinez, J.C.; Triviño-Cabrera, A. EUDFC - Enhanced Unequal Distributed Type-2
Fuzzy Clustering Algorithm. IEEE Sens. J. 2019, 19, 4705–4716. [CrossRef]

6. Singh, S.P.; Sharma, S. A survey on cluster based routing protocols in wireless sensor networks.
Procedia Comput. Sci. 2015, 45, 687–695. [CrossRef]

7. Afsar, M.M.; Tayarani-N, M.H. Clustering in sensor networks: A literature survey. J. Netw. Comput. Appl. 2014,
46, 198–226. [CrossRef]

8. Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for
wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [CrossRef]

9. Muruganathan, S.D.; Ma, D.C.F.; Bhasin, R.I.; Fapojuwo, A.O. A centralized energy-efficient routing protocol for
wireless sensor networks. IEEE Commun. Mag. 2005, 43, S8–S13. [CrossRef]

10. Kia, G.; Hassanzadeh, A. A multi-threshold long life time protocol with consistent performance for wireless
sensor networks. AEU-Int. J. Electron. Commun. 2019, 101, 114–127. [CrossRef]

11. Indranil, G.; Riordan, D.; Srinivas, S. Cluster-head election using fuzzy logic for wireless sensor networks.
In Proceedings of the 3rd Annual Communication Networks and Services Research Conference (CNSR’05),
Halifax, NS, Canada, 16–18 May 2005; pp. 255–260. [CrossRef]

12. Zhang, Y.; Wang, J.; Han, D.; Wu, H.; Zhou, R. Fuzzy-logic based distributed energy-efficient clustering algorithm
for wireless sensor networks. Sensors 2017, 17, 1554. [CrossRef] [PubMed]

13. Nayak, P.; Vathasavai, B. Energy Efficient Clustering Algorithm for Multi-Hop Wireless Sensor Network Using
Type-2 Fuzzy Logic. IEEE Sens. J. 2017, 17, 4492–4499. [CrossRef]

14. Zhang, Q.; Sun, Z.; Zhang, F. A clustering routing protocol for wireless sensor networks based on type-2 fuzzy
logic and ACO. In Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
Beijing, China, 6–11 July 2014; pp. 1060–1067. [CrossRef]

15. Cuevas-Martinez, J.C.; Yuste-Delgado, A.J.; Triviño-Cabrera, A. Cluster Head Enhanced Election Type-2 Fuzzy
Algorithm for Wireless Sensor Networks. IEEE Commun. Lett. 2017, 21, 2069–2072. [CrossRef]

16. Neamatollahi, P.; Naghibzadeh, M.; Abrishami, S. Fuzzy-Based Clustering-Task Scheduling for Lifetime
Enhancement in Wireless Sensor Networks. IEEE Sens. J. 2017, 17, 6837–6844. [CrossRef]

17. Yuste, A.J.; Trivino, A.; Casilari, E. Type-2 fuzzy decision support system to optimise MANET integration into
infrastructure-based wireless systems. Expert Syst. Appl. 2013, 40, 2552–2567. [CrossRef]

http://dx.doi.org/10.3390/s101008827
http://www.ncbi.nlm.nih.gov/pubmed/22163383
http://dx.doi.org/10.3390/s120811113
http://www.ncbi.nlm.nih.gov/pubmed/23112649
http://dx.doi.org/10.1109/TII.2016.2628409
http://dx.doi.org/10.1109/HICSS.2000.926982
http://dx.doi.org/10.1109/JSEN.2019.2900094
http://dx.doi.org/10.1016/j.procs.2015.03.133
http://dx.doi.org/10.1016/j.jnca.2014.09.005
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/MCOM.2005.1404592
http://dx.doi.org/10.1016/j.aeue.2019.01.034
http://dx.doi.org/10.1109/CNSR.2005.27
http://dx.doi.org/10.3390/s17071554
http://www.ncbi.nlm.nih.gov/pubmed/28671641
http://dx.doi.org/10.1109/JSEN.2017.2711432
http://dx.doi.org/10.1109/FUZZ-IEEE.2014.6891584
http://dx.doi.org/10.1109/LCOMM.2017.2703905
http://dx.doi.org/10.1109/JSEN.2017.2749250
http://dx.doi.org/10.1016/j.eswa.2012.10.063


Sensors 2019, 19, 4391 19 of 19

18. Bahrebar, S.; Blaabjerg, F.; Wang, H.; Vafamand, N.; Khooban, M.H.; Rastayesh, S.; Zhou, D. A novel type-2 fuzzy
logic for improved risk analysis of proton exchange membrane fuel cells in marine power systems application.
Energies 2018, 11, 721. [CrossRef]
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