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Abstract: In this paper, a new hybrid AHP and Dempster—Shafer theory of evidence is presented
for solving the problem of choosing the best project among a list of available alternatives while
uncertain risk factors are taken into account. The aim is to minimize overall risks. For this purpose,
a three-phase framework is proposed. In the first phase, quantitative research was conducted to
identify the risk factors that can influence a project. Then, a hybrid PCA-agglomerative unsupervised
machine learning algorithm is proposed to classify the projects in terms of Properties, Operational and
Technological, Financial, and Strategic risk factors. In the third step, a hybrid AHP and Dempster—
Shafer theory of evidence is presented to select the best alternative with the lowest level of overall
risks. As a result, four groups of risk factors, including Properties, Operational and Technological,
Financial, and Strategic risk factors, are considered. Afterward, using an L2ˆ4 Taguchi method,
several experiments with various dimensions have been designed which are then solved by the
proposed algorithm. The outcomes are then analyzed using the Validating Index, Reduced Risk
Indicator, and Solving Time. The findings indicated that, compared to classic AHP, the results of
the proposed hybrid method were different in most cases due to uncertainty of risk factors. It was
observed that the method could be safely used for selecting project problems in real industries.

Keywords: project management; risk management; Dempster—Shafer theory of evidence; AHP;
machine-learning

1. Introduction

The manufacturing industry plays a crucial role in the economy of each country [1].
Developed countries mostly have better industries and, therefore, investments in poten-
tial opportunities in the industries (manufacturing projects), accordingly. For example,
Aбдикeeвet al. [2] reported that in 2017, 30%, 28%, 20%, and 13.5% of the annual gross do-
mestic product (GDP) of China, South Korea, Germany, and Russia, respectively, belong to
the manufacturing industry. Of this, a significant value belongs to construction projects for
developing new industries or expanding available manufacturing firms. For instance, the
value and number of net cross-border Mergers and Acquisitions (M&As) and announced
greenfield global foreign direct investment (FDI) projects, 2008–2017 [3].

Given the rivalry of today, choosing appropriate decisions plays a crucial role in the
success of a manufacturing firm. In most cases, choosing inappropriately will impose
detrimental effects on a company or cause project failure. Risks are considered an insep-
arable part of a project and thus should not be ignored. Each year, many projects fail
due to the harm that they impose on themselves. Risks attributed to projects can have
various sources, but all have the same goal: project failure. Figure 1 depicts the correlations
between risks associated with a project and the amount at stake throughout the lifecycle of
a project. Figure 1 indicates the level of risks associated with each stage of the lifecycle of
a project [4]. The level of the risks at the earlier phases of a project is significantly higher
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than in the ending phases. Such a fact can reveal the importance of risk management in
project selection. Carvalho and Rabechini Junior [5] also mentioned a significant correlation
between the level of risk management taken by a project team and project success.

Figure 1. Correlations between the level of risks associated with a project and the amount at stake (Reference:
Petrova et al. [4]).

In the project management body of knowledge (PMBOK), which is considered the
essential guideline in the project management field, risk management is considered one of
the nine areas of project management.

Therefore, minimizing the risks of a project is a vital need. Subsequently, the more
attention paid to risk identification, the less risk will be faced during the lifecycle of a
project. For this purpose, and as will be shown in the literature review, efforts have
been made during the last two decades to propose various decision-making methods to
investigate different risk management problems. Of these, a noticeable share belongs to
the project selection problem. In addition, the shortcomings of current research methods
will be investigated. In the literature review, the problem will be explained in more detail.

The main question is whether deterministic decision-making methods can satisfy all
risk management needs in project selecting problems. Later, this question will be answered.

Considering the uncertainty in the decision science discipline challenges the use of
classic methods. Many references have used evidence theory as a powerful method to
consider the beliefs of different experts. Tacnet et al. [6] stated that experts have different
opinions about factors due to imperfect information provided by more or less heteroge-
neous, reliable, and conflicting sources, which will affect the decision-making process.
Kazimieras Zavadskas et al. also argued that people might have different meanings based
on their knowledge, experience, and preference. Evidence theory is an effective way to
consider such issues in the decision-making process by combining multi-criteria decision-
making methods such as the Analytical Hierarchy Process (AHP) and the Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) [7]. Within the literature, the
hybrid AHP and evidence theory have been used many times to provide an adequate
base for choosing the best alternative, while the beliefs of experts are essential [8–11].
While considering the term uncertainty, each cell in the AHP will not have a specific value
necessarily, and instead, a range of values (confidence intervals) must be estimated by
considering confidence levels (1–α). Therefore, an optimum solution will not necessarily
exist and can be changed by considering different confidence intervals.
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Using the facts mentioned above, there is ample evidence to consider uncertainty
in selecting the best project among the available alternatives to minimize the risks of the
project in the executing phase.

Therefore, in this research, a new decision-making model will be proposed to select
the best alternative while uncertainties exist for the level of risk factors. The aim will be to
minimize the risks associated with the capabilities of the company, such as available money,
human resource skills, machinery, documentation systems, and quality control level.

This study can help industrial business owners to select appropriate projects according
to their capabilities and strengths. Choosing the wrong project for construction can have
detrimental effects on a business and impose irreparable financial harm. In each county,
many failed projects can be found that remain unconstructed for years or even decades. The
same phenomenon happens in the industry. A quick search in each industrial zone, a series
of unsuccessful projects are left alone simply because the managers believe that the projects
will not be successful and make a profit, even if they are successfully working in the future.
This may also simply be because they made a wrong decision about choosing projects and
calculating the required budget for completing them, due to not paying enough attention
to selecting appropriate projects according to the money and resource availability.

In this research, a new method will be proposed to involve uncertainty of the available
evidence in the process of selecting the best alternative among a list of available proposals
of manufacturing projects, which will minimize the level of the risk factors associated with
a project by utilizing scheduling and line balancing risk assessment.

2. Literature Review

More than one attribute is usually considered in multi-attribute decision-making
methods in project scheduling (MADM) methods. The most preeminent advantage of
MADMs, compared to multi-objective decision-making methods (MODM), is that there
are easier to be understood by managers in actual practice. Moreover, their outcomes are
more tangible and can easily be applied directly in real manufacturing systems. Methods
like the AHP and TOPSIS are among the most critical MADMs. MADM methods can
usually be hybrid with other methods to enhance their functionality. Several MADM
references are investigated in this section, and essential questions regarding MADM in risk
management will be answered. MADM methods are regularly used in project management
problems. Kuo and Lu [12] proposed a fuzzy MCDM method for assessing risk factors
associated with metropolitan construction projects. The proposed method used a multiple
fuzzy attributes direct rating scheme to measure the occurrence probability of risk factors.
Marcelino-Sádaba et al. [13] proposed a risk management method for project management
in small manufacturing systems. The method is then applied to 72 companies located in
Spain. Their method was based on checklists and other simple tools to measure indicators
and outline the corrective actions.

Leu and Chang [14] argued that although many papers used classic methods while
safety factors are considered, most of those methods could ineffectively address the cor-
relation between dependencies of safety factors and occupational accidents. Hence, they
proposed a new safety risk-assessment model based on Bayesian networks and fault tree
concepts. Their outcomes show that the proposed method can effectively address the
safety management of a project. Hossen et al. [15] used a construction schedule delay risk
assessment method for nuclear power plants where a hybrid AHP and relative importance
index and schedule delay risk are considered.

Kim [16] developed a new model for risk management, which is designed based
on Bayesian rules. Their model used the pre-project cost risk assessment and actual
performance data to portray a range of possible project costs at a pre-defined confidence
level. Esmaeili et al., (2015) [17] presented an attribute-based risk identification and
analysis method to improve available construction safety management methods, which
help schedulers and designers realize, identify, and then model safety risk independently of
specific areas activities or building components. Their method showed high performance
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when it was used to identify and measure several injuries and fatalities in construction
resulting from a finite number of hazardous attributes of the work environment. In the same
year, Esmaeili et al., (2015) [18] claimed that identifying and measuring risks associated
with virtual construction work environments (which usually cause work injuries) is vital
for pre-construction safety management. They proposed a two-stage model based on a
principal component analysis of safety attributes and leading principal components that
used potential predictors in a generalized linear model. The outcomes of applying their
model indicated that giving identifiable characteristics of planned work could successfully
forecast the probability of a safety incident.

Islam et al. [19] focused on using an analytical network process (ANP) on project risk
management and argued that fuzzy ANP has limited functionality while incorporating
new information into the risk structure. Therefore, they proposed a new fuzzy Bayesian
belief network (FBBN) and showed its superiority to supersede the existing fuzzy ANPs.
Valipour et al. [20] focused on occupational accidents reported in metropolitan excavations
in significant cities. To investigate this case, they proposed new criteria for risk assessment
by using adopted step-wise weight assessment ratio analysis (SWARA) and complex
proportional assessment (COPRAS) methods. Then, using a field study, they found that
construction safety, unfavorable geological conditions, shortage of managerial experience,
preliminary emergency plan, and subsidence of ground are the most significant risks
in excavation projects. Williams [21] declared that systematicity causes difficulties in
evaluating risk levels of complex projects. They also mentioned that one important activity
after identifying risk is to pursue its casual chain. They outlined the steps of analyzing
the systemic nature of risk and how owners and constructors can fully understand the
consequences of their actions.

• Do the relations between human factors influence the risk levels in networks?

Fabricius and Büttgen [22] argued that the overconfidence of the manager directs them
to project failure in many cases. Therefore, they used risk assessment to measure overall
anticipated project success and how overconfidence will influence such assessments. Using
data from 204 project managers, they outlined a standardized, case-based survey and
proved that overconfidence reduces risk awareness among project managers, leading them
to assess risks more optimistically and with more positive conclusions about anticipated
project success. C. M. Wang et al. [23] addressed a new method for construction project
managers to perceive risk. They investigated how the behavioral factors of project managers
such as extraversion, agreeableness, and conscientiousness influence risk propensity and
their implications to see if they differ in perceiving risk. They found that extraversion,
agreeableness, and conscientiousness impose detrimental effects on risk perception.

Chemweno et al. [24] focused on implementing appropriate risk management on the
health level of assets. They showed that choosing the proper risk management approach
would positively affect maintenance decision-making by identifying, analyzing, evaluating,
and mitigating equipment failures. For this purpose, they offered a new risk assessment
using generic selection criteria for the failure mode and effects analysis (FMEA), fault tree
analysis (FTA), and Bayesian networks (BN). In their method, the available criteria were
prioritized using ANP.

Kokangül et al. [25] dealt with solving the health and safety problem in workspaces.
For this purpose, they proposed a new risk assessment method, which relies on the Fine–
Kinney method and AHP for a large-scale manufacturing company. Then the correlation
between the Fine–Kinney risk assessment method and AHP was examined.

Identifying risks and evaluating them is a vital step in the early stage of a project.
Yet et al. [26] addressed a hybrid dynamic Bayesian network modeling framework for
analyzıng risk scenarios and budget policies in agriculture projects, where both uncer-
tainty and variability of risk and economic factors were taken into account. Continuing,
Yang et al. [27] argued that many risks associated with research and development (R&D)
projects make them too sophisticated when standard methods are used to examine the
performance of a project. Therefore, they proposed a predictive evaluation framework
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where a belief rule-based system with random subspaces was used in order to assess risks
in R&D projects. They applied their model in a number of projects in China and showed
that while using their method prominent results with prediction accuracy were achieved.

When considering more than one objective function is essential, MODM models in
project management methods promise ways to overcome the difficulties of super-complex
project management problems. Many project management problems are Np-hard by their
nature, which means normal optimizers like LINGO and GAMS cannot quickly solve them.
The complexity of such problems will be increased when more than one objective function
is taken into consideration. This fact matches with the real circumstances of projects. In
real projects, managers usually consider more than one objective at the same time while
selecting a project. For example, they may want to determine which project will have more
profit, have fewer costs, and impose fewer risks during the execution phase. Some of the
most important references that used MODM techniques in the project solving problem will
be reviewed.

Ansarifar et al. [28] focused on rapid responding (time) and cost of services objectives
to find the optimum location for ambulance stations and helicopter ambulances. For this
purpose, they proposed a new heuristic method to solve the developed multi-objective
mode l.

2.1. Risk Management and Its Importance in Project Management

The Cambridge Dictionary defined the term risk as “the possibility of something bad
happening” (https://dictionary.cambridge.org/dictionary/english/risk, accessed on 30
October 2020). This means that projects (similar to other industrial sectors) can suffer from
the risks if risk factors are neglected.

Risk management is an essential part of PMBOK, which is an important reference
in project management worldwide. In this reference, risk assessment is divided into
five main parts: Risk Identification, Risk Evaluation, Risk Analysis, Risk Planning, and
Risk Response.

Y. Zhang and Fan [29] proposed a model to integrate project cost, schedule, and quality
to choose the risk response strategy selection problem. They declared that by finding the
optimum solution, the most appropriate risk response strategies could be taken.

• How to outline risks associated with a project?

Failure to pay enough attention to the risk factors of a project will impost negative
effects on time, cost and quality of the project, states Fabricius and Büttgen [22]. It is
worth knowing that risk identification has a significant impact on the future strategies
of a company. Kliestik et al. [30] believed that the beliefs of top management and the
economic environment are two major points that play significant roles in shaping the
organizational social norm. Abd El-Karim et al. [31] focused on the added value of risk
assessment, risk strategy, and plan analysis to the construction industry in Egypt. They
aimed to identify and measure the effect of the factors that negatively influence time
and cost contingency. Liu et al. [32] argued that incorrect investment decisions are the
main root of many losses for the investors of a project. Although using quantitative risk
assessment, which project owners frequently apply, can ameliorate such problems, classic
risk assessment methods usually ignore assessing the effects of risk events, such as product
sales falling short of expectations. Therefore, they proposed a modified version of the
quantitative risk assessment model, enabling managers to outline the direct correlations
between risk events and other decision variables in investing in a project. In this research
we will use the risks that are classified by [33].

However, it is essential to know that the risk identification level depends on the
nature of the project. While for some projects, it is essential to use complex techniques to
understand the risks and the correlations between them, for others, more straightforward
methods are more useful. For example, Bowers and Khorakian [34] stated that innovative
projects are riskier to succeed due to their nature. Current risk management methods
might have too stern a look for innovative projects, which may damage the creativity in an

https://dictionary.cambridge.org/dictionary/english/risk
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innovative project accordingly. To overcome such a barrier, a new framework was offered
to use the generic innovation process in the risk management process of a project to outline
a stage-gate innovation process model to provide an effective interface for incorporating
project risk concepts.

• Does the size of a company have an impact on choosing a risk management approach?

A critical point about risk management is the contribution of the size of a company
with risks and risk assessment methods. Brustbauer [35] investigated risk management
in small and medium-sized enterprises using a field study. Their outcomes indicated that
using an active or a passive risk management approach has influenced the choosing of an
offensive or defensive strategy for the studied cases, respectively. Besides, when the size of
the firm came into consideration, the affiliation of the sector and the ownership structure
would also influence the implementation of risk management.

• What is the role of the complexity of the activities in a company in risk identification?

Fang et al. [36] stated that complexity usually causes barriers in identifying and as-
sessing risks associated with a project. To overcome such difficulty, they used an important
measuring technique in project risk management. The complex project risk network models
and provides complementary analysis results, which are used to measure the interactions
of risks. Tao et al. [37] stated that location and congestion of activities must be considered
during the project schedule.

2.2. Risk Assessment Methods in Project Management

An in-depth review of the opted research studies showed that the most important
methods are mathematical modeling, MADM, MODM, field study and statistical analysis,
heuristic and meta-heuristics, and reviewing case studies (regardless of their priority).
In addition, several critical research studies are shown where risk management is the
main aim.

Gutjahr [38] used a branch and bound searching algorithm for a multi-objective
scheduling method while minimizing project time, and costs are considered the main
objectives of the model. Wu et al. [39] provided an in-depth review of tools and methods
used by researchers for business intelligence risk management.

Risk can be defined as a measurable part of uncertainty (Dziadosz and Rejment,
2015), discuss [40], by considering the occurrence and severity of the damage. However,
uncertainty is defined as “a situation, in which something is not known, or something that is
not known or certain” (https://dictionary.cambridge.org/dictionary/english/uncertainty,
accessed on 11 August 2020). Uncertainty can increase the harms of risk or increase its
occurrence likelihood.

2.3. Uncertainty and Evidence Theory in Project Management

When risk management (including risk identification and risk assessments) comes into
mind, one major shortcoming is that researchers consider instant values in their calculations
in most cases. While in the real world, the risk factors and their identifiers can change
for many reasons. For example, the chance of lack of money in a period (occurrence rate)
could be entirely different from another period due to economic conditions. For example,
Davari and Demeulemeester [41] dealt with the proactive and reactive resource-constrained
project scheduling problem with stochastic activity durations. Grabovy and Orlov [42]
developed a risk management method for considering uncertainty factors at all stages of
implementing an investment construction project in Russia using a cross-border index for
calculating an investment construction project. Besides, the level of intensity of a machine
breakdown (severity) may vary. While oil leakage is a minor failure in most cases, it
may cause harmful damage to an engine at another time. For instance, Nasrabadi and
Mirzazadeh [43] focused on uncertain conditions and the time value of money. In such
cases, using constant values for risk identification and assessment is a flawed strategy and

https://dictionary.cambridge.org/dictionary/english/uncertainty
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can cause uselessness, and in some cases it can even mislead the decision makers. Such a
drawback is even serious for projects in the industry.

In most cases, stubble cues that show a risk level will remain at the same level until
the end of the project. In fact, in most cases, risks can emerge and become exacerbated in
a short period of a project, and then they can be ameliorated by risk response programs
(or worsen if they are left alone). For this purpose, we focus on the MADM and MODM
techniques in project management considering the uncertainty.

Dempster introduced the theory of considering uncertainty in the probability of the
decision-making process in the 1960s. Then, in 1976, Shafer published A Mathematical
Theory of Evidence (Shafer, 1976). Their theory was developed to consider the uncertainty
of mathematics arrays and followed fundamental but functional mathematics principles.
Other scientists frequently apply their methods in various fields, including engineering,
management, and the humanities. In addition, several important types of research that
adopted the Dempster—Shafer theory of evidence will be investigated.

Using the Dempster—Shafer theory of evidence can overcome the dilemma between
exact and probabilistic methods in expert systems. Zadeh (1986) [44] stated that the
Dempster—Shafer theory of evidence has been widely used in AI for considering uncer-
tainty in expert systems.

Tang [45] addressed a fuzzy soft set approach based on grey relational analysis and
the Dempster—Shafer theory of evidence. The Dempster—Shafer theory of evidence was
used to integrate the available alternatives into one collective alternative to choose the best
alternatives. Hatefi et al. [46] used the Dempster—Shafer theory of evidence to develop a
new model for assessing risk factors in a project associated with the environment. Their
method was applied to an oil company in Iran, and the outcomes were compared with
those achieved by conventional risk assessment and the fuzzy inference system methods,
which showed the superiority of the proposed model in uncertain conditions of a project.
Li et al. [47] discussed that most of the previously worked methods based on the fuzzy
soft sets were based on different kinds of level soft sets, making them too sophisticated to
investigate by decision makers. Therefore, they proposed a new fuzzy soft sets approach to
combine grey relational analysis with the Dempster—Shafer theory of evidence in medical
diagnosis problems. In their method, the Dempster—Shafer rule of evidence was used to
aggregate the available alternatives into a collective alternative to select the best alternative.

J. Wang et al. [48] enhanced the functionality of the fuzzy soft set-based decision-
making method by combining ambiguity measure and the Dempster—Shafer theory of evi-
dence, which yielded less uncertainty and increased the choice decision level accordingly.

Ballent et al. [49] believed that the Dempster—Shafer theory of evidence could provide
a basis for considering various expert beliefs where structural vulnerability and damage
are examined, which results in subjective assessments. Muriana and Vizzini [50] stated that
quantitative risk assessment is an efficient tool for fast decision-making. At the same time,
progress variances from what was targeted before have adverse effects on a project risk
profile. Thus, corrective and preventive actions must be defined based on the risk index to
balance the risks. Niazi et al. [51] discussed that many software organizations do not pay
enough attention to project management and risk assessment before starting global software
development. For this purpose, they proposed a two-step approach to identify and analyze
the 19 risks associated with global software development from the client and vendor points
of view. Pan et al. [52] proposed new hybrid interval-valued fuzzy sets and improved the
Dempster—Shafer evidence theory, as well as fuzzy Bayesian networks, for risk assessment
and risk analyzing for sophisticated uncertain conditions. They showed that the proposed
method could help reduce the likelihood of potential failure occurrence and ameliorate
the risk magnitudes while a failure happened. Qazi et al. [53] addressed a new method
for assessing risks by considering project complexity simultaneously. They found there
is interdependency available between complexity drivers, risks, and objectives and their
method was also able to make priority between complexity drivers, risks, and strategies.
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Sangaiah et al. [54] proposed a hybrid approach for the risk assessment of software
projects, including fuzzy Decision-Making Trial and Evaluation Laboratory, fuzzy MCDM,
and MADM. Their method could provide more effective results compared to classic meth-
ods. Suresh and Dillibabu [55] focused on the risk assessment of software projects using
a hybrid fuzzy-based machine learning mechanism that worked based on an adaptive
neuro-fuzzy inference system-based multi-criteria decision-making and intuitionistic fuzzy-
based TODIM (an acronym in Portuguese for interactive multi-criteria decision-making)
approaches. Tonmoy et al. [56] dealt with coastal risks identification and evaluation in
Australia. They found that informing and consulting stakeholders has positive impacts on
planning for risk management. Zou et al. [57] stated that multi-disciplinary collaboration
in risk management is necessary to achieve more success.

In most of the classic risk assessment methods, risks were usually analyzed separately.
However, Y. Zhang [58] stated that correlations between risk factors of a project can
influence project performance. Therefore, they proposed a new method for measuring risks
interdependently, followed by an optimization model for selecting the best risk response
strategies. Zavadskas et al. [59] proposed an MADM method for risk evaluation which
worked based on the TOPSIS grey and COPRAS methods. Their main aim was to consider
the goals of stakeholders along with other construction process efficiency and real estate
value factors. After reviewing these papers, the following findings were achieved:

1. Considering risk factors in project management is vital, and during the last two
decades scientists have focused on minimizing the risk factors associated with a
project.

2. Uncertainty in occurrence probability and intensity should not be ignored and will
impose detrimental effects on a project. Scientists have considered various aspects of
uncertainty in their research.

3. When dealing with uncertainty in risk identification and assessments come into
consideration, the Dempster—Shafer evidence theory provides a promising way to
express and model the uncertainty.

4. In order to consider multiple attributes in evidence theory (when more than one
attribute has to be addressed), evidence theory shows flexibility in combining with
other decision-making methods. The hybrid methods have superiority compared to
the standard decision-making methods.

5. In this research, considering the compatibility of AHP in choosing the best project
and also the outstanding features of evidence theory in addressing uncertainty, a
hybrid AHP evidence theory will be proposed to address the problem of selecting
the best industrial project among the available alternatives in order to minimize the
production risks associate to a project.

6. The outcomes of the comprehensive research completed in this section, using a hybrid
AHP evidence theory for selecting industrial projects to minimize production risks,
have not been addressed before.

3. Research Methodology
3.1. Flowchart of the Proposed Framework

Figure 2 shows the flowchart of the research methodology in more detail.
According to the research flowchart in the next section, the effective risk factors

that can influence project selection in an uncertain environment will be identified first by
quantitative research (Phase 1). Then, an unsupervised machine learning method will be
applied (Phase 2) to filter the alternatives before entering the next phase. This section aims
to classify the alternatives into different clusters so the top managers of the company can
focus on excellent options more effectively. In the next phase (Phase 3), a hybrid AHP and
Dempster—Shafer theory of evidence is presented to select the best alternative with the
lowest level of overall risks. The method is designed so that the project with a lower total
risk factor range will have more chance to be selected. The performance of the outcomes of
the method will then be evaluated by using some metrics.
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Figure 2. Flowchart of the research methodology.

The advantages of novelties of the proposed method are provided in Section 3.5 after
explaining the method in detail.

Methodology for Each Phase of the Proposed Method

The proposed method consisted of three steps where, in the first step, quantitative
research was conducted to identify the risk factors that can influence a project. Then,
a hybrid PCA-agglomerative unsupervised machine learning algorithm is proposed to
classify the projects in terms of Properties, Operational and Technological, Financial, and
Strategic risk factors. Then, in the third step, a hybrid AHP and Dempster—Shafer theory
of evidence is presented to select the best alternative with the lowest level of overall risks.
Figure 3 indicates the steps of the proposed method for choosing the best project.
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Figure 3. Each phase of the proposed method.

3.2. Identify the Effective Risk Factors (Phase 1)

Kral et al. [60] used a questionnaire to figure out the experience of the manager
about the criteria, which can influence the optimization of the project portfolio. A similar
approach will be carried out in this research by finding the significant risk factors that can
influence the success of a project. For this purpose, “Project Success” can be defined as
the dependent variable. According to the questions of the research, the risk factors that
can impose detrimental effects on the success of a project are categorized into the four
main sections:

• Properties Risk Factors (Infrastructure, Machinery, Human Resource)
• Technology and Operational Risk Factors (Scheduling, Technology, Operational Risk,

Management Systems)
• Financial Risk Factors (Evaluating Projects, Profit and Costs, Money Value)
• Strategic Risk Factor (Competition, Market Share, Marketing, Customer Satisfaction)

The main aim of this research is to find out if the above risk categories can influence
the success of a project. If so, to what extent?

Therefore, the following variables are to be addressed in this research:

• Dependent Variable: Project Success
• Independent Variables: Table 1 indicates the independent variables according to their

risk factor categories.

Since in this research one aim is to track the influence of a variable throughout the life
cycle of a project, each of the above variables will be asked in three phases:

• Before selecting a project
• During the execution
• After finishing the project

Table 1. Risk factor categories and related independent variables.

Risk Factor
Category

No. Variable (Risk
Factor)

Questions

Before Project
Selection During Execution After Project

Properties

1 Infrastructures Q1 Q4 Q7

2 Machinery Q2 Q5 Q8

3 Human Resource Q3 Q6 Q9
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Table 1. Cont.

Risk Factor
Category

No. Variable (Risk
Factor)

Questions

Before Project
Selection During Execution After Project

Technologic and
Operational

4 Project Scheduling
Performance Q10 Q15 Q20

5 Project Schedule
(Time and Cost) Q11 Q16 Q21

6 Required
Technology Q12 Q17 Q22

7 Risk Management Q13 Q18 Q23

8 Management
Systems Q14 Q19 Q24

Financial

9 Tender Process
Performance Q25 Q28 Q31

10 Costs and Profits
Estimation Q26 Q29 Q32

11 Money Value Q27 Q30 Q33

Strategic

12 Rivals’ Strategies Q34 Q38 Q42

13 Market Share
Prediction Q35 Q39 Q43

14 Business Plan Q36 Q40 Q44

15 Customer
Satisfaction Q37 Q41 Q45

Using this strategy, finding the correlations between the independent variables and
dependent variables can show us if a project is selected correctly or not. Moreover, and
more importantly, do companies pay enough attention to such risk factors?

Table 2 shows the statistical analysis for the data that will be used in the next section:

Table 2. Results of the Statistical Analysis of Risk factor Categories.

Associate Risk Properties Risk
Group

Technologic and
Operational Risk Group

Financial Risk
Group

Strategic Risk
Group

count 128.000000 128.00000 128.000000 128.000000 128.000000
mean 0.843750 3.93493 3.879375 3.886586 3.889258
std. 0.836542 0.59940 0.629381 0.657435 0.647047
min 0.000000 1.75000 1.933000 1.889000 2.250000
25% 0.000000 3.55600 3.467000 3.444000 3.396000
50% 1.000000 4.00000 4.000000 4.000000 4.000000
75% 1.000000 4.33300 4.333000 4.360750 4.354000
max 4.000000 5.00000 5.000000 5.000000 5.000000

3.3. Classify the Project Candidates Using a Hybrid PCA-Agglomerative Method (Phase 2)
3.3.1. Input Data

Table 3 shows the summary of the data gathered from the statistical society:
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Table 3. Dataset summary that was used for the hybrid PCA-agglomerative method.

HR Income Success Associate
Risk

Properties Risk
Group

Technologic and
Operational
Risk Group

Financial Risk
Group

Strategic Risk
Group

0 Large Scale Large
Scale

Excellent
(100%) 0 4.000 3.267 3.444 3.083

1 Large Scale Medium
Scale

Very Good
(75–100%) 1 3.778 3.933 4.000 3.750

2 Medium
Scale

Medium
Scale

Very Good
(75–100%) 1 3.444 3.600 4.111 3.250

3 Small Scale Small Scale Acceptable
(50–75%) 2 2.778 2.533 1.889 3.750

4 Medium
Scale

Medium
Scale

Very Good
(75–100%) 1 4.556 4.067 3.556 3.917

. . .

127 Small Scale Small Scale Very Good
(75–100%) 1 3.556 3.267 2.889 Very Good

(75–100%)

3.3.2. Libraries

In this research, Python is used to code the machine learning algorithm. For this
purpose, the following libraries were used:

• NumPy: NumPy is a Python library for generating and working with homogeneous
multi-dimensional arrays. It is also used for applying basic mathematical formulas.
These arrays are tables of elements (usually numbers) of the same type and are indexed
by a few positive integers. In NumPy, dimensions are known as axes. The number of
axes is called the rank.

• Pandas: Pandas is the second library that will be used in this research. The main
aim of using Pandas is to develop the data frameworks. With Pandas, it is possible
to import data with different file types, such as CSV and XLSX. Pandas is also an
excellent library to work with matrixes and perform various functions such as adding
a row, deleting a column, multiplying two matrixes, etc.

• Matplotlib: Matplotlib is used for drawing various plots, including histograms, box
charts, bar charts, and scatter charts.

• Seaborn: Seaborn is a library that contains powerful formulas for statistical analysis.
• Scipy: Scipy is widely used for various purposes. However, in this research, Scipy will

be applied for calculating the correlations between factors and optimization purposes.
• scikit-learn: scikit-learn is an essential library for this research. This library will be

used for applying supervised and unsupervised machine learning methods.

3.3.3. Selecting Features

In this section, the Ward algorithm is used for clustering datasets in an agglomerative
way. However, before using the proposed method, a PCA must be used to reduce the size
of the features to prepare them to be used by WARD:

• X = ConsumersData.iloc[:,[5, 6, 7, 8]].values

Noted that 5, 6, 7 and 8 present the column number of dataset that will be used
as features.

array





[4.00, 3.26, 3.44, 3.08],
[3.78, 3.93, 4.00, 3.7],
[3.44, 3.60, 4.11, 3.20],
[2.78, 2.53, 1.89, 3.70],

· · ·
[3.56, 3.27, 2.89, 3.50]




pca = PCA(n_components = 2) (1)

Y = pca. f it_trans f orm(Y) (2)
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w2. f it(Y) (3)

The outcomes will be shown as following:

array





[0.92492625, 0.56134014],
[0.05083249, −0.01913977],
[0.5594823, 0.04059535],

[2.35135557, −0.75448191],
· · ·

[1.2143782, −0.00885093]




Afterward, the Ward method is applied for the clustering algorithm while the different

number of clusters is taken into consideration (k = 2, 3, and 4):

w2 = cluster.AgglomerativeClustering
(
n_clusters = 2, linkage = ′ward′

)
. f it(X) (4)

w3 = cluster.AgglomerativeClustering
(
n_clusters = 3, linkage = ′ward′

)
. f it(X) (5)

w4 = cluster.AgglomerativeClustering
(
n_clusters = 4, linkage = ′ward′

)
. f it(X) (6)

w5 = cluster.AgglomerativeClustering
(
n_clusters = 5, linkage = ′ward′

)
. f it(X) (7)

3.3.4. Determining the Appropriate Number of Clusters

One way to help estimate the appropriate number of clusters (K) in unsupervised
machine learning methods is to use a dendrogram. A dendrogram is an agglomerative
method for clustering data. In a dendrogram, the correct number of clusters can be
estimated by looking at long vertical lines. However, it should be noted that a dendrogram
can be considered as a guideline, and the correct number of clusters should be estimated
based on the scores observed after solving the unsupervised machine learning algorithm
(such as Silhouette and Calinski–Harabasz).

A horizontal cut in Figure 4 where the vertical lines have long distances shows that
the correct number of clusters could be two or three. The correct value for the number of
clusters will be outlined using Silhouette and Calinski–Harabasz metrics.

Figure 4. A dendrogram of clustering risk factors.
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After clustering the dataset using the proposed methods, the outcomes are outlined in
Figure 5. It shows the clustering scatter chart based on the Ward method and a predefined
number of clusters. As shown, while the number of clusters is considered three, the
machine-learning algorithm could specify the clusters more precisely. In contrast, while
the number of clusters was considered 4, the algorithm could not specify the border of
clusters precisely.

Figure 5. The agglomerative clustering algorithm results while the different numbers of clusters are taken into consideration.

Then, the score of the PCA-Ward method is measured with the different cluster
numbers and shown in Figures 6–11.

Figure 6. Silhouette score graph for the proposed PCA-Ward while k = 2.

Figure 7. Calinski–Harabasz score graph for the proposed PCA-Ward while k = 2.
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Figure 8. Silhouette score graph for the proposed PCA-Ward while k = 3.

Figure 9. Calinski–Harabasz score graph for the proposed PCA-Ward while k = 3.

Figure 10. Silhouette score graph for the proposed PCA-Ward while k = 4.
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Figure 11. Calinski–Harabasz score graph for the proposed PCA-Ward while k = 4.

Therefore, according to the findings of the proposed PCA-Ward method, projects can
be clustered into two main groups while Properties, Technologic and Operational, Financial,
and Strategic risk factors are taken into consideration. Such a clustering approach will
facilitate the process of pre-selecting the alternatives for the next stage.

3.4. Choosing the Best Alternative Using Multi-Attribute Decision-Making Method (Phase 3)

AHP is a decision problem divided into different levels of objectives, criteria, and
sub-criteria to choose the best alternative amongst those available. In this process, different
options are involved in decision-making, and it is possible to analyze the sensitivity of
the criteria and sub-criteria. A sensitivity analysis based on the AHP method is a way to
rank alternatives in terms of the pre-defined criteria. The decision maker can also weight
criteria. However, one major shortcoming of classic AHP is that the values are considered
constant in this method, and therefore, it cannot reflect the uncertainty of the responses of
the experts in a selecting problem. Besides, the Dempster—Shafer theory of evidence is
a robust method for considering the point of view of experts when uncertainty must be
taken into consideration.

In the Dempster—Shafer theory of evidence, the level of belief of individuals in
expressing their opinions is used. For example, not all survey participants necessarily
answer questions with 100% certainty. In the real world, it is normal to answer a question
with a level of uncertainty (α %). As a result, the belief rate of a question could be (1–α)%).
Therefore, in this method, the degree of belief of individuals in answering each question
plays a key role and is considered a function of belief. The belief function can be defined as
a mathematical function, a range of values (for example, between 0 and 100), and even a
quantitative or qualitative table.

For example, an expert can be given a range for risk (i.e., score (1–5)) with a confidence
rate of 30%, and therefore, the system considers (1–9) with a confidence rate of 70%
automatically. They can also give a single score for risk as well. For example, they can give
5 with a confidence rate (0.6). In this case, the algorithm considered (1–9) 0.5 automatically.

Thus, the Dempster—Shafer theory of evidence, which is often used as a method
based on the degree of belief of individuals, is based on two principles: first, obtaining the
degrees of belief of participants for possible answers to each of the questions, and second
(the Dempster rule) to combine such degrees of belief when they are based on independent
evidence.

Therefore, considering the aim of this research, which is choosing the best project
amongst the available alternatives to minimize the risks, combining this method with
evidence theory (that uses possibility, belief, and uncertainty functions), a new method
based on machine learning is used where the alternatives will be filtered before they enter
into the hybrid AHP and Dempster—Shafer theory of evidence method. Then, the best
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alternative will be selected considering the beliefs of the experts in terms of the mentioned
risk group factors.

The solutions of the proposed hybrid AHP and Dempster—Shafer theory of evidence
can be represented as follows:

• Total Risk Matrix of Project (Number of Contract options, 2, Number of Projects)

When the first index of the above matrix indicates several available contract options,
the second index is used for showing the upper and lower level of risk of each alterna-
tive (upper risk level, lower risk level), and the third index is used to show the number
of alternatives.

The above matrix will indicate the risk levels of each alternative. Therefore, using the
statistical probability method (as shown below), the best alternative, which contains the
lowest risk domain, can be elected using the following formula:

• AI = [ . . . ]

The (Alternative Index) AI matrix shows the amount of 1/µ_i that is the index for
showing the mean of the total risk factor values of an alternative. Greater values of AI are
preferred. Afterwards, the best alternatives can be detected and represented.

3.5. Choosing an Alternative with the Lowest Risk Domain

After calculating the total value for risk factors as a domain (with upper and lower
limits) for each alternative, it is time to select the alternative with the lowest total risk factor.
However, choosing the best alternative in this research is not as easy as selecting the project
with the lowest value, because here the total risk values are not exact numbers and it is not
possible to easily select the minimum value.

To overcome such a problem, two main factors must be taken into account:

• Mean of the total risk factor domain (µi)
• The length of the total risk factor domain (di)

It is evident that an alternative with the lowest µi is more desired because the related
project achieved the lowest risk values (Figure 12). However, while the µi for two alter-
natives are the same, the project with a smaller di is preferred because, generally, it has a
lower risk than the other option (Figure 13).

Figure 12. The project with the lowest µi is preferred.

Figure 13. When µi is equal for two alternatives, the alternative with lower σi is preferred.

In order to develop statistical formulas (Equations (8)–(10)) for measuring the high
confidence level (99.7%), the normal distribution function is used. It is in line with the
central limit theorem, which was used in this research to gather data, and the mean of
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variables will follow the normal distribution function if the amount of gathered data is
more than 30. As a result, the following formulas based on statistical quality control of
normal distribution function will be developed:

Ui
∼= µi + 3σi (8)

Li
∼= µi − 3σi (9)

Ui − Li = 6σi (10)

The reason for considering 6σ for measuring distance between the upper limit and
lower limit is that control rules take advantage of the normal curve in which 99.73% of the
data will be within plus or minus three standard deviations from the average.

Therefore, the CV index ( 6σi
µi

) can be considered as an appropriate index for comparing
the total risk domains while the two alternatives have equal means (µi = µ′ i).

CV =
6σi
µi

(11)

In statistics, σi
µi

is usually used instead of the 6σi
µi

.
Therefore, all possible conditions must be taken into account.

(1) When two alternatives have different total risk factor means (µi 6= µj) and different
total risk factor domain lengths (di 6= dj), as shown in Figure 14.

1
µi
6= 1

µj
&

σi
µi
6=

σj

µj
(12)

AIi 6= AIj & CVi 6= CVj (13)

Figure 14. Possible condition one: different means and different domain lengths.

Result: the project with the lower µi will be selected (more significant = 1
µi

).

(2) When two alternatives have different total risk factor means (µi 6= µj) but equal total
risk factor domain lengths (di = dj), as shown in Figure 15.

1
µi
6= 1

µj
&

σi
µi

=
σj

µj
(14)

AIi 6= AIj & CVi = CVj (15)

Figure 15. Possible condition one: different means and similar domain length.
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Result: the project with the lower µi will be selected (more significant AI = 1
µ ).

(3) When two alternatives have equal total risk factor means (µi = µj) but different total
risk factor domains (di 6= dj), as shown in Figure 16.

1
µi

=
1
µj

&
σi
µi
6=

σj

µj
(16)

AIi = AIj & CVi 6= CVj (17)

Figure 16. Possible condition one: similar means and different domain lengths.

Result: the projects have the same AI; therefore, the project with the lower CV
is preferred.

(4) When two alternatives have equal total risk factor means (µi = µj) and equal total
risk factor domains (di = dj), as shown in Figure 17.

1
µi

=
1
µj

&
σi
µi

=
σj

µj
(18)

AIi = AIj & CVi = CVj (19)

Figure 17. Possible condition one: similar means and similar domain lengths.

Result: projects have the same AI and CV. Both alternatives can be chosen.

3.6. Advantages and Novelties of Using the Proposed Hybrid Evidence Theory and AHP

The proposed hybrid evidence theory and AHP is a promising method for minimizing
the uncertainty in project selection problems while negative factors such as job tardiness,
work in process, bottleneck machines, and over-allocated machines are taken into con-
sideration. In addition, compared to the mathematical modeling, the outcomes are more
understandable for project managers in real industries.

Compared to classic AHP, the proposed hybrid AHP and Dempster—Shafer the-
ory of evidence has many prominent features. Table 4 outlines the features of both
mentioned methods:
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Table 4. Comparing classic AHP to the proposed hybrid AHP and Dempster—Shafer theory of evidence.

Criteria AHP Hybrid AHP and Theory of Evidence

Uncertainty × X
Multi-Expert’s Opinion × X

Weight of Risks X X
Outcome Single Point Risk Domain

Speed of Solving Fast Moderate
Weight of Experts’ Opinions × X

3.7. Novelties and Innovation of the Proposed Method

In the following, to clarify the novelties of the proposed method, the most relevant
and recent similar methods that have used the evidence theory and AHP will be presented
and compared with the proposed method in this research (Table 5).

Table 5. The results of comparing the proposed method with similar methods in the literature.

The Proposed
Method

Su et al.
[8]

Chen and
Deng [61]

Ruan et al.
[9]

Simei et al.
[10]

X. Zhang et al.
[11]

Uncertainty X X X X X X

Scope Project
Selection

Human
Reliability
Analysis

Sustainable
Transportation

Underground
Mine Water

Inrush

Security Risk
Assessment

Supplier
Selection

Multi-
Phase/Single

Phase
Multi-Phase Single-Phase Single-Phase Single-Phase Single-Phase Single-Phase

Classify
Alternatives

with Machine
Learning
Method

Hybrid PCA-
Agglomerative

Method
× × × × ×

Grouped Risk
Factors X × X × × ×

Including Risk
Levels X X X X X X

Although some shreds of evidence showed the evidence theory and AHP were used
before for other problems, in this research a new version of evidence theory and AHP
is proposed to filter the unsuitable alternatives using an unsupervised machine learning
algorithm before selecting the best alternative. Moreover, the proposed algorithm is
designed to track and compare the level of each risk factor group in different phases of a
project, including before execution, during execution, and after finishing. Such an approach
will make a base for a project selection portfolio of a company.

4. Results and Discussion
4.1. Verifying the Proposed Algorithm (Solving Experiments Gathered from the Literature)

In this section, several case studies will be solved to verify the functionality of the
proposed algorithm in different ways conditions. For this purpose, an L2ˆ4 Taguchi method
is used to design experiments (DOE) using Minitab 18.0. The reason for choosing this type
is that a lower limit and an upper limit are considered (2ˆ4).

The experiments are designed to consider various conditions that potentially surround
a company while choosing the best project. To design the experiments, the following levels
for each factor of DOE are taken into account (Table 6).
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The case studies are designed in a way that various ranges of parameters is taken into
account. Therefore, the case studies are divided into three main categories used by many
researchers in the literature review [62].

Table 7 shows the case studies that the proposed algorithm must perform. As shown,
the domains of each of the case studies have been selected according to Table 7 to cover
each scale (small, medium, large, and very large) entirely.

Table 6. Experiments for verification section.

Factors L1: Small Scale L2: Medium Scale L3: Large Scale

Number of Risk Factors 1–3 4–5 6–13

Number of Experts 2–5 6–10 11–30

Number of Alternatives 1–3 4–5 6–13

Number of Contract
Options 1–2 2–3 4–5

Table 7. The Designed Case Studies (Taguchi L2ˆ4).

No. Scale Number of
Experts

Number of
Risk Factors

Number of
Alternatives

Number of
Contract Options

1

Sm
al

l

2 1 2 1

2 2 1 3 2

3 2 3 2 2

4 2 3 3 1

5 5 1 2 2

6 5 1 3 1

7 5 3 2 1

8 5 3 3 2

9

M
ed

iu
m

6 4 4 2

10 6 4 5 3

11 6 5 4 3

12 6 5 5 2

13 10 4 4 3

14 10 4 5 2

15 10 5 4 2

16 10 5 5 3

17

La
rg

e

11 6 6 4

18 11 6 10 5

19 11 13 6 5

20 11 13 10 5

21 30 6 6 5

22 30 6 10 4

23 30 13 6 5

24 30 13 10 5

In this section, each of the case studies will be solved by the proposed algorithm in
Matlab. The outcomes of the case studies are shown in Table 8.
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Table 8. Results of solving numerical experiments using the proposed hybrid AHP and theory of evidence algorithm.

No. Scale
Number

of
Experts

Number
of Risk
Factors

Number
of Alter-
natives

Number of
Contract
Options

Solving
Time

Best Al-
ternative

Best
Contract
Option

Minimum
Observed Risk

Domain
Observed

AI

1

Sm
al

l

2 1 2 1 0.036 1 1 [0.7622, 1.3121] 0.9642
2 2 1 3 2 0.041 2 2 [0.0447, 1.0356] 1.8514
3 2 3 2 2 0.054 2 1 [0.1675, 2.5457] 0.7371
4 2 3 3 1 0.041 2 1 [0.5039, 3.4899] 0.5008
5 5 1 2 2 0.037 2 1 [0.1605, 1.6070] 1.1315
6 5 1 3 1 0.047 3 1 [0.4416, 2.2646] 0.7391
7 5 3 2 1 0.039 1 1 [0.3602, 3.1599] 0.5682
8 5 3 3 2 0.054 2 2 [0.1753, 1.5428] 1.1641

9

M
ed

iu
m

6 4 4 2 0.034 4 1 [0.2607, 1.3144] 1.2698
10 6 4 5 3 0.084 5 1 [0.1204, 1.1896] 1.5267
11 6 5 4 3 0.088 1 3 [0.1021, 1.4210] 1.3353
12 6 5 5 2 0.049 3 1 [0.1982, 1.8828] 0.9610
13 10 4 4 3 0.044 3

4
3
3

[0.0331, 3.3072]
[0.0331, 3.3072]

0.5987
0.5987

14 10 4 5 2 0.033 1 2 [0.0585, 4.4972] 0.4390
15 10 5 4 2 0.039 3 2 [0.0652, 4.1237] 0.4775
16 10 5 5 3 0.082 1 3 [0.0464, 2.5759] 0.7627

17

La
rg

e

11 6 6 4 0.186 3 4 [0.0509, 1.3212] 1.4577
18 11 6 10 5 0.557 7 1 [0.0366, 1.1134] 1.7391
19 11 13 6 5 0.144 1 5 [0.0365, 1.2240] 1.5867
20 11 13 10 5 0.200 1

8
5
5

[0.0365, 1.2240]
[0.0365, 1.2240]

1.5867
1.5867

21 30 6 6 5 0.062 2 2 [0.0327, 1.2286] 1.5857
22 30 6 10 4 0.08 3 4 [0.0393, 1.5342] 1.2710
23 30 13 6 5 0.109 1 4 [0.0320, 1.2514] 1.5584
24 30 13 10 5 0.191 10

10
4
5

[0.0319, 1.2293]
[0.0319, 1.2293]

1.5858
1.5858

However, in order to see the steps of the proposed algorithm, in reality, case study
number two in Table 8 will be explained in detail.

4.2. Solving a Case Study and Explaining the Outcomes in Detail

In this section, the third case study in Table 8 will be explained in detail regarding the
mechanism of the algorithm functionality.

Suppose a company has to select the best option between the available two alternatives.
One is to set up a new production line, and the other is to set up a new laboratory, which
can also provide outdoor services.

• Number_of_alternatives = 2

There are two managers in this company that must determine which alternative is to
be carried out in the future. However, the quote of the company share for the first manager
is two times more than the other manager, and therefore his vote will value two times more
than the other.

• Number_of_experts = 2
• Weight_of_experts = [0.3, 0.7]

In order to choose the best option, managers decided to consider three risk factors:
financial, operational, and property. From the point of view of the manager at this time,
the financial risk factor is more important than the other factors, and the operational risk
factors are more important than the property risk factors. Therefore, they decided to set
the following values between the risk factors:

• Number_of_risks = 3
• Weight_of_risks = [0.5, 0.3, 0.2]

Regardless of the project title, the company has two options for financing it. One is
to pay the expenditures directly and the other is to obtain a bank loan. However, each
contract option will influence the level of the risks.

• Number_of_contract_options = 2
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Afterward, the managers are asked to fill out a questionnaire to set values about each
risk factor and their uncertainty about their solutions. The following matrix shows the first
three experts opinions (Table 9):

Table 9. Expert Opinion Total Matrix.

Expert_Total_Matrix
(Expert 1)

Expert_Total_Matrix
(Expert 2)

Expert_Total_Matrix
(Expert 3)

4, 3, 0.1 2, 4, 0.1 7, 8, 0.9
8, 8, 0.2 8, 8, 0.2 5, 5, 0.9

The following results are obtained after solving the case study using the proposed
hybrid AHP and theory of evidence.

Step (1) Calculating the “expected_value_for_risk” matrix using the opinions of the
experts (Table 10):

Table 10. Expected value for risks for the first risk.

Expected_Value_for_Risk 1 Expected_Value_for_Risk 2

3.6667 3.3000 1.2333 5.7333
1.1667 5.7667 1.6000 5.6000
3.6667 4.5000 0.8667 5.3333

The way for calculating the first element of the above matrix will be explained:
In order to calculate the above matrix, the lower and upper values for each risk factor

must be calculated. Therefore, using the “for” loop, the idea for each expert will be gained.
For example, for the first risk factor, the results will be as follows (Table 11):

Table 11. Upper and lower limit of expected value for risks.

The Lower Limit of Expected Value for Risk The Upper Limit of Expected Value for Risk

6.4000 0 0 4.5000 0 0

11.0000 0 0 9.9000 0 0

Using the same strategy, the rest of the elements of the “expected value for risk” will
be calculated (Table 12).

Table 12. Expected value for risks.

The Expected Value for Risk (:,:,1) The Expected Value for Risk (:,:,2)

3.6667 3.3000 1.2333 5.7333
1.1667 5.7667 1.6000 5.6000
3.6667 4.5000 0.8667 5.3333

Step (2) Continuing, the mean will be calculated for each of the risks in each contract
option (Table 13):
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Table 13. Risk associate matrix.

Risk Lower Risk Associate Matrix Upper Risk Associate Matrix

Risk 1 0.9000 0.5756
0.3364 0.2151

1.1111 2.9730
1.7374 4.6486

Risk 2 0.2023 0.2083
0.2775 0.2857

4.9429 3.6042
4.8000 3.5000

Risk 3 0.8148 0.6875
0.1926 0.1625

1.2273 5.1923
1.4545 6.1538

Step (3) Normalize the upper and lower risk factor values (Table 14):

Table 14. Normalized risk factor matrix.

Normalized_Upper_Risk_
Associate_Matrix

Normalized_Upper_Risk_
Associate_Matrix

10.3026 7.2952 1.2182 6.1086
10.0048 7.0843 1.4439 7.2398

Step (4) Calculating the average of the normalized risk matrix:
Then, using the following formulas, the average of the normalized lower and upper-

risk factors will be calculated (Table 15).

Table 15. Averaged normalized risk factor.

Risk Averaged Normalized Lower
Risk Associate Matrix

Averaged Normalized Upper
Risk Associate Matrix

Risk 1 0.1957
0.0732

2.3293
3.6422

Risk 2 0.0250
0.0343

8.7989
8.5446

Risk 3 0.1822
0.0431

3.6634
4.3418

Step (5) Calculating the total risk matrix:
The total lower and upper risk matrix will be calculated (Table 16).

Table 16. Total risk matrix.

Total Lower Risk Matrix Total Upper Risk Matrix

0.0979 0.0075 0.0364 1.1647 2.6397 0.7327
0.0366 0.0103 0.0086 1.8211 2.5634 0.8684

At this point, the total lower and upper values for each alternative (using a specific
contract option) are calculated. For example, while the first alternative is assumed to be
carried out by the second contract option, the total risk domain will be [0.0366, 1.8211].

Step (6): Calculating the AI matrix and choosing the best alternative:
Now, and in the last step, the alternative with the lowest risk point must be selected.

However, since the risk point is not an exact value but a domain, this means selecting
the project with the lowest risk domain. To solve this problem, two factors must be taken
into consideration:

• The mean of a risk factor domain (µi) where the index AI = 1
µi

is used for it as
described in Section 3.

• If two or more projects have the same µi, then the length of the risk factor domain
where σi is used for it (using the CV = σi

µi
formula) as described in Section 3.
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Therefore using the following formulas, the AI index will be calculated for each alternative.

Mu =

([
[2.3394, 2.6542],
[1.3566, 1.5035]

])

AI =
[(

[0.4275, 0.3768],
[0.7371, 0.6651]

)]
Then, the best option will be the alternative with the highest AI index value, which in

this case study is the second project when the first contract option is selected (0.7371).

• Best_alternative = 2
• Best_contract option = 1

4.3. Measuring the Performance of the Proposed Algorithm

In order to assess the performance of the proposed method, several indicators are
defined as shown below:

• The ability to solve all problem types
• The ability to choose projects with the lowest uncertainty
• The solving time
• Comparing the hybrid AHP and Dempster—Shafer theory of evidence with classic AHP

In addition, in the second part of this section, the outcomes of problems solved using
the hybrid AHP and Dempster—Shafer theory of evidence will be compared with classic
AHP to show the superiority of the proposed method in solving the problems while
uncertainty exists.

4.3.1. The Ability to Solve All Problem Types

The results of 24 experiments solved by the proposed hybrid method showed that
the algorithm could solve all experiments (100%) and show the best alternative with the
average of the lowest risk factors.

Validating.Index =
Number o f Solved Cases

Number o f Designed Cases
.100 =

24
24

.100 = 100% (20)

Therefore, the algorithm can be used in real project selection time by industries.

4.3.2. The Ability to Choose Projects with the Lowest Uncertainty

The outcomes of all solved case studies are revised again. In each case, the AI matrix
is presented in Table 17, and the lowest risk factor reported by the proposed algorithm is
double-checked. In all studied cases, the solving algorithm can find and report the project
with the lowest uncertainty (highest AI).

Reduced Risk Indicator =
(Max AI −Min AI)

Max AI
.100 (21)
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Table 17. The results of RRI% for studies while solved by the proposed method.

Row Reported AI Value
by the Algorithm RRI% Row Reported AI Value

by the Algorithm RRI%

1 0.9642 90.53% 13 0.5987 5.66%
2 1.8514 28.92% 14 0.4390 58.79%
3 0.7371 48.88% 15 0.4775 12.13%
4 0.5008 70.01% 16 0.7627 20.57%
5 1.1315 48.02% 17 1.4577 19.61%
6 0.7391 48.63% 18 1.7391 12.31%
7 0.5682 3.41% 19 1.5867 9.67%
8 1.1641 37.38% 20 1.5867 9.67%
9 1.2698 44.70% 21 1.5857 4.48%

10 1.5267 25.27% 22 1.2710 10.24%
11 1.3353 94.45% 23 1.5584 1.76%
12 0.9610 36.08% 24 1.5858 3.86%

Reduced risk indicator (RRI) shows how much percentage using the proposed algo-
rithm helps select the alternative with the lowest risk factor.

As shown in Figure 18, the algorithm can choose the alternative with the lowest risk
value in all cases.

Figure 18. The results of the RRI% index for the solved case studies.

As shown, the solving algorithm solved the small case studies in less than 0.055 s,
medium-scale cases in less than 0.09 s, and large-scale cases in less than 0.56 s (Figure 19).
These results are noticeable and mean that the algorithm can be used safely in actual practice.

Figure 19. The results of solving time for the studied cases.
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5. Conclusions and Recommendations

This research focused on the uncertainty in the industrial project selection problem. In
the real environment, several risk factors threaten the success of the project. However, such
risk factors are not constant and may take various values depending on the environment
of the project. Therefore, classic decision-making methods may fail to correctly report the
actual risk factors value and select the best project among the alternatives. In this research,
many risk factors that influence project success are extracted using the Delphi method. The
findings showed that the risks could be divided into four main risk clusters: Properties risk
factors; Technology and Operational risk factors; Financial risk factors; and Strategic risk
factors. In each of the risk factor clusters, several variables are defined. Each variable is
asked in three phases of a project: before selecting a project, during execution of the project,
and after completing the project.

The aim was to track the status of a variable in the life cycle of a project. After asking
the opinion of the responder for each question, their belief rate was also asked to clarify
the uncertainty of the risk factors. The statistical analysis is then carried out to specify the
statistical description of the variable, find out the correlations between the variables, and
determine their values in project success (as the dependent variable).

A new hybrid AHP and Dempster—Shafer theory of evidence is proposed, based on
the uncertainty level of the risk factors. The proposed method could determine the total
risk level range of each alternative, and then report the best alternative with the lowest
total risk level range. Next, a Taguchi Method (L2ˆ4) is designed for the experiments. The
proposed method is used to solve 24 experiments where the condition of the experiments
was different from one experiment to another.

The performance of the proposed algorithm is then evaluated using four indicators.
The proposed method could solve all small, medium, and large-scale experiments (validat-
ing index). Moreover, it could find and report the project with the lowest total risk range in
all cases. In order to check the performance of the proposed method in choosing projects
with the lowest total risk factor, the maximum and minimum risk factors for available alter-
natives of each case study are compared (reduced risk indicator). The outcomes showed
that the proposed hybrid method could select projects with the lowest total risk factor of up
to 90.53% for small-scale studied cases, up to 94.45% for medium-scale studied cases, and
up to 19.61% for large-scale studied cases. The proposed method solved the small-scale
problems in [0.036, 0.054] s, medium-scale problems in [0.033, 0.088] s, and large-scale
problems in [0.062, 0.557] s, depending on the nature of the project (processing time).

It is recommended to develop a Java application for the proposed method in this
research, which could be completed by computer science researchers or manufacturing
engineering researchers familiar with programming languages. It is also suggested to use
different MADAM methods such as VICOR and TOPSIS to compare the functionality of
the proposed method in this research with them.
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25. Kokangül, A.; Polat, U.; Dağsuyu, C. A new approximation for risk assessment using the AHP and Fine Kinney methodologies.

Saf. Sci. 2017, 91, 24–32. [CrossRef]
26. Yet, B.; Constantinou, A.; Fenton, N.; Neil, M.; Luedeling, E.; Shepherd, K. A Bayesian network framework for project cost, benefit

and risk analysis with an agricultural development case study. Expert Syst. Appl. 2016, 60, 141–155. [CrossRef]
27. Yang, Y.; Wang, J.; Wang, G.; Chen, Y.-W. Research and development project risk assessment using a belief rule-based system with

random subspaces. Knowl.-Based Syst. 2019, 178, 51–60. [CrossRef]
28. Ansarifar, J.; Tavakkoli-Moghaddam, R.; Akhavizadegan, F.; Amin, S.H. Multi-objective integrated planning and scheduling

model for operating rooms under uncertainty. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2018, 232, 930–948. [CrossRef]
29. Zhang, Y.; Fan, Z.-P. An optimization method for selecting project risk response strategies. Int. J. Proj. Manag. 2014, 32, 412–422.

[CrossRef]

http://doi.org/10.5267/j.ijiec.2015.7.004
http://doi.org/10.26794/2587-5671-2019-23-4-24-42
http://doi.org/10.5937/mmeb1902031D
http://doi.org/10.12709/mest.07.07.01.10
http://doi.org/10.1080/00207543.2014.919423
http://doi.org/10.1111/risa.12347
http://www.ncbi.nlm.nih.gov/pubmed/25847228
http://doi.org/10.1007/s10230-018-00575-0
http://doi.org/10.1177/0954405414551105
http://doi.org/10.1016/j.ijproman.2012.10.003
http://doi.org/10.1016/j.ijproman.2013.05.009
http://doi.org/10.1016/j.aap.2013.02.019
http://www.ncbi.nlm.nih.gov/pubmed/23499984
http://doi.org/10.1016/j.net.2014.12.019
http://doi.org/10.1109/TEM.2015.2404935
http://doi.org/10.1061/(ASCE)CO.1943-7862.0000980
http://doi.org/10.1061/(ASCE)CO.1943-7862.0000981
http://doi.org/10.1016/j.aei.2017.06.001
http://doi.org/10.3846/13923730.2017.1281842
http://doi.org/10.1177/875697281704800405
http://doi.org/10.1007/s40685-015-0022-3
http://doi.org/10.1016/j.ijproman.2016.07.004
http://doi.org/10.1016/j.ijpe.2015.03.017
http://doi.org/10.1016/j.ssci.2016.07.015
http://doi.org/10.1016/j.eswa.2016.05.005
http://doi.org/10.1016/j.knosys.2019.04.017
http://doi.org/10.1177/0954411918794721
http://doi.org/10.1016/j.ijproman.2013.06.006


Mathematics 2021, 9, 3225 29 of 30

30. Kliestik, T.; Belas, J.; Valaskova, K.; Nica, E.; Durana, P. Earnings management in V4 countries: The evidence of earnings
smoothing and inflating. Econ. Res.-Ekon. Istraž. 2021, 34, 1452–1470. [CrossRef]

31. Abd El-Karim, M.S.B.A.; Mosa El Nawawy, O.A.; Abdel-Alim, A.M. Identification and assessment of risk factors affecting
construction projects. HBRC J. 2017, 13, 202–216. [CrossRef]

32. Liu, J.; Jin, F.; Xie, Q.; Skitmore, M. Improving risk assessment in financial feasibility of international engineering projects: A risk
driver perspective. Int. J. Proj. Manag. 2017, 35, 204–211. [CrossRef]

33. Delgoshaei, A.; Ariffin, M.K.A.M.; Baharudin, B.T.H.T. Pre-emptive resource-constrained multimode project scheduling using
genetic algorithm: A dynamic forward approach. J. Ind. Eng. Manag. 2016, 9, 732–785. [CrossRef]

34. Bowers, J.; Khorakian, A. Integrating risk management in the innovation project. Eur. J. Innov. Manag. 2014, 17, 25–40. [CrossRef]
35. Brustbauer, J. Enterprise risk management in SMEs: Towards a structural model. Int. Small Bus. J. Res. Entrep. 2014, 34, 70–85.

[CrossRef]
36. Fang, C.; Marle, F.; Xie, M. Applying Importance Measures to Risk Analysis in Engineering Project Using a Risk Network Model.

IEEE Syst. J. 2017, 11, 1548–1556. [CrossRef]
37. Tao, S.; Wu, C.; Sheng, Z.; Wang, X. Space-Time Repetitive Project Scheduling Considering Location and Congestion. J. Comput.

Civ. Eng. 2018, 32, 04018017. [CrossRef]
38. Gutjahr, W. Bi-Objective Multi-Mode Project Scheduling Under Risk Aversion. Eur. J. Oper. Res. 2015, 246, 421–434. [CrossRef]
39. Wu, D.D.; Chen, S.-H.; Olson, D.L. Business intelligence in risk management: Some recent progresses. Inf. Sci. 2014, 256, 1–7.

[CrossRef]
40. Dziadosz, A.; Rejment, M. Risk Analysis in Construction Project—Chosen Methods. Procedia Eng. 2015, 122, 258–265. [CrossRef]
41. Davari, M.; Demeulemeester, E. The proactive and reactive resource-constrained project scheduling problem. J. Sched. 2019, 22,

211–237. [CrossRef]
42. Grabovy, P.; Orlov, A. The Overall Risk Assessment and Management: Implementation of Foreign Investment Construction

Megaprojects by Russian Development Companies. Procedia Eng. 2016, 153, 195–202. [CrossRef]
43. Nasrabadi, M.; Mirzazadeh, A. The inventory system management under uncertain conditions and time value of money. Int. J.

Supply Oper. Manag. 2016, 3, 1192–1214.
44. Zadeh, L.A. A simple view of the Dempster—Shafer theory of evidence and its implication for the rule of combination. AI Mag.

1986, 7, 85.
45. Tang, H. A novel fuzzy soft set approach in decision making based on grey relational analysis and Dempster—Shafer theory of

evidence. Appl. Soft Comput. 2015, 31, 317–325. [CrossRef]
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