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Abstract: Huntington’s disease (HD) is a lethal neurodegenerative disorder without efficient thera-
peutic options. The inefficient translation from preclinical and clinical research into clinical use is
mainly attributed to the lack of (i) understanding of disease initiation, progression, and involved
molecular mechanisms; (ii) knowledge of the possible HD target space and general data awareness;
(iii) detailed characterizations of available disease models; (iv) better suitable models; and (v) reliable
and sensitive biomarkers. To generate robust HD-like symptoms in a mouse model, the neomycin re-
sistance cassette was excised from zQ175 mice, generating a new line: zQ175∆neo. We entirely describe
the dynamics of behavioral, neuropathological, and immunohistological changes from 15–57 weeks
of age. Specifically, zQ175∆neo mice showed early astrogliosis from 15 weeks; growth retardation,
body weight loss, and anxiety-like behaviors from 29 weeks; motor deficits and reduced muscular
strength from 36 weeks; and finally slight microgliosis at 57 weeks of age. Additionally, we collected
the entire bioactivity network of small-molecule HD modulators in a multitarget dataset (HD_MDS).
Hereby, we uncovered 358 unique compounds addressing over 80 different pharmacological targets
and pathways. Our data will support future drug discovery approaches and may serve as useful
assessment platform for drug discovery and development against HD.

Keywords: Huntington’s disease; neurodegeneration; therapy; drug discovery; drug design; ABC
transporters; ABCA7; ABCB1; ABCC1; polypharmacology

1. Introduction
1.1. HD Pathogenesis

HD is one of the most common inherited, autosomal-dominant neurodegenerative
diseases [1]. The clinical symptoms of HD include progressive involuntary movements
(chorea major), increasing cognitive impairment, and variable psychiatric disturbances [2].
The extreme intensive nursing and home care requirements for HD patients exhibit a
significant socioeconomic burden with unmet medical needs. The disease is caused by
the expansion of polyglutamine (polyQ) encoded by a CAG repeat region in exon 1 of
the huntingtin gene (HTT) [1,3]. Under normal physiological conditions, the number of
CAG repeats lies between 16 and 35 [2]. People who have 36 and more CAG repeats
usually develop HD during their natural lifespan [2]. More than 60 CAG repeats in the HTT
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gene can lead to a juvenile onset of HD [4]. Clinical studies of HD patients demonstrated
a strong correlation between the CAG repeat length and disease severity, as well as an
inverse correlation with respect to age of HD onset [2,5]. HD is fatal, affecting approximately
13.7 per 100,000 individuals in the European and 5.7 per 100,000 in the North American
populations [6,7]. HD onset is most frequently observed between the 4th and 5th decades of
life, and the lifespan of HD patients is significantly shortened with death occurring usually
10–25 years after the first onset of HD symptoms [7,8].

From a neuropathological perspective, HD is characterized by a selective loss of striatal
medium spiny neurons (MSNs) and a forebrain atrophy across main brain structures [9].
The excessive CAG repeats result in a misfolded huntingtin protein (HTT) and conforma-
tional alterations, leading to the formation of cellular inclusions, further influencing major
cellular processes involving various cell types in the brain [10]. This is ultimately followed
by neurodegeneration primarily in the regions of the striatum and cerebral cortex [2]. HTT,
a 350 kDa protein with a polyQ domain in its N-terminal region, is abundantly expressed
in the cytoplasm. It is a highly conserved protein responsible for several biological func-
tions, such as vesicular trafficking, cellular metabolism, as well as gene transcription and
translation [11–13].

1.2. Current HD Therapy

To date, only two drugs have been approved specifically to treat HD, tetrabenazine and
deutetrabenazine [14]. Moreover, many already approved drugs, such as anticholinergics,
antidepressants, and antipsychotics are repurposed and used off-label to target specific
HD symptoms [14–19]. These drugs focus on cerebral neurotransmitter systems, as for
example, receptors of dopamine (DRs), serotonin (5-hydroxy tryptamine; 5HTRs), or N-
methyl-D-aspartic acid (NMDARs) which are shared amongst other neurological disorders.
However, no causative, disease-modifying treatment is to this date available to stop, slow
down, or reverse the disease progression or even delay HD onset [6]. Several promising
target structures apart from HTT have been identified to potentially be involved in the
HD pathogenesis, including cysteine aspartases (caspases, CASPs) [2,14,15,17,20–26], heat
shock proteins (HSPs) [2,22,27–34], histone deacetylases (HDACs) [2,14,15,17,20], phos-
phodiesterases (PDEs) [14,15,17,31,35,36], or sigma-receptors (σRs) [14,15,35,37], amongst
several others. Many interesting drug candidates were discovered targeting these and
other cerebral targets, however, the reason for their positive effect on in vitro or in vivo HD
models remains unclear, and the mechanisms of action toward their primary targets still
need to be elucidated [38,39]. We identified five aspects which may explain the insufficient
translation of promising drug candidates into clinical success: (i) the cellular and molecular
complexity of HD pathogenesis and the exact molecular mechanisms involved; (ii) the
in large parts hidden bioactivity network of potential HD drug targets, interacting small
molecules, as well as their bioactivities and modes of action; (iii) the inadequate description
of existing disease models with regard to disease time course and symptom-related, molec-
ular characterizations; (iv) the shortcoming in the development of better suitable disease
models; and (v) a lack of reliable and sensitive biomarkers of HD onset and progression
besides CAG-expansion diagnostics.

1.3. Previously Used HD Mouse Models

A reliable and in detail characterized HD animal model that recapitulates the neu-
ropathological features of human HD and its molecular markers is imperative for develop-
ing preclinical, disease-modifying treatments. Numerous gene-modified mouse models
of HD have been established since the first identification of the mutation in 1993 [40].
Transgenic and knock-in (KI) rodent models are mostly used to provide insight into the
disease mechanisms, therapeutic target identification and validation, as well as therapeutic
discovery and development [41]. Transgenic HD mice such as BACHD and YAC128 were
generated by introducing the full-length mutant human HTT gene. These mice show a
steadier progression of HD phenotypes [42,43]. However, these models are not optimal
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for investigating the metabolic changes during HD progression, such as body weight loss,
which is a key clinical hallmark of HD. KI models have the expanded CAG repeats inserted
into the mouse Huntington’s disease gene homolog locus (Hdh, Htt) and can be heterozy-
gous or homozygous for the repeat modification [42]. Considering that homozygosity is a
relatively rare condition in humans, heterozygous KI mouse models mimicking the human
genetic mutation causing HD are currently most preferred for preclinical research [44].
However, most KI mouse models like HdhQ150 exhibit rather mild and slow behavioral
and histopathological phenotypes, despite the extensive CAG expansion, compared to
other transgenic mice.

1.4. zQ175 Mice and Novel HD Mice

The C57BL/6JQ175KI (zQ175) mice, which originally derived from a spontaneous
expansion of the CAG repeat length in the murine CAG 140 KI line, is of interest as it is
the first KI mouse model to exhibit relatively robust HD phenotypes in the heterozygous
form [45]. HD-related features were observed in both heterozygous and homozygous
zQ175 mice, such as decreased body weight, motor deficits, brain atrophy, disrupted
brain metabolites [45,46], and loss of MSNs in the caudate-putamen. Specifically, widely
distributed mutant HTT (muHTT) aggregates were detected in distinct brain regions
of the caudate-putamen (CP; murine analog of the human striatum) and cortex during
disease progression. In addition, striatal MSN marker proteins, postsynaptic markers,
and complement activation markers were conspicuously altered at different time points in
zQ175 mice [44,45].

During the creation of the zQ175 mice, a strategy was used introducing a floxed
neomycin (neo) selection cassette located approximately 1.3kb upstream of the Htt gene
locus [45]. However, the presence of this neo cassette leads to alterations in the muHTT
transgene expression and metabolism [44,47]. In an effort to eliminate the interference of
the neo cassette toward the human muHTT insertion in exon 1 and to increase the toxicity
of muHTT in this mouse model, the neo cassette has previously been removed from the
Q175F model (FVB/N background) resulting in a more severe progression of the disease
(Q175DFN) [48]. Here, we have generated and characterized another model in the C57BL/6J
background, zQ175∆neo (Figure 1), by crossing the former zQ175 (C57BL/6JQ175KI) line to
JAX stock #006054, containing a ubiquitously expressed cre-gene, also expressed in germ
lines [49].
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Figure 1. Schematic representation of the generation of the zQ175∆neo mouse line (C57BL/6J back-
ground). The floxed neomycin (neo) resistance cassette including its promoter (Pgk-1) were initially
used to select for the detection of the mutated HTT exon 1 insert at the XmnI site of the Htt locus.
neo and Pgk-1 were excised between the loxP sites using a ubiquitous cre-driver mouse line where
cre is expressed under the CMV promoter. The resulting locus still includes one remaining loxP
site (and some bases of the initial construct which was inserted in a neighboring HindIII site) 1.3kb
downstream of the Htt exon 1.
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To date, there has been a limited number of reports using zQ175-(C57BL/6J background)-
related mice in behavioral and therapeutic validation studies [50–58]. A previous characteri-
zation study of Q175F mice (FVB/N background) revealed that these mice display an earlier
and more robust phenotype with sudden death due to fatal seizures than the zQ175 line [48].
It remains to be tested if the early and enhanced HD-like neuropathological phenotypes
are also apparent in zQ175∆neo mice, as mice with C57BL/6J background are generally
less susceptible to neurodegeneration compared to mice in the FVB/N background [59].
Our study aimed to provide a detailed neuropathological evaluation to directly compare
the time-course of behavioral and neuropathological features in zQ175∆neo mice, thus,
establishing a novel in vivo assessment platform. To translate these findings into novel
drug development, we additionally provide a complementary dataset of HD-targeting
agents (HD_MDS) which serves as in silico assessment platform. Taken together, our novel
HD assessment platform provides the necessary resources to promote novel therapeutic
and diagnostic design, discovery, and development.

2. Results
2.1. Development, Characterization, and Establishment of a Novel HD Mouse Model

In order to increase the toxicity of muHTT and to enhance the phenotype of zQ175
mice (C57BL/6J background), we crossed the zQ175 strain with CMV-cre mice to remove the
neo cassette, which otherwise potentially interferes, and subsequently, resists the inserted-
transgene expression, which could further hamper a successful mouse model [60]. The
resulting zQ175∆neo line was characterized as follows:

2.1.1. Body Weight and Food Consumption Analysis

We conducted a long-term characterization of male and female heterozygous zQ175∆neo

mice. From the age of 15 weeks (~4 months) to 57 weeks (~13 months), we compared
different clinically relevant parameters including body weight, food consumption, motor
performance, neuropsychiatric function, as well as histological and molecular features to
wild-type (WT) littermates.

Progressive body weight loss is a significant feature in human HD and it has been
reported that the original zQ175 mice as well as other HD mouse models showed a steady
body weight loss over their lifespan [48,61,62]. To investigate the weight characteristics
in our newly generated zQ175∆neo mice as an easy-to-assess biomarker, the body weight
was measured on a weekly basis. Male zQ175∆neo mice showed a significant difference of
body weight starting at 29 weeks of age. However, the gain of body weight already slowed
down at 22 weeks of age, compared to WT littermates (Figure 2A). Female zQ175∆neo also
exhibited a significantly reduced body weight as compared to WT littermates, albeit with a
slightly later onset (at 32 weeks of age) compared to their male littermates (Figure 2B). We
photographed male (Figure 2C,D) and female (Figure 2E,F) 15-week-old (Figure 2C,E) and
57-week-old zQ175∆neo mice (Figure 2D,F). Comparing their body appearance underpins
the significant size difference observed in 57-week-old zQ175∆neo mice as compared to
healthy, age-matched WT littermates.
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lowing problems and they are more likely to choke, resulting in lower body mass index 
than healthy individuals [64]. In order to assess the aspect of HD-related body weight loss 

Figure 2. The zQ175∆neo mice display a significantly reduced weight gain in the first weeks compared
to WT littermates. Later on, increasing weight loss is appreciable. (A,B) The body weight of male
(A) and female (B) WT (#) and zQ175∆neo mice (•) was measured weekly from 15 to 57 weeks of
age. Data are presented as mean ± standard deviation (SD); N = 6. Significance was calculated using
multiple unpaired t-tests followed by Holm-Šídák correction and is indicated as ns: not significant,
*: p ≤ 0.05, and **: p ≤ 0.01. (C–F) Representative images showing a direct comparison of 15-week-old
(C,E) and 57-week-old (D,B) male (C,D) and female (E,F) WT (left) and zQ175∆neo (right) mice.
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In general, multiple factors affect body weight loss making it a complicated metabolic
topic in the context of HD [61,62]. However, clinical cases demonstrated that body weight
loss is not necessarily the results of the disease itself but rather an insidious consequence of a
generally reduced metabolism [63]. Clinically, HD patients usually suffer from swallowing
problems and they are more likely to choke, resulting in lower body mass index than
healthy individuals [64]. In order to assess the aspect of HD-related body weight loss in
zQ175∆neo mice, we also measured the food consumption on a weekly basis. Interestingly,
both male and female zQ175∆neo mice consumed significantly less food as compared to
their sex-matched WT littermates (Figure 3A,B).
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Figure 3. Male (A) and female (B) zQ175∆neo mice (•) consumed significantly less food compared
to WT littermates (#) in the period between 15 and 57 weeks of age. Data are presented as daily
consumption per mouse, established from six animals/cage/week. Significance was calculated using
paired t-tests and is given as ***: p ≤ 0.001, and ****: p ≤ 0.0001.

Normal body weight gain and body weight maintenance over time depends on
continued sufficient caloric diet and normal physical activity, as well as on the effects of
several anabolic functioning hormones and normal hypothalamic function. Hormonal
imbalance and impaired hypothalamic function were suggested to contribute to the HD
pathogenesis [65,66].

2.1.2. Testicular Atrophy

Another pathological hallmark of HD is testicular atrophy, which has been observed
in male HD patients and male mice [48,67,68]. Thus, we collected testes from male het-
erozygous zQ175∆neo mice at all experimental time points. Strikingly, significant testicular
atrophy was demonstrated from 36 weeks of age (starting at 29 weeks of age at sub-
significant levels), as seen by testicular weight loss in zQ175∆neo mice as compared to their
WT littermates (Figure 4A). The reduction exceeded 50% of testis weight from 50 weeks of
age. Figure 4B shows a representative photograph taken at 57 weeks of age.
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Figure 4. Male zQ175∆neo mice had significantly smaller testicles compared to WT littermates.
Testicles of WT and zQ175∆neo mice were collected at 7-week intervals and weighed freshly right
after perfusion. (A) Testicles’ weight was measured between 15 and 57 weeks of age of male WT (#)
and zQ175∆neo (•) mice. Data are presented as mean ± SD; N = 6. Significance was calculated using
Mann–Whitney test with Bonferroni-Dunn’s multiple comparisons test and is given as *: p ≤ 0.1,
**: p ≤ 0.01 and ***: p ≤ 0.001. (B) Representative image showing a direct comparison of testicles of
57-week-old WT (left) and zQ175∆neo (right). The scale bar indicates 2 mm. (C–F) Representative
images of H&E-stained sagittal testicular sections; overview (C,E; the scale bar indicates 500 µm)
and close-up (D,F; the scale bar indicates 50 µm) of testicular seminiferous tubes in WT (C,D) and
zQ175∆neo mice (E,F) at 57 weeks of age. (G) Western blot analysis of muHTT [polyQ (pQ) antibody,
>>250 kDa] in testicles of zQ175∆neo mice 15–57 weeks of age. muHTT accumulates with increasing
age (15–43 weeks) and then declines (50–57 weeks). Highly atrophic, 57-week-old (57w) testis have
strongly reduced muHTT. The polyQ antibody (clone MW1) also detects N-terminal Htt fragments.
Loading control: tub—β-tubulin, 55 kDa.
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Although HD is considered a dysfunction of the CNS and muHTT protein is mainly
expressed in the brain, muHTT expression has been detected in the testicles before [48,67].
In fact, human brain and testes share a surprising number of molecular characteristics [e.g.,
prion (PRP, CD230) and doppel (DPL, PRND) protein expression] and highest common
proteins amongst other organs [69]. Thus, we morphologically analyzed the testicles of
male zQ175∆neo mice compared to their WT littermates. The analyses revealed a striking
massive degeneration of seminiferous tubes in zQ175∆neo mice (Figure 4C–F), and Western
blot analysis of muHTT protein demonstrated increased muHTT concentrations over the
time period between 15 and 50 weeks (Figure 2G). Testicular atrophy can be caused by
different effects: (i) cellular and/or tubular atrophy; (ii) dysfunction of Leydig cells and/or
Sertoli cells; (iii) pituitary dysfunction; and (iv) hypothalamic dysfunction. This suggests
again hypothalamic dysfunction contributing to HD pathogenesis.

2.1.3. Motoric and Behavioral Changes

Chorea major and other motoric dysfunctions are key features and clinical hallmarks of
HD that define the severity of HD [1]. These features have been determined in several HD
mouse models before [45,46,70]. To evaluate the motoric impairments and other muscle-
related deficits in our model, we conducted accelerating rotarod, wire hang, and pole
performance tests at 7-week intervals between 15 and 57 weeks of age.

Both male and female zQ175∆neo mice displayed a significant decline of their motoric
performances in the accelerating rotarod test after 29 weeks of age as measured by decreased
time spent on the apparatus before falling (Figure 5A,B). After symptom onset, the rotarod
performance declined further over the time course of our experiments. Of note, we observed
the decline of rotarod performance consistently on all three days of the test protocol at any
week of age (Figure S1).
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Figure 5. zQ175∆neo mice exhibited robust, progressive motor abnormalities compared to WT mice.
The motor performance of male (A,C,E) and female (B,D,F) WT (#) and zQ175∆neo mice (•) was
assessed at 7-week intervals by performing accelerating rotarod (A,B), wire hang (C,D), and pole
(E,F) performance tests. Data are presented as mean ± SD; N = 4–6. Significance was calculated using
two-way ANOVA with Bonferroni’s multiple comparisons test and is given as *: p ≤ 0.05, **: p ≤ 0.01,
***: p ≤ 0.001, and ****: p ≤ 0.0001.

The wire hang test revealed a similar pattern of reduced forelimb strength of zQ175∆neo

compared to their WT littermates. By the age of 36 weeks, both male and female zQ175∆neo

mice fell significantly earlier from the wire than their WT littermates (Figure 5C,D). This
deficit progressively worsened while the WT mice were stable over the time course between
15 and 57 weeks of age.

Lastly, we used the pole test to assess the basal ganglia-related motor function. We
found that male and female zQ175∆neo mice showed normal performance before 29 weeks
of age but required significantly more time to turn on top of the pole and subsequently
descend it by the age of 43 and 36 weeks, respectively (Figure 5E,F).

Neuropsychiatric symptoms like depression, anxiety, and apathy are common features
of HD and they normally manifest prior to motoric deficits [51,71]. Similarly, cognitive
decline is a key hallmark of HD that may precede the onset of motor symptoms in HD
patients [71]. Thus, we evaluated the behavior of zQ175∆neo mice compared to their WT
littermates. Anxiety-like exploratory behaviors were determined by the open field test, in
which the main measure is the time spent in the center of an open area. In addition, we
assessed other parameters, as total travelled distance and mobility rate as indicators of the
general locomotor exploratory activity.

We observed that male and female zQ175∆neo mice started to spend less time in the
center starting at 29 and 36 weeks of age, respectively (Figure 6A,B). In contrast, we did
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not observe differences in general exploratory behavior as we found no differences in the
total travelled distance and the general mobility rate during the trial period of 10 min
(Figure 6C–F). In essence, our results suggest the presence of neuropsychiatric features in
zQ175∆neo mice that are found in clinical HD.
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Figure 6. zQ175∆neo mice displayed anxiety-like behavior. The explorative behavior of male (A,C,E)
and female (B,D,F) WT (#) and zQ175∆neo mice (•) was evaluated with the open field test assessing
the time spent in the center (A,B), travelled distance (C,D), as well as mean mobility (E,F). Data
are presented as mean ± SD; N = 4–6. Significance was calculated using two-way ANOVA with
Bonferroni’s multiple comparisons test and is given as *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, and
****: p ≤ 0.0001.

2.1.4. Atrophy of Brain Regions

Cerebral cortex and striatum are the most vulnerable and affected regions in brains of
HD patients [1]. Moreover, atrophy of CP and hemispheres have also been described as
neurodegenerative markers in zQ175 mice [46,72]. We measured the area of the CP and
the total hemisphere at 7-week intervals in H&E-stained brain sections, +0.8 and −1.8 mm
relative to bregma, of mice from 15 to 57 weeks of age. Representative images are presented
in Figure 7A,B. The CP areas of both males and females started to appear significantly
reduced in zQ175∆neo mice at 36 and 43 weeks of age, respectively, compared to those
from WT mice (Figure 7C,D). However, the total hemispheric area was not significantly
different in males and females until 50 and 57 weeks of age, respectively, compared to WT
littermates (Figure 7E,F). Our results indicate a specific loss of neuronal tissue in the CP as
a prominent feature of heterozygous zQ175∆neo mice.
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Figure 7. Caudate-putamen (CP) and total hemispheric atrophy were observed in adult zQ175∆neo

mice compared to WT littermates. (A,B) Representative images of H&E-stained coronal brain sections
from 57-week-old female WT and zQ175∆neo mice at (A) +0.8 mm and (B) −1.80 mm distance from
bregma. Dashed lines indicate the measured area of (A) CP and (B) total hemisphere. The scale bars
indicate 1000 µm. (C–F) Male (C,E) and female (D,F) zQ175∆neo mice (•) show a reduction of the
CP area (C,D) and the total hemisphere (E,F) compared to WT littermates (#). Data are presented
as mean ± SD; N = 2–6. Significance was calculated using unpaired t-test followed by Holm-Šídák
correction and is given as *: p ≤ 0.05, and **: p ≤ 0.01.

2.1.5. Neuroinflammatory/Glial Reaction

A neuroinflammatory reaction, or simply ‘reactive gliosis’ of astrocytes and microglia,
is a common hallmark of neurodegenerative diseases including HD [73,74]. Moreover,
we have detected location-specific astrogliosis as the important feature in a mouse model
mimicking the preclinical stage of sporadic AD [75]. To investigate its presence in our HD
mouse model, we performed post mortem, quantitative immunohistological analyses of
the CP and the cerebral cortex.

Astrocytes

First, we stained coronal brain sections against the glial fibrillary acidic protein (GFAP),
a marker for astrocytes. Representative images are shown in Figure 8A–D. GFAP+ astrocytes
were detected in specific regions of the whole slide images using a specific deep-learning al-
gorithm as described previously [76,77]. The number of reactive GFAP+ astrocytes increased
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over time in zQ175∆neo mice in the CP (Figure 8E,F) and cerebral cortex (Figure 8G,H), but
not in WT littermates. This increase resulted in a significant increase in the CP at 36 or
43 weeks of age, comparing male and female zQ175∆neo mice, respectively, to their WT
littermates (Figure 8E,F). However, the increase of GFAP+ astrocytes in the cortex was
detected already at the first time point analyzed (15 weeks, Figure 8G,H). Summarizing,
our results show the robust presence of early reactive astrogliosis and indicate that the
first abnormal processes in the brain must have started before the age of 15 weeks in the
zQ175∆neo model.

Microglia

Different glial cells are affected and are important contributors to the pathology of
HD [78]. Therefore, we further characterized the macrophage-related, neuroinflammatory
component of the model by investigating microgliosis in the zQ175∆neo mice. We stained
coronal mouse brain sections against ionized calcium-binding adaptor molecule 1 (IBA1)
and quantified IBA1+ cells with our previously published deep-learning algorithm [76,77].
Representative images are shown in Figure 9A–D. While cortical astrogliosis presented as
early as 15 weeks of age (Figure 8), we found the number of microglia in CP and CTX to be
similar comparing both male and female zQ175∆neo mice to their respective WT littermates
(Figure 9E–H). Only at the latest time point, at 57 weeks of age, zQ175∆neo mice had a
significant increase in the number of IBA1+ microglia across both sexes and regions.
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Figure 8. Reactive astrogliosis was observed in the caudate-putamen (CP) from 36 or 43 weeks of age,
respectively, and cerebral cortex (CTX) already from 15 weeks of age of zQ175∆neo mice compared
to WT littermates. (A–D) Coronal brain sections from 57-week-old WT and zQ175∆neo mice were
immunohistologically stained for GFAP. GFAP+ astrocytes were detected using a deep-learning
algorithm. Representative images of the GFAP-stained CP (A,B) and CTX (C,D) of 57-week-old
female WT (A,C) and zQ175∆neo mice (B,D). The scale bars indicate 50 µm. Male (E,G) and female
(F,H) zQ175∆neo mice (•) showed an increase of GFAP+ astrocytes compared to WT littermates (#) in
both CP (E,F) and CTX (G,H). Data are presented as mean ± SD; N = 5–6. Significance was calculated
using two-way ANOVA with Bonferroni’s multiple comparisons test and is given as *: p ≤ 0.05,
**: p ≤ 0.01, ***: p ≤ 0.001, and ****: p ≤ 0.0001.
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Figure 9. Slight microgliosis was only observed in the caudate-putamen (CP) and cortex (CTX) of
zQ175∆neo mice at 57 weeks of age compared to WT littermates. (A–D) Coronal brain sections from
57-week-old WT and zQ175∆neo mice were immunohistologically stained against IBA1. Represen-
tative images of the IBA1-stained CP (A,B) and CTX (C,D) of a 57-week-old female WT (A,C) and
a zQ175∆neo mouse (B,D). The scale bars indicate 50 µm. Male (E,G) and female (F,H) zQ175∆neo

mice (•) show a significant increase of IBA1-positive microglia as compared to WT littermates (#) in
both CP (E,F) and CTX (G,H) earliest at 57 weeks of age. Data are presented as mean ± SD; N = 5–6.
Significance was calculated using two-way ANOVA with Bonferroni’s multiple comparisons test and
is given as *: p ≤ 0.05.

2.2. Charting the Bioactivity Network of Known HD-Targeting Agents
2.2.1. Compilation of the Huntingtin’s Disease Multitarget Dataset (HD_MDS)

Rodent disease models and their detailed characterization for several morphological
and molecular features over a long period is highly important for the development of
new treatment. However, data awareness in terms of pharmacological HD drug targets
and potential agents is also crucial for novel drug discovery, design, and development. In
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fact, the target landscape with respect to HD is rich and diverse, which leaves much space
for rational drug design approaches [2,14,15,17,20–22,27,35,79]. Many compounds with
affinities to one or several of these targets have also been identified. However, there exists
no useful database or dataset that correlates the molecular structures of these bioactive
molecules to their HD drug targets. Such a database would strongly support both an un-
derstanding of interconnected molecular mechanisms in HD pathogenesis and the design
of a new generation of bioactive agents against this neurodegenerative disease. Thus, we
were prompted to summarize the entirety of small-molecules addressing pharmacologi-
cal targets associated with HD in a ‘multitarget dataset’ (HD_MDS; Figure 10, Table S1)
akin to our previously published ABC_BPMDS [80]. The HD_MDS was accomplished by
a data mining approach using the database of the National Center for Biotechnological
Information (NCBI) searching for qualified reports applying the key words ‘small-molecule’
and ‘Huntington’s’. The respective qualified reports were also investigated for qualified
references. Qualified compounds were listed if they (i) showed positive effects in in vitro
HD models; (ii) demonstrated positive outcomes in in vivo HD models; (iii) have been as-
sessed in clinical trials or case studies with participation of human HD patients; or (iv) were
designed for diagnostic purposes (e.g., development of PET tracers [54,55,57,81–83]) Molec-
ular structures of compounds were retrieved either from the PubChem database or were
manually drawn in ChemDraw using provided molecular structure templates from the
respective reports.
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Figure 10. Schematic representation of the establishment of the Huntington’s Disease Multitarget
Dataset (HD_MDS, Supplementary Material Table S1).

In total, we identified 358 unique HD-targeting small molecules. These molecules
are described with (i) an unique identifier (HD_MDS_ID); (ii) original compound name
according to the original report(s) including alternative name if applicable; (iii) systematic
compound name according to the IUPAC nomenclature; (iv) chemical formula; (v) SMILES
code; (vi) compound categorization [(a) pharmaceutical drug/diagnostic; (b) drug-like
compound/chemical substance; (c) nutrient/metabolite]; and (vii) chemical class including
basic scaffolds (e.g., pyridine, quinazoline, etc.). Particularly the given chemical classes
(e.g., aromatic and heterocyclic substructures or other pronounced substructural elements)
will facilitate an optimized search for desired compound classes.

Additionally, determinants that conserve physicochemical features of these bioactive
molecules were included, particularly the calculated octanol/water partition coefficient
(CLogP), molecular weight (MW), molar refractivity (MR), or the topological polar surface
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area (TPSA) [80,84]. These parameters were calculated for each compound using the web
service SwissADME [85]. Cerebral penetration is key for effective treatment of neurode-
generative disorders such as HD, and these pharmacokinetic determinants have already
been identified to crucially establish a correlation between molecular structure of drugs
and their interaction with cerebral drug targets [80,84].

The HD_MDS is freely available as Excel-table on the ‘ABCHD’ project resources
web page https://doi.org/10.17605/OSF.IO/EJVWY and the www.panabc.info web page
(‘Version_1’). Subsequently, it will be complemented and improved to support further drug
discovery approaches.

2.2.2. HD_MDS Analysis and Validation—The HD Target Landscape

The compilation of the HD_MDS by data mining revealed that the target landscape
in HD is rich and diverse. Over 80 pharmacological targets and pathways were identified
in association with the 358 listed HD-targeting small-molecules. In principle, five target
categories can be differentiated:

(i) Neurotransmitter systems, which are addressed by many off-label-use anticholiner-
gics, antidepressants, and antipsychotics such as risperidone [14,15,17,19,35,86] mirtaza-
pine [2,14,17,19], and memantine [14,19,20,79,86–88]. The respective targets include DRs,
5HTRs, or NMDARs, but also choline esterases/receptors (ChEs/ChRs) [14,15,17,19,35,
79,86,87], adrenoreceptors (αRs) [2], and γ-amino butyric acid receptors (GABARs) [14,17,
79,87,89]. It shall be mentioned that repurposing of drugs that are already approved for
related neurodegenerative diseases is very common in HD treatment [15,17,19,79]. Many
drugs listed in the HD_MDS that are either under clinical evaluation against HD or in
off-label use to address HD symptoms that overlap with other neurological diseases such
as Alzheimer’s disease (AD). Of note, targeting neurotransmitter systems represents to this
date purely symptomatic treatment of HD and has in the vast majority of cases not or only
very modestly resulted in a benefit in clinical trials and case studies [15,17,86].

(ii) Mitochondrial systems, which are addressed by a large number of molecules,
including compounds that protect mitochondria and rescue mitochondrial membrane
potential [56,79,86,90–92], promote mitochondrial biogenesis [14,15,20,79], as well as en-
hance mitochondrial respiration and function [14,20,79]. These observations have been
made for several compounds, such as minocycline [86,90], fenofibrate [14,15,20,79], and
triheptanoin [14,20,79]. As mitochondrial deterioration is assumed to be a side effect of
HD, these and other molecules with similar function will most likely not lead to a curative
treatment.

(iii) muHTT RNA [15,16,30,79,93–99] or DNA [100], which can be targeted by small-
molecules to prevent or modulate transcription and splicing [15,30,79,93] as well as in-
terrupt translation and posttranslational modification [16,94–98] of muHTT. Compounds
allocated within this target category include branaplam [15,93], posiphen [16,94], or furami-
dine [95], thus inhibiting muHTT production. If successful, these interventions could be
potentially curative.

(iv) muHTT itself [14,15,35,54,55,57,81,86,101–104], which can either be subjected to
degradation or prevented to aggregate. This was demonstrated, for example, by PBT2 [14,
15,35,86] and certain proteolysis-targeting chimeras (PROTACs) [101–103]. Here also, if
successful, these interventions could be potentially curative.

(v) Novel, diverse targets reducing muHTT production, enhancing muHTT degra-
dation, and generally lowering muHTT-conferred (long-term) toxicity, and thus, posi-
tively affect HD onset and progression. These targets include CASPs [2,14,15,17,20–26,79],
HSPs [2,22,27–34], HDACs [2,14,15,17,20,79,105], PDEs [14,15,17,31,35,36], and σRs [14,15,
35,37,79], but also the adenosine 2A receptor (A2AR) [14,36], the AMP-activated protein
kinase (AMPK) [20,31,79], the ERG-associated protein with SET domain (ESET) [106–108],
the Kelch-like ECH-associated protein (KEAP) [31,56,109,110], the nuclear factor erythroid
2-related factor 2 (NRF2) [20,31,109,110], the peroxisome proliferator-activated receptor γ
coactivator 1α (PPARGC1A) [14,15,20,35,79], the protein disulfide isomerase (PDI) [111,112],
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the protein kinase A (PKA) [31,36], the Rho-associated protein kinase (ROCK) [36,113], and
sirtuins (SIRTs) [14,20,35,86,114].

These targets are frequently addressed by small-molecules, even though the detailed
mechanisms of action have yet to be elucidated in most of the cases. Nevertheless, these
novel drug targets open up the possibility for potentially curative treatments against HD.
It should be noted that for some compounds, more than one target category is eligible.
However, a large portion of compounds of the HD_MDS cannot be allocated to one of these
groups due to insufficient data on the background of their mode of action (marked with
‘Target Category Unknown’).

2.2.3. HD_MDS Analysis and Validation—The HD Polypharmacology Landscape

The HD_MDS allows not only for the discovery of different molecular-structural
classes of drugs, drug-like compounds, chemical substances, nutrients, and metabolites to
address one particular (potentially novel) target. It enables also for the discovery of agents
that address several pharmacological (potentially novel) targets. This bioactivity network
is crucial for the understanding of HD and the development of novel therapies, and thus,
one important outcome of the HD_MDS.

In fact, most drugs of the HD_MDS currently used to treat HD by addressing neuro-
transmitter systems are actually polypharmaceutics that address several target structures.
Particularly the agonistic or antagonictic interplay or secondary effects on adrenergic,
cholinergic, dopaminergic, GABA-ergic, and serotoninergic receptors is the basis for their
very pharmacological effect that may ameliorate HD symptoms under certain circum-
stances [14,15,17,86,87,89,115].

Interestingly, many novel drug-like compounds in preclinical evaluation address also
more than one of the novel, diverse drug targets. For example, the thiazole derivative
BN-82451 was demonstrated to be a polypharmacological inhibitor of cyclooxygenase 2
(COX2) and voltage-gated sodium ion channels (VGSCs) [14,116]; the stilbenoid resveratrol
showed to address AMPK, PPARGC1A, and SIRT [20,35,79]; and the pyrimidine derivative
PBF-999 addressed PDE-10A and A2AR. Figure 11 visualizes these molecules. Furthermore,
polypharmacology is not only a feature of individual molecules but also entire compound
classes. Very prominent examples are steranes or sterane-like molecules, such as azadira-
dione [28], beclomethasone [39], betamethasone [39], budesonide [39], carbenoxolone [117],
celastrol [38], deacetoxy-7-oxogedunin [29], deacetylgedunin [29], deoxygedunin [29],
desonide [118], 18β-glycyrrhetinic acid [117], gugglesterone [39], hydrocortisone [39] ole-
soxime [16,119], ouabain [117], prednisolone [39], proscillaridin A [117], triamcinolone [39],
ursodeoxycholic acid (ursodiol) [14], and withaferin A [120]. These address several target
categories, such as mitochondrial systems and novel, diverse targets. Figure 11 depicts
three representatives of steranes that address individually diverse HD-related pharmaco-
logical targets. Steranes and other compound classes stretching over target space pose a
new opportunity for future HD-targeting drug design and development.
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In the present study, we performed a series of behavioral and histopathological ex-
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3. Discussion
3.1. Interpretation of the New In Vivo Assessment Platform

Previously, zQ175 mice have been used as a promising HD mouse line with a subtle
but significant onset and progression of HD in both the heterozygous and homozygous
state [45,46].

In the present study, we performed a series of behavioral and histopathological ex-
periments with a new zQ175∆neo mouse line and their WT littermates at various points in
time (15, 22, 29, 36, 43, 50, and 57 weeks, respectively) to thoroughly characterize the time
course of HD-induced behavioral and neuropathological changes. Our new, neo-excised
zQ175∆neo model exhibited long-term phenotypes starting with symptoms from an early
age of the mice lifespan. Specifically, zQ175∆neo showed early growth retardation, body
weight loss, and anxiety-like behaviors latest at 29 weeks of age, prior to most motor deficits,
such as motor balance, coordination, or muscular strength, which manifested earliest at
36 weeks of age. These findings are in contrast to some N-terminal fragment HD models,
e.g., R6/2 mice, which usually have a shorter lifespan and an earlier onset of most HD
symptoms [121]. In this regard, zQ175∆neo mice have a great in vivo potential for exploring
preventative interventions of HD.

One of the original characterization studies of zQ175 mice reported apparent weight
loss from 3 months in the heterozygous mice and 1.5 months of age in the homozygous,
respectively [45]. The onset of this essential HD symptom was delayed after the deletion
of the neo cassette, resulting in a significant statistical body weight segregation from their
WT littermates earliest at 29 weeks in males and at 32 weeks of age in females. Growth
retardation became already visible at 22 weeks of age. This pronounced body weight
loss was accompanied by a progressive decrease of food intake within the entire study
period (15–57 weeks). Given the clinical fact that the severity and onset age of HD are
often associated with the length of CAG repeats, these zQ175∆neo mice showed still a
much earlier weight loss than a comparable KI HD model [122]. HdhQ200 mice carry a
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similar number of CAG repeats (~200) and only show an obvious weight loss at 50 weeks
of age in heterozygous individuals [122]. These findings suggest that the onset age of
body weight loss, at least in HD mice, is not directly linked to the CAG expansion length
per se. Instead, the deletion of the neo cassette, the genetic background, the effects of
muHTT expression in testis, and the specific genetic constructs are important regulators
of the overall disease course and symptom onset. These aspects were directly assessed
and described in the present study. Of note, some transgenic HD mouse models such
as BACHD and YAC128 mice displayed even a body weight increase during the disease
progression [42,43]. However, these rather rare observations contradict the majority of
findings [48,61,62] and could be a confounding factor to motor function tests [43,123]. In
essence, the new zQ175∆neo mice represent an appropriate mouse model for studying HD-
related metabolic abnormities manifesting an early, reproducible, and well-defined body
weight loss, recapitulating human HD. Importantly, the high reproducibility of the growth
pattern defines the optimal treatment window for drug screening, e.g., start for assessing
preventive treatments at 15 weeks for zQ175∆neo mice. Body weight assessment has been
described before as a robust and easy to perform, non-invasive measure in HD [124].

Along with the body weight loss, we also found significant testicular atrophy after
36 weeks of age in zQ175∆neo mice. Testicular atrophy and expression of muHTT in the
testicles is an important hallmark of HD [48,67,68]. In contrast, testicular atrophy was
not detected in zQ175 (C57BL/6J background) but Q175 and Q175FDN mice (both in
FVB/N background) [48]. Our results indicate that this adult-onset phenotype may be
associated with the deletion of neomycin selection cassette and the resulting enhancement of
muHTT toxicity. Additionally, our histological analysis of the testicles revealed degenerated
seminipherous tubules throughout the 57 weeks of the time course, which is an important
corresponding feature of human HD symptoms [67,125].

Motor dysfunction is an important feature when assessing HD mouse models. Several
studies reported that motor abnormalities have been recapitulated in different HD mouse
models [45,46,70]. In our work, we employed a series of behavioral tests including acceler-
ating rotarod, wire hang, and pole performance tests to determine the time course of motor
function decline throughout the course of the disease. Our results revealed an age-related,
progressive pattern of motor deficits in zQ175∆neo mice. The motor coordination deficits
initiated as early as 29 weeks of age in both males and females. This is comparable to the
original zQ175 mouse model, in which both homozygous and heterozygous mice display
deficits in the rotarod performance test at an age of 30 weeks.

Cognitive decline is a key hallmark of HD. Several studies have shown that cognitive
deficits can even precede the onset of motor symptoms in patients [71], which can cause
diagnostic problems for patients with de novo CAG expansions. Using the open field
test, we found that zQ175∆neo mice spent less time in the center of the arena as early as
29 and 36 weeks of age in males and females, respectively. The absence of exploratory
deficits, particularly the travelled distance and mobility rate in the open field test, indicates
that this is not caused by muscular dysfunction and problems with locomotor activities.
Menalled et al. trained zQ175 mice to perform a simple procedural response learning. They
found significant learning deficits only at 58 weeks of age [45]. The interpretation of these
results can be difficult since the advanced age is a least a co-factor interfering with learning
abilities in these mice.

Cerebral cortex and striatum are the most vulnerable and affected regions in HD
brains [1]. We found general atrophy of CP and hemispheres in the present study, which
is consistent with human HD and other HD mouse models, such as R6/2 [126]. Notably,
the CP showed earlier onset and greater extent of atrophy in zQ175∆neo mice compared
to the total hemispheres. These results resemble human HD, in which the striatum is the
most degenerated region with extensive death of MSNs [127]. We found a reduction of
the hemisphere cross sections only at 57 weeks of age, the end of our study. A study of
R6/2 mice reported whole brain atrophy using magnetic resonance imaging (MRI) already
at 4 weeks, which was progressing with age [128]. In another study, MRI investigation
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of heterozygous zQ175 mice revealed significant atrophy affecting the cortex and CP at
4 months of age [129]. These studies suggest using a more advanced method such as MRI
to assess regional and global brain atrophy in future.

Astrogliosis and microgliosis are neuroinflammatory processes that react on or con-
tribute to HD pathology [73,74,78], which prompted us to characterize neuroinflammation
in heterozygous zQ175∆neo mice. Consistent with previous reports of HD patients and
mouse models, we observed HD-induced astrocytosis at 36 weeks of age in the CTX but
already at 15 weeks of age in the CP of zQ175∆neo mice. This early and robust astroglial
response in the CP persisted throughout the whole time course of the study and reached a
five-fold increase at the final time point compared to WT littermates. Our findings imply
that the phenotypic changes of zQ175∆neo mice are not immediately correlated with the
activation of astrocytes neither in the CTX nor in the CP, which was supported by the
literature [130]. Instead, the classic astrogliosis occurred much earlier than symptomatic
manifestations. Several studies have found that the selective expression of muHTT in
astrocytes results in striatal neurodegeneration [131], suggesting astrocytes as a preventa-
tive therapeutic target for HD. Various other studies have reported remarkable changes
of astrocytes in HD mouse models, e.g., altered transcriptional profiles in R6/2 mice at
8 weeks of age [132], reduced GFAP in R6/2 mice [130], or HD-induced reactive astrogliosis
in zQ175 mice at 6 months of age [133].

In the context of HD, microglia changed the morphology with an increased soma
size in the early stage of HD progression [134]. These morphological changes occurred
even without changes in the number of microglia [135]. Moreover, microglia in HD mice
exhibited an upregulation of pro-inflammatory cytokines. For example, at the end of disease
progression, interleukin (IL) 6, IL-10, and IL-12 are all increased in the CP of zQ175, YAC128,
and R6/2 HD mice [136,137]. In line with these findings, we observed elevated numbers of
activated microglia in the CP and CTX, but only at the final age of our characterization at
57 weeks of age. Thus, we can state that early microglial activation may not be a necessary
key feature for the onset of HD pathogenesis.

In summary, the zQ175 model was the first heterozygous KI mouse strain that exhib-
ited an apparent and early HD-like phenotype [45]. In an attempt to enhance the HD-like
symptoms for preclinical use, the neomycin resistance cassette was excised from the Htt
gene locus of zQ175 mice, generating a new line, zQ175∆neo. We described the time course
of behavioral, neuropathological, and immunohistological changes of zQ175∆neo mice,
which better resemble the human situation and present with early, robust behavioral and
cellular alterations in heterozygous mice compared to the existing HD mouse models.

3.2. Interpretation of the HD_MDS

In addition to the development of an improved, better suitable, and comprehensively
assessed in vivo HD mouse model, we have, for the first time, provided an extensive dataset
correlating the molecular structures of molecules to a rich and diverse set of (potential) HD
drug targets, and thus, elucidated the bioactivity network of HD-addressing small-molecule
agents. The HD_MDS revealed that there is a considerable but still barely charted target
space beyond ‘usual’ pharmacological HD-related targets. Strikingly, through uncovering
the bioactivity network, two major opportunities occur: (i) identification of recurring
protein (super-)families that stretch through the entire dataset and are addressed by several,
structurally different molecules; and (ii) identification of recurring molecular scaffolds that
simultaneously address several structurally and functionally different target proteins.

3.2.1. Recurring Targets: Solute Carriers and Other Transporters

The superfamily of solute carrier (SLC) transporters is prominently represented within
the target space of the HD_MDS. Several compounds targeting HD and other neurode-
generative diseases address SLC transporters, such as atomoxetine [norepinephrine trans-
porter (NET), SLC6A2] [14,17,138], bupropion [NET and dopamine transporter (DAT),
SLC6A3] [14,35], fluoxetine [serotonin transporter (5-HTT) alias serotonin transporter
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(SERT), SLC6A4] [14,15,17,20,86,139], riluzole [glutamate transporter 1 (GLT-1) alias ex-
citatory amino acid transporter 2 (EAAT2), SLC1A2] [20,140], tetrabenazine [vesicular
monoamine transporter 2 (VMAT2); SLC18A2] [14,15,17,19,20,79,86], or biotin [thiamin
transporter 2 (ThTr2), SLC19A3] [141].

This may not come as a surprise as SLC transporters are crucially involved in cerebral
neurotransmitter distribution. However, many more SLC transporters, particularly their
dysfunction and dysregulation, were found to be associated with HD. EAAT1 (SLC1A3),
for example, was found to be upregulated in humans [142]. The closely related EAAT3
(SLC1A1) was downregulated in one mouse model of HD [143] but unchanged in an-
other [144] and upregulated in a cell-based model [145]. Various other, mostly vesicular
neurotransmitter transporters were also associated with HD, including vesicular acetyl-
choline transporter (VAChT, SLC18A3) [146,147], vesicular glutamate transporter 1 (VGluT1,
SLC17A7) [142], VGluT2 (SLC17A6) [148], and vesicular inhibitory amino acid transporter
(VIAAT, SLC32A1) [149]. The potassium-chloride co-transporter 2 (KCC2, SLC12A5) [150]
and sodium-potassium-chloride co-transporter 1 (NKCC1, SLC12A2) [150,151], which mod-
ulate the GABA-ergic system, were found to be down- and upregulated, respectively. The
SLC2A family of glucose transporters was also strongly implicated in HD, with GLUT1
(SLC2A1) and GLUT3 (SLC2A3) expression shown to be 3- and 4-fold decreased in late stage
patients [152], while an increase in GLUT4 (SLC2A4) expression was seen in a different
study [153]. Other SLCs with increased expression in humans in association with HD were
divalent metal transporter 1 (DMT1, SLC11A2; although not statistically significant) [154],
equilibrative nucleoside transporter 1 (ENT1, SLC29A1) [155], monocarboxylate trans-
porter 9 (MCT9, SLC16A9) [142], prostein (SLC45A3) [156], and urea transporter 1 (UT1,
SLC14A1) [142]. Other SLCs that have been associated with HD in different ways are bicar-
bonate transporter-related protein 1 (BTR1, SLC4A11) [157], sodium-hydrogen exchanger
1 (NHE1, SLC9A1) [158], organic cation/carnitine transporter 2 (OCTN2, SLC22A5) [159],
phosphate carrier protein (PHC, SLC25A3) [160], SLC3A2 [160], sodium-dependent vitamin
c transporter 2 (SVCT2, SLC23A2) [161], and zinc transporter 10 (ZnT10, SLC30A10) [162].

The involvement of SLC transporters raises immediately the questions if altered
metabolite and drug distribution is a hallmark of HD and even other, phylogenetically
unrelated membrane transporter families, e.g., (vesicular [163]) ATP-binding cassette (ABC)
transporters, participate in the pathogenesis of HD. Various ABC transporters have been
associated with neurodegenerative diseases, e.g., AD, Lewy-body dementia, and Parkin-
son’s disease [84,164–171] and are expressed in specific structures of the brain [172,173].
The drug transporters ABCB1, ABCC1, and ABCG2 were demonstrated to directly clear
amyloid-β (Aβ) and to be dysfunctional in AD brains [174,175]. Furthermore, the lipid
transporters ABCA1 and ABCA7 were shown to affect Aβ production, degradation, and
clearance through yet unknown mechanisms [165,176–178]. Given the neurotoxic effects of
Aβ as well as muHTT and other poly-glutamine deposits, and considering the neuropro-
tective nature of ABC transporters, a contribution of these transporters to the pathogenesis
of HD should be investigated. ABCA1, for example, is an integral part of the homeosta-
sis and metabolism pathways of cholesterol. Dysfunctional cholesterol homeostasis as a
result of either (i) the lack of interaction of intrinsic and functional HTT [179], or (ii) the
interaction of muHTT [180,181] with different components of the cholesterol metabolism
pathway is a hallmark of HD-affected neurons [180,181]. Two important regulators of
ABCA1 [165], which were found to be downregulated in cellular HD models [179], are
the liver-x-receptor α (LXR-α) [179] and the sterol regulation element-binding protein 2
(SREBP2) [180,181]. These interactions lead to a reduced cholesterol biosynthesis, partic-
ularly in astrocytes [180,181]. The lack of cerebral cholesterol may lead to a reduced ex-
pression of other ABCA transporters, such as the phospholipid and cholesterol transporter
ABCA7 [165]. The cholesterol transporters ABCG1 and ABCG4 were already associated
with dysfunctional cholesterol homeostasis and HD [182,183].

Apart from cholesterol transporters, other ABC transporters were associated with
neurodegenerative diseases [167,169,184]. ABCB10 is involved in the mitochondrial un-
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folded protein response (UPRmt) pathway [185], which is downregulated in murine HD
striatal cells, fibroblasts derived from HD patients, and R6/2 mice [186–188]. Deletion
of ABCB10 caused increased mitochondrial reactive oxygen species (ROS) and cell death,
whereas overexpression of ABCB10 reduces these effects [186]. Similar events were also de-
scribed for peroxisomal ABCD1, a fatty acid transporter [189]. Decreased glutathione (GSH)
transport was observed by muHTT-mediated downregulation of the multidrug transporter
ABCC1 [190]. Multidrug transporters of the ABCC sub-class were further discussed in
terms of their impact on CNS-penetration and clearance of potential HD drugs [99].

Considering the positive effects of steranes and sterane-like molecules on HD pathol-
ogy in various HD models [14,16,28,29,38,39,117–120], particularly the cholesterol (and
phospholipid) transporters ABCA1 (and potentially its functional compensatory counter-
part ABCA7 [164,165]) gain relevance in the pathogenesis of HD and potential therapeutic
and diagnostic interventions, which warrants further investigations.

3.2.2. Recurring Scaffolds: Perspective on Future HD Drug Discovery and Development

Another crucial discovery of the in-depth analysis of the HD_MDS is that particularly
novel, diverse HD drug targets are frequently addressed by structurally and functionally
novel small-molecules. These associations demonstrate the interconnectivity of these targets
and may even hint to the existence of novel, yet undiscovered targets and pathways in the
pathogenesis of HD. The polypharmacological nature of many HD-targeting compounds
may be the primary reason for their effectiveness, e.g., in case of neurotransmitter systems-
targeting agents. A polypharmacological approach by intentional design of multitarget
agents could revolutionize HD drug development by uncovering molecular-structural
dependencies of novel, yet undiscovered pharmacological targets and modes of action.

We have recently developed a computational methodology called ‘computer-aided
pattern analysis’ (‘C@PA’) which was particularly designed for the generation of polyphar-
maceutics [191–193]. This methodology uses molecular-structural patterns derived from a
multitarget dataset of ABC transporter inhibitors for the prediction of novel, structurally
distinctive bioactive agents by screening of chemical space. Transferring this methodol-
ogy to the HD_MDS may result in new, structurally distinctive, and functionally novel
molecules with advanced modes of action and optimized polypharmacological profiles
that establish a new generation of preclinical and clinical HD-targeting agents.

3.3. Conclusion, Outlook, and Hypotheses

Using the new and fully characterized zQ175∆neo mouse model, we can suggest
different strategies to assess treatment effects of new compounds. The detailed characteri-
zation of phenotypical and morphological features pinpoints towards the use of different
treatment paradigms for the drug screening, in particular (i) preventive treatment before
onset of symptoms; (ii) post-onset treatment; and (iii) late treatment after onset of several
phenotypical symptoms.

(i) Having detected early astroglial activation already at 15 weeks of age without fur-
ther phenotypical abnormalities, we propose this time point as optimal start for preventive
treatment screens with an assessment horizon beyond 30 weeks of age. The assessment
parameter that could be used in the ongoing screening is the ‘prevention of growth retarda-
tion’. Growth retardation starts at 22 weeks of age as a non-significant change, leading to a
significant regression in body weight from 30 weeks of age in male mice compared to WT
littermates (Figure 2). This paradigm represents best the situation of inherited forms of HD.

(ii) The sole effect of bodyweight recovery after a treatment start at 29 weeks of
age could be used as early post-onset evaluation, representing best the sporadic patients’
situation. Here, the analysis horizon should be at least 14 weeks (43 weeks of age).

(iii) To screen for new drugs modifying disease pathogenesis, the late-treatment
paradigm appears less practicable due to already exciting loss of neurons and cemented
phenotypes.
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Easy to assess, minor interfering, and robust parameters that can be assessed repeat-
edly should be preferred over complicated assessments. For the zQ175∆neo mice and the
preventive paradigm, we suggest initial motoric assessment using the rotarod performance
test at the treatment starting point of 15 weeks in groups of 15–20 mice, weekly weight
and food intake measurements, re-assessment of motoric skills at 29 weeks, and a total
treatment time up to 36 weeks of age with a final motoric re-assessment. Depending on the
effect of the chosen drug and application (daily gavage, in drinking water, etc.), the total
treatment time can be extended to 43 or even 50 weeks of age. Continuously measured
weight curves are an easy tool to determine the effect onset and effect size.

Besides using better experimental strategies and well-characterized animal models,
new and innovative drug targets have to be determined. During the past years, several
members of the ABCA transporter subfamily have been linked to neurodegenerative
diseases [164,165,194,195]. The ABCA subfamily is known to transport a variety of lipid-
soluble substances and metabolites, amongst them the sterane cholesterol, phospholipids,
and retinol [165]. These agents could be the link why the APOE allele ε4 is the strongest
genetic risk factor for sporadic AD [165]. In HD, members of the ABCA transporter
family have not yet been identified in genome wide association studies (GWASs) [196–198].
This is not surprising since it took many years and GWASs as well as genetic variant
studies to identify ABCA1 and ABCA7 as AD risk genes despite more than two decades of
experimental evidence [165,195,199–203].

We propose that members of the ABCA subfamily are involved in disease modification
or even pathogenesis of HD. Many molecules similar to cholesterol have demonstrated
positive effects on muHTT production, toxicity, and degradation without knowing their
particular mode of action [38,39,117,118]. Are ABCA transporters the missing link between
sterane(-like) molecules and positive treatment outcomes? The testis atrophy detected in
some HD mice and patients due to low production of the sterane testosterone caused by
testicular muHTT accumulation or as secondary deficit due to problems of the pituitary-
hypothalamic driver axis puts forward the question whether cholesterol transporters are
involved herein as well. Do ABCA transporters play a role in regulating the hypothalamic
or testicular function and does pathological muHTT accumulation directly or indirectly
influence ABCA transporters’ expression in these important regulatory brain regions?
We propose that cholesterol transporters, such as ABCA subfamily members, influence
important metabolic regulators in the basal ganglia and hypothalamus and should be
investigated in more detail.

4. Material and Methods
4.1. Animal Models and Breeding Scheme

Subjects were male and female heterozygous zQ175∆neo mice and their corresponding
WT littermates generated from the original C57BL/6JQ175KI HD (zQ175) mouse model [45].
To delete the neomycin selection cassette in the HD mice, we mated male zQ175 mice
(189Q, Table S2) [44] (JAX stock #027410) with female CMV-cre mice (JAX stock #006054),
which express ubiquitous Cre-recombinase (also in germ cells) and were used to excise
the neomycin cassette (Figure 1) [49]. Afterwards, the CMV-cre transgene was negatively
selected and taken out from the background. The mouse colony was maintained in the
C57BL/6J background. Experimental mice were housed in groups of six animals per
cage with free access to chow food and autoclaved acidified (pH 3) water. Mice were
housed at the animal care facility of the Department of Comparative Medicine (KPM,
Radiumhospitalet, Oslo, Norway). All animals were maintained under standard conditions
of temperature (22 ◦C), relative humidity (62%) and an artificial dark-light cycle of 12 h/12 h
in the facility. Mice were genotyped after weaning and heterozygous zQ175∆neo mice were
identified by polymerase chain reaction (PCR) of DNA extracted from ear biopsies (for
primer details see Table S2).
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4.2. Body Weight and Food Consumption

Individual body weight of mice was monitored continuously (weekly measurements,
15 to 57 weeks of age). Food consumption was measured as g/week per cage (with six
mice each).

4.3. Experimental Design

In this study, zQ175∆neo mice and WT mice were evaluated at seven distinct time points
during disease progression: 15, 22, 29, 36, 43, 50, and 57 weeks of age, respectively. These
time points were chosen to characterize the behavioral and neuropathological characteristics
of this HD mouse model at seven different stages of the lifespan. To eliminate any possible
confounding influence in mouse behavioral tests due to repeated testing, seven distinct
cohorts of animals were set up. Every cohort consisted of sex-matched zQ175∆neo mice and
their WT counterparts (N = 6 per genotype and sex; N may differ for each test, see Table S3
for details). All behavioral tests were performed during the light phase of the dark/light
cycle. Mice were transferred to the experimental room together with their home cages and
acclimated for at least one hour before the start of the experiments. The experimenters
were blinded to the genotypes at the time of behavioral testing where possible. Animals
were submitted to the following sequence of behavioral tests in a five-day setting: open
field test, accelerating rotarod performance test, wire hang test, and pole performance test.
Each cohort was humanely sacrificed after completing the behavioral test battery.

4.4. Open Field Test

The open field test was performed to assess the locomotor and exploratory activities
according to previous publications [48]. Briefly, individual animals were placed in the
center of a 50 cm × 50 cm open top arena under bright lighting and recorded with a ceiling-
mounted video camera during a 10 min exploration time. The arena was divided into
three areas: center area (30 × 30 cm, 36% of the total area), peripheral area and wall area.
Distance travelled (cm), mobility rate (%) and time spent in the center (s) of the field x
were measured using Ethovision XT 15 animal tracking software (Noldus Information
Technology BV, Wageningen, The Netherlands). Mice that had a tendency of jumping onto
the wall or spent >15 s rearing at the wall area were excluded from the final analysis.

4.5. Accelerating Rotarod Performance Test

The accelerating rotarod performance test was performed to assess the motor coordina-
tion over three consecutive days by using a rotarod apparatus (RotaRod 47650, Ugo Basile
S.R.L., Gemonio, Italy). Each daily session started with a single 300-s training at a constant
speed of 4 rpm. During the daily training session, mice that fell were returned to the rod
immediately and the latency to the first fall and mean time of falls from the training session
were recorded. After a 1h break, three consecutive 300-s accelerating rotarod (5–40 rpm)
trials were performed with an interval of at least 30 min between each trial. For each trial,
the latency to fall was recorded. A mouse clinging to the rod and completing a full rotation
was regarded as a fall and the latency was recorded.

4.6. Pole Test

Mice were tested for their ability to descend a vertical pole (1 cm in diameter, 60 cm
high) over one training and four consecutive test trials, separated by 5 min intervals.
In brief, mice were placed at the top of the pole, facing upwards. Then, the total time
of orienting themselves facing downwards and descending to the base of the pole was
recorded. Data from test trials were averaged and used for analysis.

4.7. Wire Hang Test

The wire hang test was performed on the same day as the pole test to assess grip
strength over three consecutive trials, separated by 5 min intervals. In brief, mice grasped
onto a horizontally positioned wire (2 mm in diameter and 55 cm long), 35 cm above their
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home cage with bedding material to provide a gentle fall. The latency to fall was recorded
and averaged for analysis for all three trials.

4.8. Tissue Collection and Processing

WT and zQ175∆neo mice were sacrificed by cervical dislocation and transcardially per-
fused with ice-cold 0.1 M phosphate-buffered saline (PBS). Brains were removed, trimmed
without olfactory bulbs and cerebellums and divided into two hemispheres. One hemi-
sphere was kept in 4% paraformaldehyde (PFA) in 0.1 M PBS for immunohistochemical
processing. The other hemisphere was micro-dissected to separate caudate-putamen, hip-
pocampus and cerebral cortex, which were snap-frozen in liquid nitrogen and stored in
−80 ◦C until further protein extraction. Testes were collected in all male animals. One testis
was kept in 4% paraformaldehyde (PFA) in 0.1 M PBS, the other one was snap-frozen in
liquid nitrogen until further processing.

4.9. Immunohistochemistry and Morphological Quantification

Formalin-fixed hemispheres were embedded in paraffin and cut into 4-µm-thick coro-
nal sections using a rotation microtome (HM355S, Leica Biosystems GmbH, Nußloch, Ger-
many) as described previously [75–77,204–210]. Sections (bregma +0.8 mm and −1.8 mm)
were stained for microglia (IBA1, 1:1000, FUJIFILM Wako Chemicals Europe GmbH, 019–
19741), astrocytes (GFAP, 1:500, Agilent, Santa Clara, CA, USA, Z033401-2) using a BOND-
III® automated immunostaining system (Leica Biosystems GmbH, Nußloch, Germany)
with a hematoxylin counterstain (provided with the staining kit, Bond Polymer Refine
Detection, DS9800). Sections for IBA1 staining were pre-treated with citric acid for 20 min
before staining and for GFAP staining, the Bond Enzyme Pre-Treatment Kit (AR9551, Leica
Biosystems GmbH, Nußloch, Germany) was applied to the sections for 10 min. After
staining, tissue sections were digitized at 230 nm resolution per pixel using a Pannoramic
MIDI II slide scanner (3DHISTECH Ltd., Budapest, Hungary). Quantitative analysis was
performed automatically using deep-learning algorithms generated with the DeePathol-
ogy™ STUDIO (DeePathology Ltd., Ra’anana, Israel) [76,77]. We generated algorithms
to identify IBA1+ cells and GFAP+ cells. The algorithms were applied separately on the
regions of interest (i.e., the caudate-putamen and cerebral cortex).

4.10. Histomorphologic Evaluation

To evaluate the CP and hemispheric atrophy, slides were stained with hematoxylin and
eosin (H&E). A Pannoramic MIDI II slide scanner was used to obtain digital images of brain
sections at 230 nm/pixel resolution. The CP (bregma +0.8 mm) and hemisphere (bregma
−1.8 mm) sections were manually traced according to the Franklin & Paxinos mouse brain
atlas [211] using the CaseViewer software (3DHISTECH Ltd., Budapest, Hungary), which
also automatically calculated the area of the defined regions (cm2) of caudate-putamen and
hemispheres. The areas were averaged with two sections of H&E staining per slide.

4.11. Western Blot Analysis

Mouse brain and testis tissues were homogenated with a bead mill homogenizer
(SpeedMill PLUS, Analytik Jena GmbH, Jena, Germany). Tissue homogenates were lysed
in ice-cold RIPA buffer (50 mM Tris-HCl, pH 8; 150 mM sodium chloride; 1 mM EDTA;
1% Triton X-100; 0.5% sodium deoxycholate; 0.1% sodium dodecyl sulfate), and complete
protease inhibitor cocktail (Roche, Rotkreuz, Switzerland) for 30 min with constant vor-
tex. Tissue lysates were centrifuged at 14,000 rpm for 30 min and the supernatants were
collected. The final protein concentration in the supernatants was determined using the
Pierce BCA assay kit (ThermoFisher, Waltham, MA, USA) and a total of 25µg protein
was subjected to 7.5% SDS polyacrylamide gel electrophoresis (SDS-PAGE, ThermoFisher,
Waltham, MA, USA), transferred onto a polyvinylidene difluoride (PVDF) membrane in
transfer buffer (ThermoFisher, Waltham, MA, USA) after soaking in 15% methanol for
2 min. All membranes were blocked with 5% non-fat milk in phosphate-buffered saline
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containing 0.1% Tween-20 (PBS-T) and incubated with the anti-polyQ (1:1000; clone MW1,
MerckMillipore, MABN2427) and anti-beta-tubulin (1:2500; clone AA2, MerckMillipore,
T5076) on a shaker overnight at 4 ◦C, followed by appropriate horseradish peroxidase
(HRP) secondary antibody (1:5000, Bethyl Laboratories, A90-216P) for 1 h in RT. Images
were obtained by using the Octoplus QPLEX imaging system after incubating membranes
with enhancer reagent (Clarity, ThermoFisher, Waltham, MA, USA). WB were repeated in
at least three individuals from each genotype.

4.12. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 9 software (GraphPad
Software, San Diego, CA, USA). We verified the data for Gaussian normal distribution
by using the Shapiro–Wilk normality test and for even variances using the Levene test.
Detailed statistical methods are summarized in Table S3. Two-way analysis of variance
(ANOVA) was performed to determine the significant differences between two genotypes
(WT and zQ175∆neo), followed by Bonferroni’s post hoc test. For continuous repeated
measurements, Student’s t-test was used to compare WT versus zQ175∆neo mice. Data are
presented as means ± standard deviation (SD). Differences were considered statistically
significant when p < 0.05. N is reported in the figure legends and summarized in Table S3.

4.13. Compilation of the HD_MDS

The National Center for Biotechnological Information (NCBI; http://www.ncbi.nlm.
nih.gov, accessed 1 October 2022) was searched for qualified compounds applying the key
words ‘small-molecule’ and ‘Huntingtons’. References of the qualified reports were also
searched for qualified references. Qualified molecular structures of compounds were re-
trieved either from PubChem (http://pubchem.ncbi.nlm.nih.gov, accessed 1 October 2022)
or manually drawn using ChemDraw Pro version 20.1.1.125 (PerkinElmer Ltd., Beacons-
field, UK). Isomeric SMILES were considered where applicable and the SMILES codes were
kept in the upper-case description scheme. CLogP, MW, MR, and TPSA were calculated
applying SwissADME (http://www.swissadme.ch, accessed 1 October 2022) [85]. Of note,
the given CLogP and TPSA values were calculated using an atomistic method [212] and a
fragment-based method [213], respectively.
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