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Abstract: Path planning, which is needed to obtain collision-free optimal paths in complex environ-
ments, is one key step within unmanned aerial vehicle (UAV) systems with various applications, such
as agricultural production, target tracking, and environmental monitoring. A new hybrid gray wolf
optimization algorithm—SSGWO—is proposed to plan paths for UAVs under three-dimensional
agricultural environments in this paper. A nonlinear convergence factor based on trigonometric
functions is used to balance local search and global search. A new relative-distance fitness adaptation
strategy is created to increase the convergence speed of the SSGWO. Integrating the simulated an-
nealing (SA) algorithm, an alternative position update strategy based on SA is proposed to improve
the search process with diverse capabilities. Finally, a B-spline curve is introduced into a smooth
path to ensure the path’s feasibility. The simulation results show that the SSGWO algorithm has
better convergence accuracy and stability, and can obtain higher-quality paths in a three-dimensional
environment, compared with GWO, MGWO, IGWO, and SOGWO.

Keywords: unmanned aerial vehicles; path planning; gray wolf optimizer; simulated annealing;
B-spline curve

1. Introduction

Unmanned aerial vehicles (UAVs) can execute flight tasks autonomously without
direct human control [1]. In applications such as disaster reconnaissance, target tracking,
communications relays, aerial photography, agriculture, environmental monitoring, and
mine exploration, UAVs play indispensable roles. The degree of agriculture informatization
seriously affects the development of human beings. Unmanned aerial vehicles (UAVs)
are becoming increasingly important in agricultural practices with numerous innovations
and improvements [2]. Equipped with high-resolution cameras and multi-spectral sensors,
UAVs can monitor farmland in a quick and accurate way. With GPS technology and
intelligent control systems, UAVs have great significance in achieving the goals of precision
agriculture, such as sowing, fertilizing, and fixed-point spraying.

UAV path planning in agricultural production has become a concentrated research area.
However, in the complex environments of agricultural areas, UAVs will encounter diverse
threats and obstacles when navigating, which bring risks to flight missions. Therefore,
the implementation of effective path planning becomes crucial. This not only enhances
the obstacle-avoidance capabilities of UAVs, but also serves to minimize flight costs to
meet the practical requirements of agricultural tasks, considering multiple factors such
as flight efficiency, obstacle avoidance, safety, and traffic laws [3]. The problem of path
planning is inherently intricate, so it needs to be solved with a combination of mathematical
modeling and computer algorithms [4]. With increasing mission complexity in dynamic,
changing environments, UAV path planning must employ real-time, high-performance,
and diversified approaches to ensure the safe and efficient completion of UAV flight
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missions [5]. Several algorithms have been proposed, including a graph search approach,
the A* algorithm [6], particle swarm optimization (PSO) [7], a genetic algorithm (GA) [8], a
heuristic algorithm, and a reinforcement learning model [9]. However, these algorithms
still have some limitations in path planning. For instance, graph search methods may
encounter efficiency challenges with large search spaces or multiple goals, given their
need to traverse an extensive array of potential paths. The A* algorithm is affected by the
search space. When the search space is very large, the computational complexity of the
algorithm will increase sharply, resulting in a long operation time [10]. In actual flight,
the diverse constraints and performance characteristics of UAVs will result in substantial
cost disparities among different path segments. This intricacy restricts the applicability
of dynamic programming to actual path planning, leading to inconsistencies between the
planning results and the actual situation [11]. At the same time, these algorithms may fall
in local optima, so that the planning results are not the globally optimal paths.

Heuristic algorithms are types of computing methods used to solve complex opti-
mization problems. Without relying on domain-specific knowledge, heuristic algorithms
operate based on general heuristic principles to search the solution space for a given
problem. Metaheuristic algorithms are usually more general and work similarly to heuris-
tic behaviors in nature: for example, simulated annealing, genetic evolution, ant colony
searching, etc. Typically organized as a cohort of individuals, these algorithms iteratively
refine themselves to discover optimal or near-optimal solutions. Yu et al. [12] proposed an
innovative, adaptive, and selective variation-constrained differential evolution algorithm
for UAV path planning for disasters. Combining adaptive and evolutionary strategies,
this algorithm enhances adaptability to complex environments and multiple constraints.
Phung et al. [13] proposed a spherical vector-based SPSO algorithm tailored to path plan-
ning in complex environments. This algorithm contributed to subsequent path planning
research, incorporates the unique characteristics of spherical vectors, and aims to better
adapt to multi-constraint and multi-variable problems. Huang et al. [14] introduced an
improved quantum particle swarm optimization (QPSO) algorithm to accelerate and im-
prove the efficiency and accuracy of UAV path planning. This algorithm incorporates the
idea of quantum computing and searches for the best path by simulating the behavior
of particles so as to find the best path more quickly. Chen et al. [15] proposed a flower
pollination algorithm based on neighborhood global learning. This provided a new idea
for improving path planning, but it was not verified in a three-dimensional environment.
Mirjalili et al. [16] proposed a gray wolf optimization (GWO) algorithm inspired by the
gray wolf group hunting mechanism. Compared with some other optimization algorithms,
GWO has fewer parameters that need to be adjusted. The algorithm is relatively simple
and easy to understand and implement. Although the GWO algorithm performs well
in some situations, its adaptability is limited in complex environments and it can easily
fall into local optimal solutions. These seriously affect the quality of path planning. In
order to enhance GWO for tackling UAV path planning challenges effectively, researchers
usually introduce simple adaptive mechanisms or create new combination algorithms to
enhance the optimization capabilities of the algorithm. Up until now, the stability of algo-
rithms based on GWO providing quick and accurate methods in complex environments
has not been achieved yet. Considering complex agricultural environments, SSGWO—an
improved algorithm based on the GWO algorithm—is proposed in this paper to solve the
problem of UAV path planning in a three-dimensional agricultural environment. The main
contributions of this paper are as follows:

1. A new hybrid algorithm, SSGWO, is used to solve the problem of UAV path planning
in a three-dimensional agricultural environment.

2. An improved nonlinear convergence factor based on trigonometric functions is presented
to balance global search capability and local search capabilities with better accuracy.

3. A relative-distance fitness adaptation strategy is proposed to improve the solution
gradually during the search process and accelerate convergence to the global opti-
mization solution with adaptation capability.
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4. An alternative position-update strategy based on SA is proposed to improve the
search process with diversity capability.

5. Multiple benchmark functions were used to verify the performance of the SSGWO
algorithm, and the convergence of the algorithm was analyzed.

6. The SSGWO algorithm is used to solve the UAV path planning problem in agricul-
tural environments. After smoothing the path with a B-spline curve, our UAV path
planning method with SSGWO achieved better experimental results compared with
other algorithms.

This paper is organized as follows. Section 2 presents a GWO-related review and the
traditional GWO algorithm. Section 3 introduces the SSGWO algorithm in detail. Section 4
introduces flight constraints and path smoothing. Section 5 verifies the effectiveness of the
SSGWO algorithm and the UAV path planning method with SSGWO. Section 6 discusses
the experimental results. Section 7 summarizes the conclusions of this paper.

2. Related Work

GWO is a heuristic algorithm proposed based on the hunting behavior of gray wolf
groups in nature, which is used to solve complex optimization problems. It discovers
the optimal solution by simulating the social interaction of gray wolves. It has fewer
parameters and stronger global search ability than other swarm intelligence algorithms [17].
GWO can intelligently adjust the behavior of wolves to adapt to the needs of diverse
problems and environments through self-adjusting search strategies. This flexibility makes
it perform well in solving diverse optimization problems and improves the convergence
speed of the algorithm [18]. GWO has attracted widespread attention from scholars and
has been used in many fields, including job shop scheduling [19], parameter extraction [20],
feature selection [21], disease classification prediction [22], engineering design [23], path
planning [24], etc. While theoretical analysis and the industrial applications of GWO have
achieved fruitful results, some shortcomings still exist, including the low accuracy and slow
convergence speed of unimodal functions and the local optima of multimodal functions,
which hinder the further development of GWO. In practical applications, the optimization
objectives of UAV path planning problems are complex and diverse. In recent years,
researchers have explored various variants of GWO. When complex environmental factors
and constraints are involved, the GWO algorithm easily falls into the local optimal solution
resulting in low search accuracy [25]. Yang Zhang [26] proposed MGWO, which introduced
an exponential regular convergence factor strategy, an adaptive update strategy, and a
dynamic weighting strategy to improve GWO’s search capabilities. Experimental results
prove that its convergence speed and the algorithm’s search ability are improved effectively.
Nadimi-Shahraki et al. [27] proposed IGWO, an algorithm based on the dimensional
learning hunting (DLH) search strategy, to enhance the information exchange between
wolves and wolves in their neighborhoods. It can balance their local and global searches and
preserve wolf diversity. Dhargupta et al. [28] applied Spearman’s coefficient to determine
opposition learning for operations on wolves. A GWO algorithm based on reverse learning
was proposed, named SOGWO, and its performance was greatly improved. Research in
the literature [29] combined the communication mechanism and horizontal comparison
strategies to propose a constrained optimization algorithm based on the gray wolf approach
and applied it to the pathfinding and collision avoidance of UAVs in a three-dimensional
environment. The authors of [17] divided the search space into multiple dimensionality-
reduction subspaces and proposed a parallel co-evolutionary GWO algorithm to overcome
the local optima problem caused by the increase in dimensions in the search space.

The GWO algorithm is a swarm intelligence (SI) algorithm and has received extensive
attention in recent years [16]. The structure of the traditional GWO is shown in Figure 1.
The traditional GWO divides wolves into four ranks based on their social status and
responsibilities: α, β, δ, and ω wolf. The α wolf is first-rank, and primarily makes decisions
in the hunt. The α wolf dominates all other wolves and has the best information about
the location of its prey. The β wolf is second-rank, and helps the α wolf to make decisions.
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The β wolf follows the α wolf and can command other lower-rank wolves. The δ wolf is
third-rank. The rest are ω wolves, belonging to the fourth rank, which is the lowest rank.
The predation process has two steps. The first step is to surround the prey. The second step
is to attack the prey. The model for surrounding the prey is shown by Formulas (1) and (2):

→
D =

∣∣∣∣→C ×
→
Xp(t)−

→
X(t)

∣∣∣∣ (1)

→
X(t + 1) =

→
Xp(t)−

→
A ×

→
D (2)

where
→
D is the distance between the gray wolf and the prey,

→
Xp(t) is the current position

vector of the prey,
→
X(t) is the current position vector of the gray wolf, and

→
X(t+1) is

the updated position of the current wolf.
→
A and

→
C are coefficient vectors indicating

disturbances, and can be obtained as follows:

→
A = 2

→
a ×→

r1 −
→
a (3)

→
C = 2 ×→

r2 (4)

→
a = 2 − 2t

Imax
(5)

where
→
r1 and

→
r2 are random numbers ranging from 0 to 1, t is the current iteration number,

Imax is the max iterations, and
→
a is a convergence factor decreasing linearly from 2 to 0

during the iteration process. When
→
a decreases from 2 to 0 over several iterations, the

gray wolf completes the hunt by attacking the prey and stopping the action.
→
a controls

the balance between mining and exploration. The size of the
→
A value indirectly affects the

optimization performance of the GWO algorithm.
→
C contributes to random behavior in the

optimization process and helps the algorithm to explore and avoid local optima.
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The GWO algorithm solves the target problem by simulating the hunting behavior of
wolves. The α, β, and δ wolves have more information about the prey and dominate the
hunting behavior of different ranks. Other search wolves update their positions relative to
them. The model of the attack process is as follows:

→
Dα =

∣∣∣∣→C1 ×
→
Xα −

→
X(t)

∣∣∣∣ (6)

→
Dβ =

∣∣∣∣→C2 ×
→
Xβ −

→
X(t)

∣∣∣∣ (7)
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→
Dδ =

∣∣∣∣→C3 ×
→
Xδ −

→
X(t)

∣∣∣∣ (8)

→
X1 =

→
Xα −

→
A1 ×

→
Dα (9)

→
X2 =

→
Xβ −

→
A2 ×

→
Dβ (10)

→
X3 =

→
Xδ −

→
A3 ×

→
Dδ (11)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(12)

where
→
Dα,

→
Dβ, and

→
Dδ are the distances from wolf ω to the α, β, and δ wolves respectively.

→
Xα,

→
Xβ, and

→
Xδ are the positions of the α, β, and δ wolves respectively.

→
C1,

→
C2,

→
C3,

→
A1,

→
A2,

and
→
A3 are coefficient vectors.

→
X1,

→
X2, and

→
X3 are the final positions of the α, β, and δ

wolves, and
→
X(t + 1) is the final position of the prey.

3. SSGWO Algorithm
3.1. Nonlinear Convergence Factor

Coordinating global search capability and local search capabilities helps GWO to
search for optimal solutions. The role of the convergence factor

→
a is to balance the global

search capability and local search capabilities of the algorithm [26]. During the iteration
process, the convergence factor

→
a in the traditional GWO algorithm decreases linearly from

2 to 0 with the number of iterations. However, in a practical search process, the initial stage
is required to converge slowly to expand the search space, and the later stage is required to
accelerate convergence to improve algorithm efficiency dynamically.

Therefore,
→
a , a new nonlinear convergence factor based on trigonometric functions, is

proposed, and its expression is shown in Formula (13):

→
a =

sin(
π∗(t+ tmax

2 )
tmax

+ π
2 ) + 2 0 ≤ t < tmax

2

sin(
π∗(t− tmax

2 )
tmax

+ π
2 )

tmax
2 ≤ t ≤ tmax

(13)

where t is the current iteration number and tmax is the max iterations. Figure 2 shows the
iteration image for the nonlinear convergence factor.
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As shown in Figure 2, the original convergence factor
→
a decreases linearly during

the iteration process. The improved convergence factor
→
a changes slightly in the early

stage of iteration and remains high for a long time. Thus,
→
A with a high value for a long

time improves global search capability. In the later stage of iteration, the status of
→
a and

→
A

is exactly the opposite, and local search capabilities are improved. The balance between
global search and local search can be obtained with better accuracy.

3.2. Fitness Value

In the process of solving the path planning problem with the GWO algorithm, evaluat-
ing the gray wolves individually to select α, β, δ, and ω wolves according to fitness value is
necessary [16]. α, β, and δ are the three best wolves. The α wolf uses a search with larger
strides in order to explore a wider area of the problem space. The β and δ wolves use a
moderate search strategy to optimize the solution’s quality further. The other ω wolves,
led by the three best wolves, take smaller steps to avoid premature convergence to the local
optimal solution.

In the iterative process, the fitness value proposed in this paper is proportional to
adaptability. The closer the relative distance, the greater the fitness value, and the better
the adaptability. This fitness adaptation strategy is shown as follows:

dα,β,δ
i =

→
Xi(t)−

→
Xα,β,δ (14)

dα,β,δ
ave =

n
∑

i=1
dα,β,δ

i

n
(15)

f
(→

Xα,β,δ

)
=

dα,β,δ
ave

dα,β,δ
i

(16)

where
→
Xi(t) is the coordinates of the current wolf,

→
Xα,β,δ represents the coordinates of the

α, β, and δ wolves, respectively, n is the number of wolves, and f
(→

Xα,β,δ

)
represents the

fitness values of the α, β, and δ wolves, respectively. dα,β,δ
i is the distance between the

current wolf and the α, β, and δ wolves, respectively. dα,β,δ
ave is the average distance between

all gray wolf individuals and the α, β, and δ wolves, respectively. The ratio of dα,β,δ
ave to dα,β,δ

i
is used to represent the distance of the current relative position of the individual, that is,
the fitness value. With stride adjustments in the search process, the GWO algorithm can
maintain a certain degree of adaptation capability and accelerate convergence to the global
optimal solution.

3.3. The Alternative Position Update Strategy Based on SA

In the search process, the α wolf is the leader of all other wolves. The β wolf is the
leader of the δ and ω wolves [27]. The δ wolf is the leader of the ω wolves. The position
update is as follows:

→
X1 =

→
Xα −

→
a × b × (

→
Xr1 −

→
Xr2) (17)

→
X2 =

→
Xβ −

→
a × b × (

→
Xα −

→
Xβ) (18)

→
X3 =

→
Xδ −

→
a × b × (

→
Xα −

→
Xδ) (19)

where
→
X1,

→
X2, and

→
X3 are the final positions of the α, β, and δ wolves;

→
Xα,

→
Xβ, and

→
Xδ are

the current positions of the α, β, and δ wolves;
→
Xr1 and

→
Xr2 are the current positions of the

ω wolf individuals, respectively;
→
a is the nonlinear coefficient factor, which decreases from
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2 to 0; r1 and r2 are different integers in the range of 1 to the number of ω wolves; and b is a
random number in [0, 2].

The higher-ranked wolves, which have more information, have greater weights. The
weights for the α, β, and δ wolves, wα, wβ, and wδ, are calculated based on the fitness value
as follows:

wa =

f
(→

Xα

)
(

f
(→

Xα

)
+ f

(→
Xβ

)
+ f

(→
Xδ

)) (20)

wβ =

f
(→

Xβ

)
(

f
(→

Xα

)
+ f

(→
Xβ

)
+ f

(→
Xδ

)) (21)

wδ =

f
(→

Xδ

)
(

f
(→

Xα

)
+ f

(→
Xβ

)
+ f

(→
Xδ

)) (22)

→
X′(t + 1) = wα ×

→
X1 + wβ ×

→
X2 + wδ ×

→
X3 (23)

where
→
Xα,

→
Xβ, and

→
Xδ are the positions of the α, β, and δ wolves. f

(→
Xα

)
, f
(→

Xβ

)
, and

f
(→

Xδ

)
are their fitness values, respectively.

→
X1,

→
X2, and

→
X3 are the final positions of the α,

β, and δ wolves.
→
X′(t + 1) is the final position of the prey.

The SA algorithm, inspired by physical phenomena during metal quenching, is a
global optimization algorithm used to find a solution close to the global optimal solution in
the search space [30]. In order to prevent the GWO algorithm from easily falling into local
optimal solutions, the SA algorithm is introduced to get the probability P of being promoted
to an α wolf with fitness. The probability P enhances the search space of the α wolf and
creates an alternative position update strategy representing the diversity capability. P is
obtained as follows:

P = e
−( f (

→
X α)t+1− f (

→
X α)t)

Tt (24)

Tt+1 = η × Tt (25)

where f
(→

Xα

)
t

represents the fitness value of the α wolf in the current iteration and

f
(→

Xα

)
t+1

is the fitness value of the α wolf after cooling in the current iteration, namely

the fitness value of the α wolf in the next iteration. Tt represents the temperature of the
current iteration and Tt+1 is the temperature after cooling, namely the temperature of the α
wolf in the next iteration. η is the cooling coefficient. The global search ability is improved
with this strategy.

3.4. Pseudo Code of SSGWO

SSGWO can jump out of the local optimal solution, improving the ability to search for
the global optimal solution, balance global and local search capabilities, and accelerate the
convergence speed effectively. Algorithm 1 is the pseudo code of the SSGWO algorithm.
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Algorithm 1 Pseudo code of SSGWO

Initialize the wolf population
→
Xi(i = 1, 2, . . . , N),

→
A, and

→
C

Calculate the fitness of all search agents
→
Xα = the first-rank search agent
→
Xβ = the second-rank search agent
→
Xδ = the third-rank search agent

While (t < Max number of iterations) do
For each search agent
While (P > rand(0, 1) ) do

Calculate the weights of the three best wolves
Get P using Equation (24)
Update the position of the agent by Equation (23)

End while
End for

Update
→
A,

→
C and

→
a according to Equations (3), (4) and (13)

Calculate the fitness of all search agents

Update
→
Xα,

→
Xβ, and

→
Xδ

t = t + 1
End while

The time complexity and space complexity of SSGWO primarily depend on the iter-
ation number and the operations performed in each search agent. The time complexity
of initializing the population is O (N) and the time complexity of computing fitness is O
(N). The time complexity of each iteration depends on the operations in each search agent.
The total iteration time complexity is O (T × N). The space complexity mainly depends on
the array storing the search agent positions; each search agent has a location, so its space
complexity is O (N). T is the number of iterations. N is the number of search agents.

4. UAV Flight Constraints and Path Smoothing
4.1. Constraint Modeling

In the practical UAV flight process, some performance constraints should be considered
to establish a more efficient path. In the optimization process, flight distance, flight angle,
and obstacles are considered with cost functions as follows.

1. Path distance cost f1(d)

In the flight mission of a UAV, the limitation of energy and battery capacity is a key
factor, which directly affects the flight time and flight range of the UAV [13]. Therefore,
the flight distance of the UAV is limited, and the shortest path that satisfies the constraints
should be selected. As shown in Figure 3, if there are M intermediate nodes in a path, the
path is divided into M + 1 segments. The current node coordinate is (xi, yi, zi). The path
distance cost function is shown in Equation (26):

f1(d) =
M+1

∑
i=1

di × µd (26)

di =

√
(xi − xi+1)

2 + (yi − yi+1)
2 + (zi − zi+1)

2 (27)

where di is the distance between adjacent nodes and µd is the penalty coefficient of the
path distance.
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2. Angle change cost f2(a)

UAV path planning must fully consider angle constraints. By penalizing changes in
yaw angle, the path planning method is encouraged to generate smooth, coherent paths [13].
When the UAV is flying, the changes in yaw angle and pitch angle should be as small as
possible. The cost function is as follows:

f2(a) = f yaw
2 (a) + f pit

2 (a) (28)

f yaw
2 (a) =


M
∑

i=1
µyaw × e(θi−θi−1) θi ̸= θi−1

0 θi = θi−1

(29)

f pit
2 (a) =


M
∑

i=1
µpit × e(ϕi−ϕmax) ϕi > ϕmax

0 ϕi < ϕmax

(30)

where f yaw
2 (a) and f pit

2 (a) are the penalty values for the changes in yaw angle and pitch
angle, respectively, M is the number of intermediate nodes in each path; and µyaw and µpit
are the penalty coefficients for the changes in yaw angle and pitch angle, respectively. θi
and θi−1 are the current yaw angle and the previous yaw angle, respectively. ϕi represents
the pitch angle of the current node, and ϕmax represents the maximum pitch angle. This
restriction is to ensure the maneuverability and safety of the UAV without excessive attitude
changes during flight. Thus, the UAV can maintain good motion status and stability in the
path planning process with quality and efficiency.

3. Obstacle cost f3(obs)

In complex environments, obstacles are the key factor directly affecting safety and the
planning of the UAV [29]. In order to ensure that the UAV can avoid obstacles and maintain
a safe flight, the obstacle cost function is defined by the safety constraint associated with
obstacles, as shown in Formula (31):

f3(obs) =

{
µobs × 1

dobs
dobs < dsa f e

0 dobs > dsa f e
(31)

dobs =
M

∑
i=1

S

∑
j=1

√(
xi − xobsj

)2
+
(

yi − yosbj

)2
+
(

zi − zobsj

)2
− (Ruav + Robs) (32)
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where dobs is the distance between the current node and an obstacle, M is the number of
nodes, S is the number of obstacles, (xi, yi, zi) represents the coordinates of the current
node, (xobsj

, yosbj
, zobsj

) are the coordinates of the current obstacle, Ruav is the radius of the
UAV, Robs is the radius of the obstacle, dsa f e is the safety distance, and µobs is the obstacle
penalty coefficient.

4. Path evaluation cost F

Taking into account the path distance, yaw and pitch angle, and the safety constraint
associated with obstacles, the path cost function used to evaluate path quality is shown in
Formula (33):

F = ρ1 × f1(d) + ρ2 × f2(a) + ρ3 × f3(obs) (33)

ρ1 + ρ2 + ρ3 = 1 (34)

where f1(d) is the path distance cost function, f2(a) is the yaw angle and pitch angle cost
function, and f3(obs) is the obstacle cost function. ρ1, ρ2, and ρ3 are the corresponding
weight factors, respectively.

4.2. Path Smoothing

In order to ensure the feasibility and smoothness of the path, the B-spline curve
strategy is introduced as shown in Figure 4 [31]. This curve is an interpolation curve,
usually used to fit data or generate smooth curves, which can quickly calculate local curve
segments without recalculating the entire curve. B-spline converts a given control point
into a set of parameters and uses these parameters to calculate points on the curve. The
B-spline curve is defined as shown in Formula (35):

P(u) =
N

∑
i=0

pi × Ni,k(u) (35)

where pi is the current control point. Ni,k(u) is the current k-degree basis function for
B-spline, as defined in Formulas (36) and (37):

Ni,k(u) =

{
1 ui ≤ u ≤ ui+1

0 other wise
(36)

Ni,k(u) =
u − ui

ui+k − ui
Ni,k−1(u) +

ui+k+1 − u
ui+k+1 − ui+1

Ni+1,k−1(u) (37)
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The basic function is determined by a non-decreasing parameter sequence, and ui is
the current parameter node.

5. Experiment Results
5.1. SSGWO Algorithm Performance

The experiment used the 64-bit Windows 10 operating system for testing, and the
experimental software used MATLAB R2020b to perform algorithmic operations. In order
to verify the performance of the improved SSGWO algorithm, nine benchmark functions
were selected for testing. Table 1 gives the detailed descriptions of nine functions, including
function expression, number of iterations, range of values, and theoretical optimal values.
In order to fully prove the feasibility and accuracy of the SSGWO algorithm and at the
same time ensure the relative fairness of the algorithm’s operation results, this paper
unifies the algorithm test method and the test data in the simulation experiment. The
population number was set to 30, the maximum number of iterations was 500, and all
experiments were run independently 50 times to prevent the influence of randomness on
the algorithm’s operation results. GWO [16], MGWO [26], IGWO [27], SOGWO [28], and
the improved algorithm SSGWO from this paper were selected for better optimization
results. The simulation experiment compared and recorded the optimal value, average
value, and standard deviation of the experimental results. Table 2 records a comparison
of the average values and standard deviations of the results of 50 independent runs of
the algorithm. The smaller the average value, the higher the optimization accuracy of the
algorithm; the smaller the standard deviation, the more stable the algorithm.

Table 1. Benchmark functions.

Function Iterations Ranges Optimal Value

f1(x) =
n
∑

i=1
xi

2 500 [−100, 100] 0

f2(x) =
n
∑

i=1
xi +

n
∏
i=1

|xi| 500 [−10, 10] 0

f3(x) =
n−1
∑

i=1

[
100(xi+1 − xi

2)
2
+ (xi − 1)2

]
500 [−30, 30] 0

f4(x) = max|xi|, 1 ≤ i ≤ n 500 [−100, 100] 0

f5(x) =
n
∑

i=1

(
i

∑
j=1

xj

)2
500 [−100, 100] 0

f6(x) =
n
∑

i=1
ixi

4 + random[0, 1) 500 [−1.28, 1.28] 0

f7(x) =
n
∑

i=1

[
xi

2 − 10 cos(2πxi) + 10
] 500 [−5.12, 5.12] 0

f8(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
xi

2

)
−

exp
(

1
30

n
∑

i=1
cos(2πxi) + 20 + e

) 500 [−32, 32] 0

f9(x) = 1
4000

n
∑

i=1
xi

2 −
n
∏
i=1

cos
(

xi√
i

)
+ 1 500 [−600, 600] 0

Table 2. Results of benchmark functions.

Function Algorithm Average Value Standard
Deviation Optimal Value

GWO 3.2532 × 10−26 1.3267 × 10−26 4.4327 × 10−30

MGWO 3.5394 × 10−196 2.8467 × 10−198 0
f1 IGWO 2.8327 × 10−28 3.2597 × 10−29 1.3879 × 10−32

SOGWO 3.3227 × 10−76 2.79548 × 10−78 1.3261 × 10−80

SSGWO 0 2.6741 × 10−199 1.1349 × 10−199
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Table 2. Cont.

Function Algorithm Average Value Standard
Deviation Optimal Value

GWO 3.2671 × 10−13 3.2481 × 10−14 2.2738 × 10−15

MGWO 1.5371 × 10−77 2.6137 × 10−78 1.3367 × 10−80

f2 IGWO 3.1679 × 10−19 3.2467 × 10−20 3.2497 × 10−23

SOGWO 1.8342 × 10−65 2.8643 × 10−68 2.1973 × 10−70

SSGWO 1.1463 × 10−85 2.7239 × 10−86 1.2371 × 10−87

GWO 2.8237 × 1001 2.2537 × 10−01 2.6192 × 10−01

MGWO 2.7136 × 1001 6.2276 × 10−01 4.7431 × 10−01

f3 IGWO 2.4837 × 1001 2.6927 × 10−01 4.4293 × 10−01

SOGWO 2.5197 × 1001 2.4977 × 10−01 2.3291 × 10−01

SSGWO 2.0637 × 1001 4.1876 × 10−02 2.4037 × 10−02

GWO 2.6217 × 10−06 3.5127 × 10−06 6.1837 × 10−07

MGWO 5.2739 × 10−90 3.2267 × 10−90 1.6239 × 10−91

f4 IGWO 3.3392 × 10−46 1.9643 × 10−45 1.7234 × 10−48

SOGWO 3.5731 × 10−96 4.3797 × 10−98 2.7944 × 10−101

SSGWO 0 0 0

GWO 2.7945 × 10−07 2.8153 × 10−06 4.1687 × 10−08

MGWO 3.3754 × 10−160 4.7687 × 10−161 0
f5 IGWO 2.2738 × 10−04 3.7327 × 10−04 1.7822 × 10−06

SOGWO 1.7322 × 10−106 2.7528 × 10−107 4.2975 × 10−109

SSGWO 2.7254 × 10−178 3.3784 × 10−180 4.8374 × 10−181

GWO 1.4687 × 10−03 1.3573 × 10−03 2.6874 × 10−04

MGWO 1.7225 × 10−04 1.2539 × 10−04 7.1783 × 10−05

f6 IGWO 1.2769 × 10−04 1.2677 × 10−04 2.5723 × 10−05

SOGWO 3.6728 × 10−04 3.7392 × 10−05 1.5973 × 10−05

SSGWO 2.9271 × 10−05 3.2795 × 10−05 5.3764 × 10−06

GWO 2.1733 × 10−09 4.2734 × 10−08 0
MGWO 0 0 0

f7 IGWO 4.3651 × 10−12 5.7532 × 10−13 0
SOGWO 1.8327 × 10−45 4.3687 × 10−46 0
SSGWO 0 0 0

GWO 1.2764 × 10−13 1.4791 × 10−14 2.5794 × 10−14

MGWO 3.9763 × 10−15 5.7219 × 10−15 2.4564 × 10−16

f8 IGWO 2.3715 × 10−14 3.7912 × 10−15 1.3741 × 10−14

SOGWO 3.7941 × 10−18 2.7646 × 10−18 0
SSGWO 0 0 0

GWO 3.7911 × 10−04 2.3257 × 10−03 0
MGWO 0 0 0

f9 IGWO 7.7497 × 10−04 5.4259 × 10−04 2.7491 × 10−05

SOGWO 0 0 0
SSGWO 0 0 0

As shown in Table 2, for the benchmark function f1, the averages and standard
deviations for the SSGWO algorithm are better than for the other four algorithms, and
the theoretical optimal value is close to 0. Taken together, the optimization effect of the
SSGWO algorithm is better than of the other four algorithms; for function f2, the average
and standard deviation of the improved algorithm are 1.1463 × 10−85 and 2.7239 × 10−86,
respectively. The optimization accuracy and stability of this algorithm are significantly
higher than of GWO and IGWO. On average, it is nearly 10 orders of magnitude better
than other algorithms in terms of numerical accuracy; for functions f3 and f4, the IGWO
algorithm has better search capabilities, but lacks the ability to converge to globally better
values, because it does not incorporate an appropriate perturbation strategy. The SSGWO
algorithm achieved the best optimization results, and the average value, standard deviation,
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and optimal value of the algorithm all reached the theoretical optimal value 0. For function
f5, the solution accuracy between algorithms shows a small range of differences, with an
average difference of only one order of magnitude. Although the optimal value of SSGWO
is slightly lower than the accuracy of the MGWO algorithm, the mean and standard
deviation are smaller than that of each compared algorithm. This shows that SSGWO has
stronger algorithmic optimization capabilities in its test functions; for test function f6, the
three indicators calculated by SSGWO are all better than those of the other algorithms, so
the optimization accuracy and stability are outstanding; for functions f7, f8, and f9, SSGWO
not only achieves the best average value, but its standard deviation is also the smallest,
indicating that SSGWO has high robustness.

As shown in Table 2, for the average values among the nine benchmark functions, the
average results of the SSGWO algorithm are better than those of the other algorithms, and
the average values for functions f1, f4, f7, f8, and f9 all obtained the theoretical optimal
value 0; for standard deviation, MGWO and SSGWO achieved the optimal value 0 for
functions f7 and f9, SOGWO and SSGWO achieved the optimal value 0 for function f9, and
the standard deviation results for the SSGWO algorithm were better than for the others on
the benchmark test function.

Compared with the standard GWO algorithm, the SSGWO algorithm achieved better
optimization results on nine functions. For function f3, the GWO and SSGWO algorithms
achieved similar results; for function f6, the standard GWO algorithm achieved better
results. But the mean and standard deviation for SSGWO were better than those for
standard GWO.

Compared with the MGWO algorithm, SSGWO obtained better optimization results
on the f1 function, and MGWO obtained better optimal values. For functions f2, f3, f5, and
f6, all three indicators for SSGWO were slightly better than for MGWO; for the functions f4,
f7, f8, and f9, both the mean and standard deviation of SSGWO obtained the theoretical
optimal value 0.

Compared with the IGWO algorithm, for function f6, SSGWO and IGWO obtained
similar average values and standard deviations; for function f3, SSGWO and IGWO ob-
tained similar average values. For the other functions, the mean and standard deviation of
SSGWO were significantly better than for IGWO.

Compared with SOGWO, for function f9, the average, standard deviation, and optimal
value for the two algorithms all obtained the theoretical optimal value 0; for other functions,
SOGWO achieved better optimization results, but SSGWO was better than SOGWO in that
most of the test functions had a higher solution accuracy optimization effect.

The above comparison results indicate that SSGWO exhibits higher solution accuracy
and stability compared with the standard GWO, MGWO, IGWO, and SOGWO algorithms
across most test functions.

5.2. Path Planning

The main goal of path planning is to find optimal and collision-free trajectories. To as-
sess the effectiveness of the SSGWO algorithm in addressing path planning challenges, the
algorithm underwent comparisons with relevant algorithms through simulated examples.
MATLAB R2020b software was employed to conduct the simulations.

5.2.1. Path Planning Based on Eight Obstacle Threat Areas

In order to verify the performance of the SSGWO algorithm, this study simulated the
flight environment for UAVs in field vegetation areas. The SSGWO algorithm was applied
to UAV path planning for verification analysis, and the path was smoothed through the
B-spline curve. The size of the flight space was 800 × 800 × 20, and the starting point
and end point were [0, 0, 0] and [800, 800, 15], respectively. The cylindrical obstacles and
obstacle information are shown in Table 3.
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Table 3. Information 1 on the obstacles.

Obstacle Center Obstacle Radius/m Obstacle Height/m

(250, 200, 9) 40 18
(600, 700, 9) 30 18

(130, 120, 8) 30 16
(300, 280, 8.5) 40 17

(350, 600, 9.5) 40 19
(480, 400, 9) 60 18

(700, 650, 8.5) 40 17
(720, 760, 9.5) 50 19

The GWO, MGWO, IGWO, SOGWO, and SSGWO algorithms were used for path
planning and compared. The maximum number of iterations was 500, the initial number of
wolves was 30, the simulation experiment was run 50 times, and the number of path nodes
M was set to 30. In order to display the path effect more clearly, the three perspectives with
the best results are shown in Figures 5–7, with five paths in each figure, corresponding
to the five different algorithms for UAV path planning under the same environmental
constraints, showing a comparison of the path planning trajectories of the five algorithms in
the three-dimensional environment. Figure 8 shows the path top view, and Table 4 records
the flight records of the UAV, where pitch represents the average pitch angle of the M nodes
on the path, yaw represents the average yaw angle difference between two adjacent nodes
among the M nodes on the path, and dis-to-obs represents the average distance between
the current node and the nearest obstacle among M nodes on the path.

Table 4. Navigation data 1.

Algorithm Minimum
Distance/m

Average
Distance/m

Number of
Collisions Pitch/◦ Yaw/◦ Dis-to-Obs/m

GWO 1376 1462 5 41 57 102
MGWO 1268 1379 3 35 51 81
IGWO 1337 1394 2 37 53 95

SOGWO 1233 1297 2 34 48 65
SSGWO 1132 1203 0 29 41 57
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As shown in Figures 5–8, these five algorithms can effectively find feasible solutions.
This fact fully proves that these algorithms have extremely high practical value for practi-
cal applications. Compared with traditional mathematical methods, these metaheuristic
algorithms show more outstanding practicability in problem solving. They can effectively
overcome diversity and uncertainty in complex problems. In terms of optimal results, GWO
and the four GWO variants showed different performance. In terms of performance, the
GWO algorithm showed relatively weak performance, mainly because it is highly depen-
dent on the first three wolves in the optimization process, which often causes the algorithm
to quickly fall into a local optimal solution. The path planned by GWO is the farthest from
the obstacle, but the path is too long and is less helpful for practical applications. SSGWO
has higher convergence accuracy and stability than the other algorithms. The path found by
the SSWGO algorithm is better than for the other four algorithms. Although it is the closest
to the obstacle, it ensures the shortest path and also meets the safe distance requirement.
The minimum path distance and the average path distance are both optimal values, and in
the 50 optimization processes the number of collisions was 0. The path length for SOGWO
is shorter, but the planned path has too many inflection points, which affects navigation
efficiency and is not conducive to the applications of UAVs.

Through comparative experiments, the SSWGO algorithm can plan feasible and safe
optimal paths for UAVs to perform agricultural tasks. Its application in agricultural
production can help improve production efficiency and reduce costs. By improving the
limitations of the GWO algorithm, a safe and reliable path can be planned stably. This path
can not only satisfy various constraints under the premise of optimal cost, but also make full
use of the performance of the algorithm to ensure the effectiveness and feasibility of path
planning. This improved method has wide applicability for solving practical problems and
provides a more reliable and efficient solution for the application of UAV path planning.

5.2.2. Path Planning Based on Twelve Obstacle Threat Areas

In order to further prove the effectiveness of SSGWO, the number of obstacles was in-
creased and tested in a simulation task. As the complexity of the drone flight environment
increases, multi-dimensional testing is needed to analyze the performance advantages
and disadvantages of various algorithms. By simulating complex environments, the per-
formance of each algorithm can be more comprehensively evaluated and the trajectory
planning path maps solved by each algorithm can be generated to test the scalability of the
SSGWO algorithm for agricultural UAV path planning under the constraints of 12 obstacle
threat areas. The trajectory results are shown in Figures 9 and 10. The obstacle information
is shown in Table 5, and Table 6 records the UAV flight records.
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Table 5. Information 2 on the obstacles.

Obstacle Center Obstacle Radius/m Obstacle Height/m

(250, 200, 9) 40 18
(600, 700, 8) 35 16

(130, 120, 8) 30 16
(300, 280, 8.5) 50 17

(350, 600, 9.5) 40 19
(480, 400, 9) 60 18

(700, 650, 8.5) 40 17
(720, 760, 8.5) 30 17
(620, 650, 7.5) 25 15
(520, 560, 9.5) 30 19
(400, 200, 8) 25 16

(700, 400, 8.5) 30 17

Table 6. Navigation data 2.

Algorithm Minimum
Distance/m

Average
Distance/m

Number of
Collisions Pitch/◦ Yaw/◦ Dis-to-Obs/m

GWO 1278 1351 8 44 59 93
MGWO 1281 1362 5 37 56 87
IGWO 1226 1376 4 39 55 76

SOGWO 1321 1347 3 33 51 94
SSGWO 1167 1203 0 26 40 68

In complex environments with multiple constraints, the path planned by the SSGWO
algorithm not only appears to be the shortest, but also maintains the highest level of smooth-
ness. By observing the five algorithms in Figures 9 and 10, it can be clearly seen that, as the
complexity of the environment increases, only the paths planned by the two algorithms
SOGWO and SSGWO show greater feasibility. In 50 experiments, the number of collisions
with the SSGWO algorithm was zero, which means that its planned path is not only the
shortest, but also performs best in terms of smoothness. The SSGWO algorithm shows ex-
cellent performance under complex environmental models and successfully generates safe
and feasible flight paths. This demonstrates SSGWO’s strong adaptability to handle diverse
threats and constraints, and proves the feasibility of SSGWO in complex environments.
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5.2.3. Path Planning in Agricultural Environments

In order to further verify the adaptability of the SSGWO algorithm in agriculture, a
terrain with obstacles in a three-dimensional agricultural environment was simulated. The
simulation results are shown in Figures 11 and 12, the obstacle information is shown in
Table 7, and the flight records are shown in Table 8.
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From Figures 11 and 12, among the five algorithms selected in this paper, only SS-
GWO and IGWO generated safe paths. However, the path planned by IGWO has some
problems, including that the pitch angle is too large, the path is too long, and the path is
not smooth enough. Table 8 shows that, in 50 simulation experiments, SSGWO performed
well, with only one collision, and the planned path was the shortest. It also satisfied the
angle change constraints and obstacle constraints. This proves that the path planned by
the SSGWO algorithm is still the shortest and smoothest under the influence of various
threats and constraints. This provides a reliable solution for path planning for UAVs in
agricultural applications.
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Table 7. Information 3 on the obstacles.

Obstacle Center Obstacle Radius/m Obstacle Height/m

(150, 180, 7) 45 13
(300, 100, 6) 60 11

(380, 400, 8) 45 15
(480, 210, 8) 45 14

(320, 650, 7.5) 45 13.5
(430, 700, 8) 45 14
(560, 630, 7) 45 13
(750, 660, 8) 45 14

Table 8. Navigation data 3.

Algorithm Minimum
Distance/m

Average
Distance/m

Number of
Collisions Pitch/◦ Yaw/◦ Dis-to-Obs/m

GWO 1263 1358 18 53 64 92
MGWO 1256 1289 14 45 54 84
IGWO 1292 1384 9 57 49 97

SOGWO 1225 1276 12 39 49 61
SSGWO 1129 1178 1 26 39 51

6. Discussion

Through simulation tests and comparative experiments, the SSGWO algorithm has
good performance in terms of convergence and stability and can create feasible and safe op-
timal trajectory paths for UAVs when performing tasks. The advantages and disadvantages
of the work done in this paper and in other literature are recorded in Table 9.

Table 9. Comparison of advantages and disadvantages.

Algorithm Advantages Disadvantages

GWO It is easy to implement and performs well
on some optimization problems.

The convergence speed is relatively slow.
When dealing with some problems with
complex local structures, the local search
ability is relatively weak and it is easy to

fall into the local optimal solution.

MGWO Prevents the algorithm from falling into
the local optimal solution prematurely.

Increased complexity can make it more
difficult to understand and use

the algorithm.

IGWO
A balance is achieved between local and
global search, helping to better explore

the problem space.

The choice of initial solution will have an
impact on the performance of

the algorithm.

SOGWO
Improves global search performance and
prevents the algorithm from falling into

local optimality.

It is sensitive to the nature of the problem
and is not suitable for all types of

optimization problems.

SSGWO
Performs well in global search and
improves convergence through the

SA algorithm.

The adaptability to specific problems is
weak or parameters may need to be

adjusted for some problems.

The MGWO proposed in [26] introduces an exponential regular convergence factor
strategy, an adaptive update strategy, and a dynamic weighting strategy to enhance the
search performance of GWO, but there are still some potential shortcomings, and the
introduction of new strategies and factors may increase the complexity of the algorithm,
including the difficulty of implementing and tuning these parameters. This may make it
more difficult to understand and use the algorithm.
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The IGWO algorithm proposed in [27] shows excellent search capabilities, but it has
some shortcomings in its ability to converge to the global optimal value. This is due to
the lack of appropriate perturbation strategies. This algorithm shows good flexibility and
extensive exploration capabilities during the search process, but it is relatively weak in
quickly converging to the global optimal solution.

SOGWO, proposed in [28], applies Spearman’s coefficient to determine wolf pack
operations. Spearman’s coefficient is a non-parametric statistical method that does not
depend on the specific distribution of data. It is insensitive to the distribution shape of the
data and is suitable for various types of data. The Spearman coefficient is highly sensitive
to sorting information, which may result in an inability to accurately reflect small changes
in operations. Therefore, the planned path will have more turning points.

7. Conclusions

Aiming at the path planning problem for agricultural UAVs, a new hybrid algorithm
named SSGWO was proposed. In this paper, a better convergence factor was proposed; the
position update equation was improved; and, combined with a suitable fitness function,
the iterative process of the global optimal solution of the GWO algorithm was combined
with the SA algorithm. This improves the diversity of the population, avoids falling into
the local optimal solution, and enhances the search capability of the SSGWO algorithm.
The SSGWO algorithm was effectively applied to solve the three-dimensional UAV path
planning problem by converting it into an optimization problem. The optimal path is
determined by minimizing the cost function, and, finally, the B-spline curve is used to
smooth the path to improve path quality and feasibility. UAV path planning faces multiple
challenges, such as energy consumption, flight distance, and safety in real-life applications.
This paper considers the cost of yaw angle changes and pitch angles during the path
planning process, which effectively prevents the UAV from turning too sharply during
flight and improves the stability of overall path planning. The path length cost is considered
to make the UAV flight path shorter and reduce energy consumption. In addition, we also
considered drone and obstacle costs to ensure that the drone can avoid obstacles and follow
the predetermined path. Experimental results show that the SSGWO algorithm has better
performance than the GWO, MGWO, IGWO, and SOGWO algorithms. This method has
achieved remarkable results in path planning and can better meet flight distance restrictions,
safety constraints, and steering angle requirements. The effectiveness and significance of
the SSGWO algorithm for agricultural UAV path planning problems were proved.

Although SSGWO has demonstrated notable achievements in algorithmic performance
and path planning, this research also has some limitations. There are special environments
in agricultural production, such as different types of farmland, climate changes in different
seasons, etc., which require higher real-time performance from the algorithm. In future
work, we will try to use multi-UAV systems to solve more complex agricultural tasks.
Research should explore collaborative operations between UAVs, realize information shar-
ing and collaborative operations between multiple UAVs, and improve the efficiency of
agricultural production.

Author Contributions: Conceptualization, J.F. and C.S.; methodology, J.F. and C.S.; software, C.S.;
validation, J.F., C.S., J.Z. and Y.D. (Yue Du); formal analysis, J.F.; investigation, J.F., C.S. and Y.D. (Yue
Du); resources, C.S.; data curation, J.Z.; writing—original draft preparation, C.S.; writing—review
and editing, J.F.; visualization, J.F., C.S., Z.L. and Y.D. (Yuanming Ding); supervision, J.F.; project
administration, C.S.; funding acquisition, J.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported in part by the interdisciplinary project of Dalian University
(DLUXK-2023-ZD-001).

Data Availability Statement: The data are not publicly available due to privacy restrictions.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2024, 13, 68 21 of 22

Abbreviations

The following abbreviations are used in this manuscript:
Parameters Definition
UAV Unmanned aerial vehicle
PSO Particle swarm optimization
GA Genetic algorithm
QPSO Quantum particle swarm optimization
GWO Gray wolf optimization
MGWO Modified grey wolf optimization algorithm for global optimization problems
IGWO Improved grey wolf optimizer for solving engineering problems
DLH Dimensional learning hunting
SOGWO Selective-opposition-based grey wolf optimization
SI Swarm intelligence

SSGWO
A UAV path-planning method in three-dimensional space based on the hybrid
gray wolf optimization algorithm

SA Simulated annealing
B-spline Basis spline
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