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Abstract. Load balancing (LB) is an important and challenging optimi-
sation problem in cloud computing. LB involves assigning a set of services
into a set of machines for which the goal is to optimise machine usages.
This study presents a memetic algorithm (MA) for the LB problem.
MA is a hybrid method that combines the strength of population based
evolutionary algorithms with local search. However the effectiveness of
MA mainly depends on the local search method chosen for MA. This is
because local search methods perform differently for different instances
and under different stages of search. In addition, invoking local search
at every generation can be computationally expensive and compromise
the exploration capacity of search. To address these issues, this study
proposes a variable local search based MA in the context of LB problem.
The proposed MA uses multiple local search mechanisms. Each one nav-
igates a different area in search space using a different search mechanism
which can leads to a different search path with distinct local optima. This
will not only help the search to avoid being trap in a local optima point,
but can also effectively deal with various landscape search characteristics
and dynamic changes of the problem. In addition, a diversity indicator is
adopted to control the local search processes to encourage solution diver-
sity. Our MA method is evaluated on instances of the Google machine
reassignment problem proposed for the ROADEF/EURO 2012 challenge.
Compared with the state of the art methods, our method achieved the
best performance on most of instances, showing the effectiveness of vari-
able local search based MA for the Load Balancing problem.

Keywords: Local search ·Memetic algorithms · Load balancing · Cloud
computing · Meta-heuristics

1 Introduction

Cloud computing is a fast growing technology that provides on-demand com-
puting services over the Internet [3,6]. It offers network access to a various
shared pool of configurable computing resources including storage, processing,
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bandwidth and memory. A cloud provider, such as Google and Amazon, man-
ages a data centre of which the computing resources are to be shared by end
users. With the rapid growth of the demand in cloud services, optimal resources
allocation becomes one the most important targets in cloud computing [6].

Load balancing (LB) is one of the cloud resource allocation tasks seeking for
the best arrangement of services into a set of machines so the usage of these
machines can be improved. In this paper, we consider the LB problem intro-
duced by Google for the ROADEF/EURO 2012 challenge [1]. The task is named
as Machine Reassignment Problem (MRP). The goal of MRP is to improve
the usage of resources by reassigning a set of processes into a set of machine,
while all problem constraints must be satisfied. A range of methods have been
proposed to solve MRP. These include variable neighbourhood search [8], con-
straint programming-based large neighbourhood search [15], large neighbour-
hood search [4], multi-start iterated local search [14], simulated annealing [20]
and restricted iterated local search [13].

In this study, we propose a memetic algorithm (MA) based method for this
load balancing problem. MA is a stochastic optimisation search method which
combines population based algorithm with local search. The rationale of MA
is to synergise the exploration power of population based algorithms with the
exploitation capability of local search [16]. MA has been proven very success-
ful in solving various difficult optimisation problems [17]. However the success
of MA is not automatic [21,22,25]. There are two important aspects that have
to be considered when designing MA for a particular problem [18]. Firstly, the
choice of local search is important. The performance of MA heavily depends
on the selected local search algorithm. It is difficult for one local search to fit
with diverse features of different instances of different problems. Even for the
same instance, the characteristic of search space under different stages may vary
significantly [24]. That makes the choice of local search method difficult and crit-
ical. Secondly, MA often faces the challenge of how to preserve the diversity of
a search process [23]. Excessive use of local search may consume more computa-
tion on exploitation compromising the effort on exploration. To address these two
issues, we propose a variable local search based memetic algorithm. It combines
genetic algorithm (GA) with multiple local search algorithms in which each one
can navigate a different area in the search space. Different search mechanisms
can lead to a different search path with distinct local optima. Furthermore a
diversity indicator is adopted to control the invocation of local search to prevent
lost of diversity in the population of solutions. With the proposed method, there
is no need to examine the nature of a load balancing problem and to choose an
appropriate local search for the problem. The need of tuning the local search is
also unnecessary in the proposed MA approach.

The proposed algorithm are evaluated on small and large scale instances
of the machine reassignment problem from ROADED/EURO 2012 challenge.
For comparison purposes, the state of the art algorithms for this challenge are
included as well. In Sect. 2, this challenge is described in details. The proposed
variable local search based MA is presented in Sect. 3. Section 4 shows the experi-
ment settings while the results are listed in Sect. 5. Section 6 concludes this study.
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2 Problem Description

The so-called machine reassignment problem (MRP) introduced by Google [1]
for the ROADEF/EURO 2012 challenge is load balancing problem. It is a chal-
lenging combinatorial optimisation problem which is to find the optimal way
to assign processes to machines in order to improve the usage of a given set of
machines. One machine consists of a set of resources such as RAM and CPUs.
One process can be moved from one machine to another to improve overall
machine usage. The allocation of processes must not violate the following hard
constraints:

– Capacity constraints: the sum of requirements of resource of all processes
should be less than or equal to the capacity of the allocated machine.

– Conflict constraints: processes of the same service should be allocated into
different machines.

– Transient usage constraints: if a process is moved from one machine to
another, it requires adequate amount of capacity on both machines.

– Spread constraints: the set of machines is partitioned into locations and
processes of the same service should be allocated to machines in a number of
distinct locations.

– Dependency constraints: the set of machines are partitioned into neighbour-
hoods. Then, if there is a service depends on another service, then the process
of first one should be assigned to the neighbouring machine of second one or
vice versa.

A solution to MRP is a process-machine assignment which satisfies all hard
constraints and minimises the weighted cost function as much as possible which
is calculated as follows:

f =
∑

r∈R

weightloadCost(r) × loadCost(r)

+
∑

b∈B

weightbalanceCost(b) × balanceCost(b)

+ weightprocessMoveCost × processMoveCost

+ weightserviceMoveCost × serviceMoveCost

+ weightmachineMoveCost × machineMoveCost (1)

where R is a set of resources, loadCost represents the used capacity by
resource r which exceeds the safety capacity, balanceCost represents the use
of available machine, processMoveCost is the cost of moving a process from its
current machine to a new one, serviceMoveCost represents the maximum num-
ber of moved processes over services and machineMoveCost represents the sum
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of all moves weighted by relevant machine cost. weightloadCost, weightbalanceCost,
weightprocessMoveCost, weightserviceMoveCost and weightmachineMoveCost define
the importance of each individual cost.

The detailed explanation of the constraints, the costs and their weights can
be found on the challenge documentation [1]. Note that the quality of a solution
is evaluated by the given solution checker, which returns fitness measure to the
best solution generated by our MA. Another important aspect of this challenge
is the time limit. It was stated that “The maximum execution time will be fixed
to 5min by instance on a core2duo E8500 3.16MHz with 4Go RAM on debian
64 or Win7 64 bits.” All methods have to finish within the 5 min timeframe to
ensure the fairness of the comparison.

3 Methodology

Hybridised algorithms have recently received increased interest from the optimi-
sation research community [17]. It is expected that integrating the components
of multiple algorithms under one framework may result in a more effective and
efficient optimisation method [19]. One of such hybridisation frameworks is the
Memetic Algorithms (MAs) [16,17]. MA is a class of search methods that merge
the strengths of population-based algorithms and local search algorithms. Local
search is to improve the convergence of traditional population-based algorithms
by exploiting the surrounding area of the evolved solutions in the search space.
MAs can not only produce high quality solutions but also converge faster than
other methods. However, as mentioned before the performance of a MA highly
depends on its local search method of which the suitability is problem dependent.
In addition the excessive invocation of local search may harm the exploration.
The balance between exploration and exploitation, that is the balance between
population-based search versus local search, should be carefully maintained.

Our proposed MA is to address these aforementioned issues. It introduces a
set of local search algorithms, which are invoked according to the search process,
and a diversity indicator to balance the exploration and exploitation. Figure 1
shows the overall flowchart of the proposed MA, which is based on steady-state
genetic algorithms (GA). This choice is mainly due to the 5 min time limit
imposed on this machine reassignment challenge. The process shown in the figure
is actually similar to that of classic steady-state GA. The main different is the
addition of the diversity control after mutation. The diversity condition of each
new solution will be checked at this step. If the condition is satisfied then the
solution will be sent to the variable local search component for improvement.
Basically solutions are to be improved by a sequence of local search. A solution
that can not be improved will be abandoned. Otherwise it will be added back
to the population.

A main purpose of the variable local search is to address the question of
“which local search should be used on which solution?”. Multiple local search
strategies are to be applied depending on the individual situation. The detail
of the process is explained in Sect. 3.3. Other main components of the proposed
MA are also presented in details in the following subsections.
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Fig. 1. The overall flowchart of the proposed MA

3.1 Genetic Algorithm

The proposed MA method is based on steady-state genetic algorithm which is a
variation of GA, the well-known nature inspired population based meta-heuristic
that mimics the process of natural selection [9].

A solution for one MRP instance is represented as a chromosome as shown
in Fig. 2. The number of alleles is the number of available machines. Each allele
encodes the processes that are to be executed by the corresponding machine. For
example machine M1 on the figure will run processes p1, p9, p3, p20 in sequence.
In this example there are 22 processes in total. A valid solution should contain
all of these process while there is no duplicates. Furthermore the solution must
satisfy the constraints that mentioned in Sect. 2.
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Fig. 2. Solution representation for MRPs

As for the evolutionary aspect, the majority of the algorithm is inherited
from steady-state GA. The main steps are shown below:

* Step 1: Start. GA parameters are initialised including:
– Population size: the number of solutions in the population;
– Maximum generations: unspecified, the last generation before reaching the

5 min limit;
– Crossover rate: the percentage of selected solutions participating in

crossover;
– Mutation rate: the percentage of selected solutions participating in muta-

tion.

* Step 2: Initial population of solutions. A set of solutions are randomly cre-
ated and the feasible ones are used to fill the initial population. For MRP,
Google provides an initial solution for every problem instance [1]. The initial
population are generated by randomly modifying this solution many times.

* Step 3: Fitness calculation of the initial population. The fitness value of each
solution is its weighted cost calculated by Eq. (1).

* Step 4: Selection. Roulette wheel selection is used in this study where the
probability of selecting a solution is proportional to its fitness.

* Step 5: Crossover. This is to create new individuals by exchanging genetic
materials between two selected solutions. Order crossover operator (OX) is
used here to avoid generating invalid solutions for MRP. In OX, two cut points
are randomly selected. The alleles between the cut points on the first parent
are copied to one child. These identical alleles are removed from the second
parent which will contribute its remaining alleles to fill the other parts of the
child. The same process can repeat by copying alleles between cut points from
the second parent and other alleles from the first parent to generate another
child. The individuals generated by OX has no missing alleles or duplications.
They are the rearrangement of their parents. This is particular suitable for
MRP.

* Step 6: Mutation. The mutation operator modifies one solution by randomly
selecting two different alleles from the gene and then swap their positions, for
example a solution of M2 running {p7, p8} and M7 running p12 becomes a
new solution that allocates {p7, p8} to M7 and p12 to M2 after the mutation.

* Step 7: Fitness calculation. The fitness value of the generated solutions are
again calculated using Eq. (1).
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3.2 Diversity Indicator

An important aspect of MA is to avoid exploitation dominating exploration.
To attain high quality solutions, balance should be maintained between the
exploration from GA and the exploitation from local search. Excessive invocation
of local search, for example running it at every generation, is costly and may
increases the risk of the premature convergence, due to bias towards exploitation.
Therefore local search should be applied only when it is necessary. In this study
a diversity indicator is introduced to control when local search is needed by
measuring the diversity of the current population. The measurement is from the
work of Neri and Cotta [18]:

Diversity = 1 −
∣∣∣∣

favg − fbest
fworst − fbest

∣∣∣∣ (2)

where favg is the average fitness of the population of solutions, fbest is the
fitness of the best solution and fworst is the fitness of the worst solution in that
population. If the Diversity is greater than a pre-defined value threshold, local
search will be invoked to improve the solution generated after crossover and
mutation.

3.3 Variable Local Search

Local search starts with a single solution and attempts to improve it by exploiting
local solution space until the predefined termination criterion is reached [2,27].
In other words, to improve a given solution, local search will try to find the best
neighbour. One major drawback of traditional local search is being trapped in
the so-called local minima. In the literature there are different mechanisms to
guide search away from non-improving areas and continue the search beyond
the local optima. Examples of the well-known local search include simulated
annealing [11], great deluge [7] and the late acceptance hill climbing [5].

It is not known in advance which local search would be the most suited to
perform well on all problem instances for a memetic algorithm [12]. Therefore
we propose a new approach in which multiple local search will be executed in
sequence. Each one can utilise different rules to navigate different area in the
search space. The integration of these local search can help avoid local optima
and lead to high quality solutions for majority of instances.

Four local search algorithms are used in our variable local search mechanism.
Each solution that is sent to this component for improvement will be assigned
to a sequence of local search algorithms. This sequence consists of all four algo-
rithms but in a random order. If the first local search resulted in an improved
solution then the search would stop. The improved solution will be added into the
population. The index of this local search is also recorded. If the stopping condi-
tion of the first search algorithm is met but no improvement can be made, then
the second local search will be applied. This process repeats until an improved
solution is found or the last local search in the sequence is terminated. Note the
sequence of local search is circular. For example if a solution starts with local
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search No.3, then the sequence of execution is local search No. 4, No.1 and No.2,
if no improvement can not found early.

In the case of no better solution found after trying all four local search mech-
anisms, the original solution will return to population with no further modifica-
tion. The index of the last successful local search will remain unchanged. Then
the local search process will start over again on the next solution.

The four local search algorithms to construct the sequence are:

– Steepest Descent (SD) [26]. Given an initial solution, S0, generates a neigh-
bourhood solution, S1, by randomly selecting one process and then move it
into a different machine. Replace S1 with the S0 if the quality of S1 is better
than S0. If not, S1 will be rejected and a new iteration will be started. The
search process will be terminated after a fixed number of non-improving iter-
ations. In our preliminary experiment that number is set as 10.

– Simulated Annealing (SA). SA was introduced by [11]. It tries to escape
local optima by accepting worse solutions. Given an initial solution, S0, gen-
erates a neighbourhood solution, S1, by randomly selecting one process and
then move it into a different machine. Replace S1 with the S0 if the quality of
S1 is better than S0 or satisfying the probability condition, R < PA, where
R is uniform random number in [0,1] interval and PA is calculated as follows:

PA = exp(−δ/t) (3)

where δ is the change in the fitness values of S0 and S1, t is the temperature
which is set to 50 % of the fitness value of S0. The t value controls the accep-
tance ration of worse solutions and its gradually decreases by α (α = 0.85)
during the search process. The search process will terminate when t = 0.

– Great Deluge (GD). GD was introduced by [7]. Similar to SA, GD also
accepts worse solutions in order to get out of a local optima point but using
different rules. Given an initial solution, S0, generates a neighbourhood solu-
tion, S1, by randomly selecting one process and then move it into a different
machine. Replace S1 with the S0 if the quality of S1 is better than S0 or lower
than the level. Initially, the value of level is set equal to the fitness value of
the initial solution. At each iteration, the value of level is decreased by ε as
follows:

level = level − ε (4)

and
ε = (f(S1) − f(bestsol))/NI (5)

where NI is the number of iterations which is fixed to 1000 (the 1000 was
determined based on a preliminary test). The search process will stop when
the level value is lower than the best solution found so far.
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– Late Acceptance Hill Climbing. This is an improved variation of hill
climbing [5]. It also attempts to escape from local optima point by accept-
ing worse solutions. Its main idea is to accept the generated solution if it
is not worse than the quality of a saved solution which was the current one
several steps before. Given an initial solution, S0, generates a neighboured
solution, S1, by randomly selecting one process and then move it into a dif-
ferent machine. Replace S1 with the S0 if the quality of S1 is better than S0

or better than fv where fv is the quality of vit solution saved in list L that
contains qualities of current solutions during a number of recent iterations. v
is calculated as follows:

v = I mod Lsize (6)

where Lsize is the size of the list L and I is the iteration counter. At each
iteration, LA will insert the quality of the current solution into the beginning
of L and removes the last one from the end. In this work, Lsize size was
set to 20 and the search will terminate after 10 consecutive none improving
iterations.

4 Experimental Settings

This section briefly introduces the MRP instances from the ROADEF/EURO
2012 challenge and presents the parameter settings of our proposed MA.

4.1 Problem Instances

Two groups of instances from the ROADEF/EURO 2012 challenge are named as
a and b. Group a has two subgroups a1 and a2. Each group contains 10 instances
with diverse characteristics in terms of the number of machines, the number of
processes, neighbourhood, and so on. Table 1 shows the main characteristics of
these instances. In the table, R is the number of resources; TR is the number
of resources that need transient usage; M is the number of machines; P is the
number of processes; S is the number of services; L is the number of locations; N
is the number of neighbourhoods; B is number of triples and SD is the number
of service dependencies.

4.2 Parameters Settings

The proposed MA contains mainly six parameters, as shown in Table 2. The
setting of these parameters was determined by our preliminary experiments. In
particular, for each parameter, different values were tested and the one that
leads to the best trade-off between the computational time and solution quality
is selected [10].
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Table 1. The characteristics of the problem instances

Instance R TR M P S L N B SD

a1 1 2 0 4 100 79 4 1 1 0

a1 2 4 1 100 1000 980 4 2 0 40

a1 3 3 1 100 1000 216 25 5 0 342

a1 4 3 1 50 1000 142 50 50 1 297

a1 5 4 1 12 1000 981 4 2 1 32

a2 1 3 0 100 1000 1000 1 1 0 0

a2 2 12 4 100 1000 170 25 5 0 0

a2 3 12 4 100 1000 129 25 5 0 577

a2 4 12 0 50 1000 180 25 5 1 397

a2 5 12 0 50 1000 153 25 5 0 506

b 1 12 4 100 5000 2512 10 5 0 4412

b 2 12 0 100 5000 2462 10 5 1 3617

b 3 6 2 100 20000 15025 10 5 0 16560

b 4 6 0 500 20000 1732 50 5 1 40485

b 5 6 2 100 40000 35082 10 5 0 14515

b 6 6 0 200 40000 14680 50 5 1 42081

b 7 6 0 4000 40000 15050 50 5 1 43873

b 8 3 1 100 50000 45030 10 5 0 15145

b 9 3 0 1000 50000 4609 100 5 1 43437

b 10 3 0 5000 50000 4896 100 5 1 47260

Table 2. Parameter settings of MA

Parameter Tested range Suggested value

Population size 5–50 30

Crossover rate 0.1–0.9 0.7

Mutation rate 0.1–0.9 0.2

threshold value th 0.1–0.99 0.5

Maximum number of non-improving
iterations for SD and LA

5–50 10

Number of iterations for GD 100–1500 1000

5 Results and Comparison

In this section, we first evaluate the effectiveness of the proposed MA by compar-
ing it with basic GA and its counterpart that did not use the proposed variable
local search enhancement. Secondly, the performance of the proposed MA is
compared with the state of the art algorithms for MRP.
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Table 3. The p-values of comparing MA with GA, MA1-5 on all instances

MA vs. GA MA1 MA2 MA3 MA4 MA5

Instance p-value p-value p-value p-value p-value p-value

a1 1 0 0.01 0.06 0.03 0.05 0.07

a1 2 0 0.02 0.02 0.01 0 0.06

a1 3 0 0 0.01 0.02 0.01 0.03

a1 4 0 0.04 0 0 0 0.04

a1 5 0 0.04 0.01 0.01 0.01 0.5

a2 1 0 0 0 0 0 0

a2 2 0 0 0.01 0 0 0

a2 3 0 0 0 0 0 0.03

a2 4 0 0.01 0.04 0 0 0

a2 5 0 0.02 0 0 0.03 0.02

b 1 0 0 0 0 0 0.01

b 2 0 0 0 0 0 0

b 3 0 0 0 0 0 0

b 4 0 0 0 0 0 0

b 5 0 0 0 0 0 0

b 6 0 0 0 0 0 0

b 7 0 0 0 0 0 0

b 8 0 0 0 0 0 0

b 9 0 0 0 0 0 0

b 10 0 0 0 0 0 0

5.1 Comparing the Proposed MA with GA and Other MAs

To evaluate the effectiveness of the proposed MA, it is compared with following
algorithms which are similar to our method but with missing parts:

– GA: steady-state GA as described in Sect. 3.1.

– MA1: uses Steepest Descent only.

– MA2: uses Simulated Annealing only.

– MA3: uses Great Deluge only.

– MA4: uses Late Acceptance Hill Climbing only.

– MA5: no diversity indicator scheme described in Sect. 3.2.
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The proposed MA and all the methods for comparison, including GA, MA1,
MA2, MA3, MA4 and MA5, were tested with 31 independent runs on all
instances from both group a and group b. All runs have the same computational
resources, terminating within 5 min.

The final results of each method over these 31 runs are statistically compared
using the Wilcoxon statistical test with a significance level of 0.05. The p-values
of MA versus all of these methods are shown in Table 3. In the table, a p-value
less than 0.05 means MA is statistically better than the compared algorithm. A
value greater than 0.05 indicates the good performance of our proposed MA is
not so significant. This table does not include the actual cost achieved by these
methods. The costs obtained by our proposed MA can be found in the Sect. 5.2.

As can be seen from the table, MA is statistically better than GA with
no local search on all 20 instances. MA is also significantly better than other
memetic algorithms. It outperformed MA1 (steepest descent only) and MA3
(great deluge only) on all 20 instances. Comparing with MA2 (simulated anneal-
ing only) and MA4 (late acceptance hill climbing), there is only one instance
(a1 1) that our MA is not significantly better. Comparing with MA5, which is
the most similar to the proposed MA just without the diversity indicator, the
proposed MA achieved significant better results on 17 instances.

This positive result clearly justifies the benefits of the proposed variable local
search enhancements. In particular, the proposed MA outperformed the basic
GA. That demonstrates the benefit of local search on evolutionary search, the
combination of exploitation with exploration. The comparison with MA5 shows
the benefit of the diversity indicator method.

5.2 Comparing with the State of the Art Methods

In this section, the results obtained by the proposed MA are compared with
those obtained by the state of the art algorithms. The six algorithms are:

1. VNS: Variable neighbourhood search [8].
2. CLNS: CP-based large neighbourhood search [15].
3. LNS: Large neighbourhood search [4].
4. MILS: Multi-start iterated local search [14].
5. SA: Simulated annealing [20].
6. RILS: Restricted iterated local search [13].

Table 4 presents the comparison results which are the cost of the best solution
obtained by our proposed MA and that of the other six algorithms (VNS, CLNS,
LNS, MILS, SA) on all 20 instances. Note that the computational resources of
these seven methods are identical as all of them have to complete the search
within 5 min. For MRPs the lower the cost the better the solution. The best
solution for one instance is highlighted in bold. There might be multiple results
shown in bold for the same instance as all of them reached the same best value.
The results of VNS, CLNS, LNS, MILS, SA are reported by the authors. Among
all these methods, RILS did not have results on group a instances.
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It can observed that the proposed MA is very competitive in comparison
with these state-of-the-art methods. It achieved the lowest cost on 12 out of 20
instances. Among these 12 cases, 11 of them are the new best, meaning being
higher than all other methods. On instance a1 1, the proposed MA achieved the
best result equivalent to that of VNS, CNS and MILS.

The second best is the VNS method which is the leader on 6 instances.
Method SA championed 3 instances. Method CLNS was the best on 2 instances
while method MILS achieve the best cost on instance a1 1. Method RILS did
not lead on any of the instances. Our proposed MA outperformed VNS on 14
instances, SA on 17 instances, CLNS on 18 instances, MILS on 19 instances,
LNS and RILS on all tested instances. Overall, the comparison results clearly
show that the proposed MA is an effective method for the MRP.

6 Conclusions

This study proposed a memetic algorithm for the load balancing problems. It
combines the strengths of genetic algorithm and local search. The proposed
algorithm integrates two important aspects to improve the performance of tra-
ditional memetic algorithms. Firstly, it uses multiple local search mechanisms to
avoid getting stuck in a local optimum and to effectively deal with various types
of search space. Four different local search algorithms were used in a sequen-
tial manner to improve the solutions evolved by genetic algorithm. Secondly, a
diversity indicator was used to control the invocation of local search in order
to avoid losing diversity caused by excessive exploitation. The performance of
the proposed algorithm was evaluated using the Google machine reassignment
benchmark instances that were used during the ROADEF/EURO 2012 chal-
lenge. The proposed MA method outperformed general GA, GA with single
local search and memetic algorithm without diversity indicator. In comparison
with the state-of-the-art algorithms, our proposed MA method is also very com-
petitive achieving the best performance on most instances. We conclude that the
variable local search based memetic algorithm is a good method for solving load
balancing problem.
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google machine reassignment problem. Electron. Notes Discrete Math. 39, 209–216
(2012)

9. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor (1975)

10. Kendall, G., Bai, R., B�lazewicz, J., De Causmaecker, P., Gendreau, M., John,
R., Li, J., McCollum, B., Pesch, E., Qu, R., et al.: Good laboratory practice for
optimization research. J. Oper. Res. Soc. (2015)

11. Kirkpatrick, S., Daniel Gelatt, C., Vecchi, M.P., et al.: Optimization by simulated
annealing. Science 220(4598), 671–680 (1983)

12. Krasnogor, N., Smith, J.: A memetic algorithm with self-adaptive local search: tsp
as a case study. In: GECCO, pp. 987–994 (2000)

13. Lopes, R., Morais, V.W.C., Noronha, T.F., Souza, V.A.A.: Heuristics and
matheuristics for a real-life machine reassignment problem. Int. Trans. Oper. Res.
22(1), 77–95 (2015)

14. Masson, R., Vidal, T., Michallet, J., Penna, P.H.V., Petrucci, V., Subramanian,
A., Dubedout, H.: An iterated local search heuristic for multi-capacity bin packing
and machine reassignment problems. Expert Syst. Appl. 40(13), 5266–5275 (2013)

15. Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the
machine reassignment problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514,
pp. 782–797. Springer, Heidelberg (2012)

16. Moscato, P., et al.: On evolution, search, optimization, genetic algorithms and mar-
tial arts: towards memetic algorithms. Caltech concurrent computation program,
C3P Report, 826:1989 (1989)

17. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a
literature review. Swarm Evol. Comput. 2, 1–14 (2012)

18. Neri, F., Tirronen, V., Karkkainen, T., Rossi, T.: Fitness diversity based adaptation
in multimeme algorithms: a comparative study. In: IEEE Congress on Evolutionary
Computation, CEC 2007, pp. 2374–2381. IEEE (2007)

19. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Hybrid evolutionary computation
methods for quay crane scheduling problems. Comput. Oper. Res. 40(8), 2083–2093
(2013)

20. Ritt, M.R.P.: An Algorithmic Study of the Machine Reassignment Problem. Ph.D.
thesis, Universidade Federal do Rio Grande do Sul (2012)

21. Sabar, N.R., Ayob, M.: Examination timetabling using scatter search hyper-
heuristic. In: 2nd Conference on Data Mining and Optimization, DMO 2009, pp.
127–131. IEEE (2009)

22. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: A dynamic multiarmed bandit-gene
expression programming hyper-heuristic for combinatorial optimization problems.
IEEE Trans. Cybern. 45(2), 217–228 (2015)

23. Sabar, N.R., Song, A.: Dual population genetic algorithm for the cardinality con-
strained portfolio selection problem. In: Dick, G., Browne, W.N., Whigham, P.,
Zhang, M., Bui, L.T., Ishibuchi, H., Jin, Y., Li, X., Shi, Y., Singh, P., Tan, K.C.,
Tang, K. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 703–712. Springer, Heidelberg
(2014)



282 N.R. Sabar et al.

24. Sabar, N.R., Zhang, X.J., Song, A.: A math-hyper-heuristic approach for large-
scale vehicle routing problems with time windows. In: 2015 IEEE Congress on
Evolutionary Computation (CEC), pp. 830–837. IEEE (2015)

25. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Automatic design of a hyper-heuristic
framework with gene expression programming for combinatorial optimization prob-
lems. IEEE Trans. Evol. Comput. 19(3), 309–325 (2015)

26. Talbi, E.-G.: Metaheuristics: From Design to Implementation, vol. 74. John Wiley
and Sons, Hoboken (2009)

27. Xie, J., Mei, Y., Song, A.: Evolving self-adaptive tabu search algorithm for storage
location assignment problems. In: Proceedings of the Companion Publication of the
2015 on Genetic and Evolutionary Computation Conference, pp. 779–780. ACM
(2015)


	A Variable Local Search Based Memetic Algorithm for the Load Balancing Problem in Cloud Computing
	1 Introduction
	2 Problem Description 
	3 Methodology
	3.1 Genetic Algorithm
	3.2 Diversity Indicator
	3.3 Variable Local Search

	4 Experimental Settings
	4.1 Problem Instances
	4.2 Parameters Settings

	5 Results and Comparison
	5.1 Comparing the Proposed MA with GA and Other MAs
	5.2 Comparing with the State of the Art Methods

	6 Conclusions
	References


