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Abstract: The evaluation of mortality in earthquake-stricken areas is vital for the emergency response
during rescue operations. Hence, an effective and universal approach for accurately predicting the
number of casualties due to an earthquake is needed. To obtain a precise casualty prediction method
that can be applied to regions with different geographical environments, a spatial division method
based on regional differences and a zoning casualty prediction method based on support vector
regression (SVR) are proposed in this study. This study comprises three parts: (1) evaluating the
importance of influential features on seismic fatality based on random forest to select indicators for
the prediction model; (2) dividing the study area into different grades of risk zones with a strata
fault line dataset and WorldPop population dataset; and (3) developing a zoning support vector
regression model (Z-SVR) with optimal parameters that is suitable for different risk areas. We
selected 30 historical earthquakes that occurred in China’s mainland from 1950 to 2017 to examine
the prediction performance of Z-SVR and compared its performance with those of other widely used
machine learning methods. The results show that Z-SVR outperformed the other machine learning
methods and can further enhance the accuracy of casualty prediction.

Keywords: earthquake; casualty prediction; importance assessment; spatial division; support vec-
tor regression

1. Introduction

Earthquakes are among the most unpredictable and destructive natural hazards
around the world and have caused extremely heavy damage to human life and posses-
sions [1–4]. China is located at the intersection of the Alpine-Himalayan and Circum-Pacific
seismic zones, and is subjected to the collision and compression of the Eurasian Plate,
Philippine Plate and Indian Plate [5,6]; hence, it has always been prone to earthquakes [7,8].
To date, there have been nine catastrophic earthquakes with more than 200,000 casualties
in the world, of which three occurred in China. Since 1949, more than 100 destructive
earthquakes have occurred in 22 provinces of China, which have caused 270,000 casualties
in total, thereby accounting for 54% of all deaths from natural disasters in this country [5].
Considering the heavy destruction of earthquakes in China’s mainland, this study selected
it as the study area.

After an earthquake, it is necessary to promptly and efficiently conduct emergency
rescue to reduce damage and prevent further increases in the damage degree. An early
prediction of the death toll that is caused by the earthquake is an essential reference for the
government to determine which grade of emergency response [9] to be launched and what
amount of relief supplies to be mobilized to the affected areas [10]. Therefore, rapid and
accurate prediction of the number of earthquake casualties is a focus of disaster assessment
research.
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Related studies on seismic casualty prediction focus mainly on two aspects. One aspect
is the relationships between relevant factors and the number of earthquake casualties; these
studies can be broadly classified into three categories. The studies in the first category
explore the impact of seismic parameters on earthquake fatality. Xiao [11] analyzed the
relationship of seismic intensity and population density with the mean mortality rate,
and proposed an empirical formula for rapidly assessing the death toll, which has been
recommended as an effective method for evaluating the mortality rate by Assessment of
Earthquake Disaster Situation in Emergency Period (a China’s national standard). Jaiswal
and Wald [12] analyzed the mortality rates of earthquakes with various shaking intensity
levels all around the world and proposed a country/region-specific empirical model by
using an optimization method to evaluate seismic mortality. The studies in the second
category seek to identify the relationship between building vulnerability and earthquake
fatality. In the 1980s, commissioned by the Federal Emergency Management Agency
(FEMA), the Applied Technology Council (ATC) [13] surveyed and classified buildings in
California and proposed the ATC-13 earthquake damage matrix for systematically studying
and forecasting possible earthquake losses in this region. Ceferino et al. [14] proposed a
probabilistic model for evaluating the number and spatial distribution of casualties due to
earthquakes, which improved methods that focused only on a single-building by taking
multiple buildings into consideration. The studies in the third category consider the impact
of other factors, such as secondary disasters or demographic characteristics, on human loss.
Bai et al. [15] scientifically assessed the possible casualties that were caused by secondary
disasters and developed a logical regression model for predicting the death toll caused by
landslides in the 2014 Yunnan Ludian MS 6.5 earthquake. Shapira et al. [16] integrated risk
factors that are related to population characteristics (age, gender, physical disability and
socioeconomic status) and proposed a model on the basis of the widely used loss estimation
model HAZUS.

Other studies focus on enhancing the accuracy of prediction models by improving
models or proposing new methods [17,18]. Karimzadeh et al. [19] presented a GIS-oriented
procedure in combination with geo-related parameters for identifying the destruction
in earthquake-stricken areas and evaluated the seismic loss based on damage functions
and relational analyses. Feng et al. [20] regarded building damage as a major cause of
earthquake deaths, and used high-resolution satellite imagery to detect building damage
in disaster areas. They developed a model for estimating the mortality rate due to an
earthquake based on remote sensing and a geographical information system. To solve
the problems in the evaluation systems (low precision, long time consumption and poor
stability), Zhang [21] proposed a seismic disaster casualty assessment system based on
mobile communication big data. Considering that seismic data has the characteristics of
small scale, nonlinearity and high dimensionality, many scholars have applied machine
learning methods, such as support vector machine (SVM), artificial neural network (ANN),
and random forest (RF), to earthquake casualty prediction models in recent years. Xing
et al. [22] improved SVM with a robust loss function and used it to construct a robust
wavelet earthquake casualty prediction model. Gul and Guneri [23] used earthquake
magnitude, occurrence time, and population density as input parameters and built a model
for earthquake casualty prediction based on the theory of ANN. Jia et al. [24] used the RF
model to compare the importance of features affecting the number of earthquake casualties
and proposed a deep learning model for casualty prediction.

According to the literature review above, relatively complete earthquake casualty
prediction methodologies have been presented by researchers from various aspects, which
provide references for feature selection and model construction in our study. However, an
analysis of the previous studies on earthquake casualty prediction reveals the following
shortcomings: (1) many prediction methods, especially those that utilize empirical func-
tions, can only be implemented with abundant historical seismic data, which makes it
difficult to obtain reliable prediction results when a limited quantity of data are available;
(2) some scholars simply considered one earthquake as the case and used a small number of
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samples to predict the death toll, whose achievements may be difficult to apply and deploy
due to the under-representativeness of predictors and methods; and (3) most studies simply
focused on the statistical relations between influential features and earthquake casualties,
which led to inadequate representativeness and lack of a theoretical basis for the generality
of such prediction models.

Based on the above observations, this study aimed to (1) evaluate the importance of
influential features on seismic fatality, study the regional variations in natural and human
geographical environments, and propose a spatial division approach for dividing the study
area into three degrees of risk zones; (2) improve the support vector regression (SVR) model
with reasonable input factors and the best model parameters for all risk zones; and (3)
evaluate the performance of the proposed zoning model through experiments.

The remainder of this paper is structured as follows. Section 2 introduces the geograph-
ical and seismic background of the study area and describes the data and methodology that
are used in this study. Section 3 presents the process and result of importance assessment
and proposes the approach of spatial division. Section 4 derives the SVR algorithm in detail
and presents the flow of the data processing and model construction. Section 5 presents the
experimental results of the proposed method. Section 6 discusses the results and compares
them with those of other models. The conclusions of this study are contained in Section 7.

2. Materials and Methods
2.1. Study Area

China’s mainland is located at the intersection of the Alpine-Himalayan and Circum-
Pacific seismic zones, where destructive earthquakes occur frequently [25]. Seismicity in
China’s mainland is characterized by high frequency, wide distribution, great intensity,
shallow seismic focus, and clear regional differences. Most earthquakes in this area are
shallow focus earthquakes that occurred within the continental crust, whose principal type
are strike-slip type [26]. Based on statistical data from the Earthquake Science Knowledge
Service System (http://earthquake.ckcest.cn/earthquake_n/dzml/ch5.html, accessed on
15 July 2021), we developed a chart of the spatial distribution of historical earthquakes
in China’s mainland. Figure 1 shows the positions of plates and all earthquakes over MS
4.0 that have occurred in China’s mainland since 1950. These earthquakes are widely
distributed in China’s mainland and the spatial pattern of seismic activities in this area is
featured by strong activities in the west and weak activities in the east.

With an area of 9.6 million square kilometers (including Taiwan Province), China has
diverse natural and human geographical environments that differ in terms of climates,
landforms and geological conditions in China; hence, it is difficult to build a single seismic
casualty prediction model that is suitable for the whole area. Seismic destructive effects in
this vast area are obviously regional. Figure 2 shows the distribution of population and
historical earthquakes in China’s mainland. The frequency of earthquakes and life losses
caused by these disasters are roughly bounded by a population dividing line called the Hu
Line [27]. To the east of the Hu Line, earthquakes have caused lager death tolls than those
to the west of this boundary, although high seismicity has been observed in the west. Since
1949, 19 provinces in China’s mainland suffered deaths due to earthquakes, among which
Hebei, Sichuan, and Yunnan Provinces suffered the most life loss events, accounting for
more than 90% of all casualties [28].

http://earthquake.ckcest.cn/earthquake_n/dzml/ch5.html
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2.2. Materials

The data that were used in this study included a geological fault dataset, a population
dataset and an earthquake case dataset. This study trained and verified the proposed
prediction model using the earthquake case dataset, which was also used to evaluate the
importance of factors affecting seismic fatality. Geological fault and population datasets
were used to divide the study area into defined risk zones based on regional differences.

2.2.1. Earthquake Case Dataset

The majority of the earthquake cases were collected from the Earthquake Science
Knowledge Service System (http://earthquake.ckcest.cn/featured_resources/disaster_
show.html, accessed on 20 July 2021), which includes 479 records of earthquakes over MS
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4.0 that have occurred in China’s mainland since 1950. We deleted cases without deaths,
corrected and supplemented the dataset with relevant literature and reports [29–32], and
finally selected a total of 152 seismic cases with death registers in China’s mainland. The
original earthquake case dataset only had attributes such as location, occurrence date,
magnitude, focal depth and death toll. Because information about historical earthquakes is
very limited and difficult to acquire, a large part of the data mining process was devoted
to collecting and supplementing relevant attributes. We complemented the attributes
of earthquakes, including epicenter intensity, aftershock, landform, climatic condition,
secondary disaster, collapsed buildings and rescue capability, from their disaster situation
evaluation reports and relevant literature [24]. The attributes of occurrence time and day
were converted from the occurrence date. We calculated the linear density of strata faults in
ArcGIS software, and used the statistical analysis tool in ArcGIS to acquire the earthquake
attribute of geological fault density. The attributes of population density and the Gross
domestic product (GDP) were collected from statistical yearbooks of provinces where
earthquakes occurred. GDP is a monetary measure of the market value of all the final
goods and services produced in a specific time period. The data we collected is per capital
GDP, which is the ratio of GDP to the total population of the earth-quake-stricken region.
Detailed information about each attribute in the earthquake case dataset is provided in
Table 1.

Table 1. Specification of attributes in the earthquake case dataset.

No. Attribute Description & Qualification

1 Occurrence day There are 7 categories where 1~7 correspond to Monday to
Sunday, respectively.

2 Occurrence time The time when the earthquake occurred, which is defined
as the minutes after 0:00 on the day.

3 Location The province and city where the earthquake occurred,
including longitude and latitude.

4 Magnitude Defined as the surface wave magnitude.

5 Focal depth The vertical distance from the hypocenter to the surface of
the earth (km).

6 Epicenter intensity Measured according to The China Seismic Intensity Scale
(China’s national standard).

7 Aftershock The number of shocks of magnitude greater than MS 5.0
after the occurrence of the main shock.

8 Geological fault density The average density of strata faults in the
earthquake-stricken area.

9 Landform
There are five categories, which are labelled 1 to 5, and

represent plain, basin, hill, mountain and plateau,
respectively.

10 Climatic condition There are two levels where 0 indicates normal and 1
indicates abnormal.

11 Secondary disaster
There are two categories, where 0 indicates no secondary

disaster and 1 indicates the occurrence of a secondary
disaster.

12 Population density The number of people who live in the earthquake-stricken
area per square kilometer.

13 Collapsed buildings The number of collapsed houses.

14 Rescue capability
There are three levels where 1 indicates lacking assignment,
2 indicates general assignment and 3 indicates improved

assignment.

15 GDP The ratio of GDP to the total population of the
earthquake-stricken region.

16 Death toll The number of casualties due to the earthquake.
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To describe the data distribution characteristics of earthquake cases, we divided their
numbers of casualties into 6 categories: 0–9, 10–99, 100–999, 1000–9999, 10,000–99,999, and
≥100,000. Then, we calculated the piecewise frequency statistics for each category and
plotted a statistical chart, which is shown in Figure 3. As shown in this graph, the death
tolls of most earthquakes in the dataset were within the ranges of less than 10, 10–99 and
100–999. Strong earthquakes with many casualties occurred with lower frequency; hence,
this study focuses on accurately predicting the death toll for earthquakes with less than
1000 casualties.
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In the construction process of the machine learning model, earthquake samples with
many casualties will exert a significant impact on the performance of the prediction model.
To evaluate the influence of samples with great values, we conducted an experiment to
compare the prediction performance between two data groups: Group A and Group B.
Group A was the dataset including all the 152 seismic cases with 1000 casualties or more.
Group B was the dataset excluding samples whose numbers of casualties were more than
1000. We took Group A as the training dataset and input it into SVR model, and used the
10-fold cross-validation method to evaluate its prediction performance. The evaluation
indicators employed in this experiment were root mean square error (RMSE) and mean
absolute error (MeaAE), which are described in detail in Section 6.1. The same experiment
was also conducted in Group B. We calculated the average RMSE and MeaAE values for
the two groups. The result showed that the RMSE and MeaAE of Group A were 6579.29
and 2346.96, respectively. By contrast, the RMSE and MeaAE of Group B were 48.27 and
40.41 respectively, which means Group B shows significantly better prediction performance
due to the exclusion of extreme value samples.

Considering that the devastating earthquakes with more than 1000 casualties occur
extremely unfrequently, and their disaster mechanisms are much more complicated, the
study focuses on accurately predicting the death toll for earthquakes with less than 1000 ca-
sualties. Therefore, we removed cases with more than 1000 casualties in order to avoid
the influence of great values. A total of 143 seismic cases with death registers were finally
selected. The procedure of dataset division is as follows. (1) In Section 3, we proposes a
spatial division method and divides the study area into three groups: high, moderate and
low risk zones. Based on the result of spatial division, those selected cases were divided
into three parts, including 49 cases in low risk areas, 13 in moderate risk areas, and 81 in
high risk areas. (2) To evaluate the prediction accuracy of the Z-SVR model for three degrees
of risk zones, we divided the dataset into training and testing datasets. For earthquake
cases in each degree of risk zones, we randomly extracted 1/5 of them as the testing dataset,
and the remainder was divided into the training dataset. We finally extracted 10 cases in
low risk zones, 3 in moderate risk zones, and 17 in high risk zones as the testing dataset
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to evaluate the performance of the seismic casualty prediction model. The remainder was
used as training dataset for building Z-SVR model. Table 2 presents the division of sample
dataset. Figure 4 shows the spatial distributions of historical cases.

Table 2. Numbers of training and testing samples in the defined risk zones.

Zone Training Sample (Cases) Testing Sample (Cases) Total (Cases)

Low risk 39 10 49
Moderate risk 10 3 13

High risk 64 17 81
Total 113 30 143
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2.2.2. Geological Fault Dataset

We collected the geological fault dataset from the China Earthquake Data Center
(http://datashare.igl.earthquake.cn/map/ActiveFault/introFault.html, accessed on 24
July 2021). It provides the spatial distribution of strata faults in China; the data are in vector
format and can be used for spatial analysis in ArcGIS software. This dataset includes 1966
fault segments. For 456 of these segments, detailed parameters such as age, orientation
and sliding rate are provided; for 664, only the name and number are specified; for 846,
only graphical features are provided, without any attributes. Since the coordinate system
of the dataset is the Krassovsky ellipsoid with the Albers projection, we used the projection
raster tool in ArcGIS to convert it into the WGS 1984 to ensure the consistency of the spatial
reference.

2.2.3. Population Dataset

The population dataset was collected from WorldPop (https://www.worldpop.org/,
accessed on 28 July 2021). It details the spatial distribution of the population with a
spatial resolution of 100 m. Its units are number of people per pixel with country totals
adjusted to match United Nations national population estimates. The format of this dataset
is raster, where the digital value of every pixel reflects the total population within this
grid. Considering that the samples in the earthquake case dataset have a long time series
while population data of a single year have difficulty reflecting demographic changes, we
collected population records in China’s mainland every five years from 2000 to 2020 (2000,
2005, 2010, 2015 and 2020) to explore the change in population in a long time series.

2.3. Methods

A methodological flowchart of the investigation is shown in Figure 5.
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Seismic fatality is a comprehensive result that is influenced by diverse factors, and
whether a factor has a decisive impact on earthquake casualties is an essential question
for feature selection of prediction models [33]. Therefore, before constructing a prediction
model for earthquake casualties, it is crucial to establish a reasonable index system and
analyze the importance of relevant indicators, which will serve as a reference for the
prediction model to select more important features. Based on regional disaster system
theory, this study established an evaluation index system for 14 major features that affect

http://datashare.igl.earthquake.cn/map/ActiveFault/introFault.html
https://www.worldpop.org/
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earthquake fatality. We used the earthquake case dataset and the random forest model to
assess the importance weights of features, of which the ranking served as an important
reference for feature selection of the prediction model.

Because of the variations among regions, there will be different numbers of casualties
due to earthquakes with the same ground motion parameter. Therefore, in earthquake cases
with the same seismicity, the diversity of disaster-formative environments and disaster-
affected bodies reflects the difference among regions [34]. Due to the vast area of China’s
mainland, it is difficult to build a universal prediction model that is suitable for all regions.
To enhance the accuracy of earthquake disaster assessment in emergency periods, it is
effective to divide the study area into risk zones based on regional differences and construct
a model that performs well for each risk zone. Based on the results of the importance
assessment and feature selection, geological fault density and population density are the
most important features of disaster-formative environments and disaster-affected bodies,
respectively. Therefore, we chose these two features with relatively high importance
weights as representative factors for developing a partition standard and dividing the
study area into the defined grades of risk zones. The accuracy and applicability of the
earthquake casualty prediction approach can be improved by building different submodels
for areas with different regional characteristics.

As an extension of support vector machine (SVM) for solving regression problems
support vector regression (SVR) has attracted much attention in the field of machine
learning and displayed strong predictive ability in mortality evaluation. Compared with
other machine learning algorithms, SVR can achieve the optimal solution with a small
number of samples and avoid problems such as overfitting and local extremum as much as
possible, which makes its generalization ability and performance stand out [35]. However,
as a machine learning method that is based on historical statistics, it may be difficult for
the SVR model to accurately predict casualties due to earthquakes occurring in different
regions of the study area, especially those with vast acreage and diverse environments.
Therefore, based on the characteristics of SVR and regional differences in the study area, we
constructed a zoning SVR model (Z-SVR) for various regions in the study area; for which
the optimal model parameters for all risk zones were identified using training samples
from the earthquake case dataset.

3. Spatial Division
3.1. Importance Assessment

According to regional disaster system theory, a seismic disaster is a complex mech-
anism that is a comprehensive result of interactions between disaster-inducing factors,
disaster-affected bodies and disaster-formative environments [36]. Among them, disaster-
inducing factors, such as seismic magnitude and focal depth, are the sufficient condi-
tions for disaster occurrence; disaster-affected bodies, such as population distribution
and building destruction, represent the necessary conditions for disaster resilience; and
disaster-formative environments, such as climatic condition and secondary disaster, pro-
vide a natural and human geological background that affects disaster-inducing factors and
disaster-affected bodies [17]. The loss due to a disaster is attributed to the combined effects
of these three factors; therefore, for screening the prediction indicators, we constructed an
evaluation index system on the basis of regional disaster system theory, which is presented
in Table 3.
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Table 3. Evaluation index system of features that influence earthquake fatality.

Target Level Rule Level Index Level

Seismic fatality

Disaster-inducing factors

Magnitude
Epicenter intensity

Focal depth
Geological fault density

Occurrence time
Occurrence day

Aftershock

Disaster-affected bodies

Collapsed buildings
Rescue capability

Population density
GDP

Disaster-formative
environments

Climatic condition
Landform

Secondary disaster

Determining the importance weights of all features in the evaluation index system is
a quantitative task in importance assessment. Although traditional linear models show
good performance in the importance assessment of factors that affect earthquake fatality,
the result can be easily disturbed by the uncertainty and fuzziness of input data [37]. An
integrated ensemble model is an effective approach for mitigating the above problem and
improving the accuracy and generalization performance of the evaluation method [38],
which was demonstrated by previous studies [39]. Random forest (RF) is an effective
integrated ensemble model with random binary decision trees for classification or regres-
sion [39]. As an expansion of the bagging method, this algorithm constructs multiple
independent estimators that determine the output result by average or majority voting.
This approach enhances the precision and stability of the prediction model, reduces the
sensitivity of the model to noise and outliers, and avoids problems such as overfitting [40].
In contrast to other machine learning methods, the RF model can provide the quantified
importance of prediction indicators by calculating their increases in predictive error by
randomly permuting the values of a variable through out-of-bag observations of each tree.

We chose 7 indicators of disaster-inducing factors, 4 of disaster-affected bodies and 3
of disaster-formative environments as the input parameters of the RF model to evaluate
their importance to earthquake fatality. The values of the input parameters were extracted
from the earthquake case dataset. We utilized the machine learning package scikit-learn of
the Python programming language to construct the RF model. The “feature_importances_”
is an attribute of the RF model in the scikit-learn package. The importance of a feature is
computed as the normalized total reduction of the criterion brought by that feature. The
procedure is summarized as follows:

• Inputs: Disaster-inducing factors (7 variables), disaster-affected bodies (4 variables)
and disaster-formative environments (3 variables).

• Parameters: Number of estimators = 150, criterion = ‘squared_error’, max depth =
6, min samples split = 2, min samples leaf = 1, min weight fraction leaf = 0.0, max
features = ‘auto’, max leaf nodes = None, min impurity decrease = 0.0, bootstrap =
Frue, oob score = False, number of jobs = None, random state = None, verbose = 0,
warm start = False, ccp_alpha = 0.0, max samples = None.

• Step 1: Use bootstrap sampling to extract subtraining sets from the training set.
• Step 2: Generate the feature subsets by randomly selecting features before node

splitting.
• Step 3: Establish decision trees.
• Step 4: Obtain the results for the sample to be tested.
• Step 5: Calculate the importance of the input parameters.
• Output: Importance weight of the prediction indicators.
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The ranking of all factors according to the importance weights from low to high is
shown in Figure 6.
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Based on the results of the importance assessment of influential features, magnitude,
collapsed buildings, epicenter intensity, population density, geological fault density and
GDP are major factors that affect seismic fatality. Magnitude and epicenter intensity are the
two most important parameters to depict the severity of an earthquake and exert substantial
influence on the seismic fatality; however, there is a strong correlation between these two
features. To avoid information redundancy, we selected magnitude, which has greater
importance weight, as the input parameter of the Z-SVR model. Building destruction is
the direct cause of earthquake injuries and deaths [41], and the primary task of emergency
rescue is to search for people who are buried in collapsed constructions. However, the
aim of the proposed model in this study is to rapidly predict the possible casualties of an
instantly occurring earthquake, which requires an extremely fast response speed. It will
take some time to identify the situation of building destruction and count the number of
collapsed buildings. Population density is the most important feature among the disaster-
affecting bodies; since human beings are the major victims of earthquakes, it is significant to
choose this feature as one of the prediction indicators. Geological fault is the most important
factor under the level of disaster-formative environments, where the density of strata fault
lines can be used to quantitively analyze regional differentiation and merits consideration.
GDP is a comprehensive indicator that is mutually restricted with population density in
terms of earthquake casualties; therefore, it is significant to introduce this factor as an input
parameter and consider its comprehensive effect with population density to ensure the
stability and accuracy of the prediction results. In conclusion, based on the result of the
importance assessment and the principles of rapid evaluation and avoiding information
redundancy, we finally selected magnitude, population density, geological fault density
and GDP as the input parameters for the construction of the Z-SVR model, among which
geological fault line density and population density were also applied to divide the study
area into risk zones.

3.2. Population Density

Disaster-affected bodies reflect the necessary conditions for disaster resilience, of which
population density has a major influence on the number of earthquake casualties and the
degree of destruction. High population density provides a vital motivation for the increase
in earthquake casualties [42]. In this study, the population dataset that was collected
from WorldPop includes raster data on the population distribution of China’s mainland
every five years from 2000 to 2020 (2000, 2005, 2010, 2015 and 2020). For those five raster
datasets, we converted the population count value to population density and calculated the
average density, which was implemented using the raster calculator tool in ArcGIS software.
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The general classification standard of population density was used to divide different
population densities into four categroies: extremely sparsely (less than 1 people/km2),
sparsely (from 1 to 25 people/km2), moderately (from 25 to 100 people/km2), and densely
populated (greater than 100). Through this standard, we divided China’s population
distribution dataset into four parts, as shown in Figure 7.
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3.3. Geological Fault Density

Disaster-formative environments refer to the natural and human geological back-
ground that affects disaster-inducing factors and disaster-affected bodies [17], among
which geological faults are the zone blocks that bump into each other and generate shakes.
Previous work [28] has demonstrated that the distance from a geological fault is correlated
with the number of casualties that are caused by an earthquake. Therefore, we calculated
the linear densities of strata faults in China using ArcGIS software. The linear densities
were divided into three grades (high, moderate and low) by natural breaks. Figure 8 shows
the spatial distribution of the classified geological fault densities in the study area.
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3.4. Overlay Analysis

Overlay analysis is a frequently used geographic computing operation and a signif-
icant spatial analysis tool in GIS software, which is widely used in applications that are
related to spatial computing [43]. This operation integrates different data layers and their
corresponding attributes in the study area, which connects multiple spatial objects from
multiple data sources and quantitatively analyzes the spatial range and characteristics of
the interactions among different forms of spatial objects. Based on the feature selection
results, geological faults are the birthplace of an earthquake, and humans are the victims
of seismic disasters. In earthquakes with similar seismicity, denser strata fault lines and
higher population density will lead to a greater risk to personnel safety [28]. For the
above reasons, this study divided the study area into parts according to the variations
in population density and strata fault density and established a corresponding partition
standard. We developed a comprehensive partition standard that was used to overlay the
classification results. Then, we divided the study area into risk areas of three grades: low
risk, moderate risk, and high risk zones. The theory and procedure of the proposed spatial
division method are illustrated in Figure 9.
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4. Prediction Model
4.1. Algorithm

Support vector machine (SVM) is a kind of machine learning method that is based
on statistical learning theory and is a supervised learning model [44]. SVM implements
the structural risk minimization principle rather than the empirical risk minimization
principle [45], which gives it unique advantages in solving small-sample, nonlinear and
high-dimensional pattern recognition problems. Although SVM was initially applied to
classification problems, it has been gradually used to solve regression problems due to its
good performance in function fitting [46]. SVR is an extension of SVM for solving regression
problems. Compared with other machine learning algorithms, SVR can obtain the optimal
solution with a small number of samples and avoid problems such as overfitting and partial
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extreme values as much as possible [28], and its generalization ability and performance
have been well demonstrated.

The SVR algorithm is explained as follows. Consider a given training sample set
D = {(x1, y1), (x2, y2), . . . . . . , (xm, ym)}, where xi = (xi1, xi2, . . . , xid)

T ∈ Rd, yi ∈ R, i =
1, 2, . . . , m, xi is the ith sample and has feature dimensionality d, xij is the value of the jth
feature, yi ∈ R is the corresponding target value of the ith sample, and m is the number
of samples. The goal of SVR is to find a regression model f (x) = ωTx + b such that f (x)
is close to its corresponding target value y, where ω and are parameters to be calculated.
In the traditional regression model, the function loss is calculated based on the difference
between f (x) and y, which is too strict and will eventually lead to overfitting [47]. To
overcome this disadvantage, SVR sets a maximum deviation ε between f (x) and y, and the
function loss is counted only when the difference between f (xi) and yi is greater than ε
(Figure 10). This is equivalent to constructing a spacer band of width 2ε with f (x) as the
center; when the training sample is within the spacer band, the prediction result will be
designated as correct [48]. Therefore, the SVR problem can be formulated as

min
ω,b

1
2
||ω||2 + C

m

∑
i=1

`ε( f (xi)− yi) (1)

where C > 0 is a regularization constant and `ε is an ε-insensitive loss function (Figure 11),
which is expressed as

`ε(z) =
{

0, i f |z| ≤ ε;
|z| − ε, otherwise.

(2)
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The first term of Equation (1) represents the flatness of the function, which is also called

the structural risk, and the second term of the equation, namely,
m
∑

i=1
`ε( f (xi)− yi), represents

the fitness between f (x) and its corresponding target values, which is also called the em-
pirical risk [48]. The regularization constant C is a compromise between the structural risk
and empirical risk. The constant C > 0 determines the trade-off between the flatness of
f (x) and the amount up to which deviations larger than ε are tolerated [49]. To describe
the real deviation, two slack variables, namely, ξi and ξ̂i, are introduced, and Equation (1)
can be reformulated as

min
ω,b,ξ,ξ∗

1
2
||ω||2 + C

m

∑
i=1

(ξi + ξ̂i); s.t.


f (xi)− yi ≤ ε + ξi;
yi − f (xi) ≤ ε + ξ̂i;
ξi, ξ̂i ≥ 0, i = 1, 2, . . . , m.

(3)

To efficiently solve the above optimization problem with inequality constraints, multi-
pliers µi ≥ 0, µ̂i ≥ 0, αi ≥ 0, and α̂i ≥ 0 are introduced. Based on the Lagrange multiplier
method, the following function can be deduced from Equation (3):

L
(
ω, b, α, α̂, ξ, ξ̂, µ, µ̂

)
= 1

2 ||ω||
2 + C

n
∑

i=1
(ξi + ξ̂i)−

m
∑

i=1
µiξi −

m
∑

i=1
µ̂i ξ̂i

+
m
∑

i=1
αi( f (xi)− yi − ε− ξi) +

m
∑

i=1
α̂i
(
yi − f (xi)− ε− ξ̂i

)
.

(4)

f (x) = ωTx + b is substituted into Equation (4), the partial derivatives of
L
(
ω, b, α, α̂, ξ, ξ̂, µ, µ̂

)
with respect to ω, b ξi and ξ̂i are calculated, and these partial deriva-

tives are set equal to 0. The following system of equations is obtained:

ω =
m

∑
i=1

(α̂i − αi)xi, (5)

0 =
m

∑
i=1

(α̂i − αi), (6)

C = αi + µi, (7)

C = α̂i + µ̂i. (8)

After solving the above system of equations, the dual problem of SVR can be formu-
lated as

max
α,α̂

m
∑

i=1
(yi(α̂i − αi)− ε(α̂i + αi))− 1

2

m
∑

i=1

m
∑

j=1

(
α̂i − αi)(α̂j − αj

)
xT

i xj;

s.t.
m
∑

i=1
(α̂i − αi) = 0, 0 ≤ αi, α̂i ≤ C.

(9)

To solve the above quadratic programming problem, the Karush-Kuhn–Tucker (KKT)
conditions [50] are used: 

αi( f (xi)− yi − ε− ξi) = 0,
α̂i
(
yi − f (xi)− ε− ξ̂i

)
= 0,

αiα̂i = 0, ξi ξ̂i = 0,
(C− αi) ξi = 0, (C− α̂i)ξ̂i = 0.

(10)

Substituting Equation (5) into f (x) = ωTx + b yields the following solution of the
SVR:

f (x) =
m

∑
i=1

(α̂i − αi)xT
i x + b. (11)
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If the term (α̂i − αi) of Equation (11) is not equal to 0, the corresponding sample
is a support vector of SVR that is located outside the spacer band. Based on the KKT
conditions, it is found that in Equation (10), every sample (xi, yi) satisfies the conditions
(C− αi) ξi = 0 and αi( f (xi)− yi − ε− ξi) = 0; therefore, ξi is equal to 0 when 0 < αi < C.
Then, the value of b can be deduced from Equation (11) as

b = yi + ε−
m

∑
i=1

(α̂i − αi)xT
i x. (12)

However, Equation (11) is merely a solution for linear SVR. For real-world problems
with high feature dimensionality, it is impossible to find a hyperplane that satisfies both
fitness and flatness simultaneously [47]. An efficient approach is to map samples from
the original space to a higher-dimensional feature space where the samples are linearly
separable [48], and Equation (5) can be reformulated as

ω =
m

∑
i=1

(α̂i − αi)φ(xi) (13)

where φ(xi) is the feature vector after mapping to a higher-dimensional feature space.
With the utilization of the kernel function method, the following solution for nonlinear

SVR is obtained:

f (x) =
m

∑
i=1

(α̂i − αi)κ(x, xi) + b (14)

where κ(x, xi) = φ(x)Tφ(xi) is the kernel function. Table 4 presents various widely used
kernel functions.

Table 4. Specification of kernel functions.

Type Expression 1

Linear kernel K(u, v) = uTv
Gaussian kernel K(u, v) = e−γ||u−v||2 , γ > 0

Polynomial kernel K(u, v) =
(
γuTv + r

)d

Sigmoid kernel K(u, v) = tan h
(
γuTv + r

)
1 u and v are multivariate vectors, and d ≥ 1 is the degree of the polynomial.

4.2. Model Construction

Based on the results of the importance assessment and feature selection, we selected
the magnitude, population density, geological fault density and GDP as the input variables
and selected the number of earthquake casualties as the output variable. Considering
that different prediction indicators have different units of measurements, it is necessary
to normalize the sample dataset to enhance the convergence speed in finding the optimal
solution and to improve the accuracy of the Z-SVR model. The normalization method that
was used in this study was z-score normalization, which can be formulated as

zi =
xi − x√

1
n ∑n

i=1(xi − x)2
(15)

where n is the number of samples in the dataset, xi. is the initial value of the i th sample,

z is its corresponding normalized value, and x =
n
∑

i=1
xi is the average initial value of all

samples.
Previous studies [51,52] have shown that the type of kernel function and corresponding

parameters have substantial impacts on the prediction performance of the SVR model. To
construct a fine-tuned Z-SVR model, parameter C for the linear kernel, parameters (C,
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gamma) for the Gaussian kernel and sigmoid kernel, and parameters (C, gamma, degree)
for the polynomial kernel should be selected [47]. C is the regularization parameter; gamma
and degree are equivalent to γ and d. in Table 4, respectively. Grid search is a general
and effective method for parameter optimization, which is usually combined with cross-
validation [17]. To find the best SVR model for each risk zone, this study invoked the
GridSearchCV module in the scikit-learn package to search for optimal kernel functions
and their corresponding model parameters in a specified range based on grid search. The
selected parameters of the Z-SVR model are presented in Table 5.

Table 5. Model parameters of Z-SVR.

Zone Kernel Function Parameters

Lowisk Gaussian kernel C = 100, gamma = 0.1
Moderate risk Gaussian kernel C = 100, gamma = 1

High risk Gaussian kernel C = 1000, gamma = 0.1

This study obtained the Z-SVR model using the Python programming language
and machine learning package scikit-learn. The procedure of model establishment is
summarized as follows: (1) Select suitable features as input parameters. (2) Preprocess
the sample dataset by normalizing and dividing samples into training data and testing
data. (3) Establishing a scoring rule for comparing the predicted results with the actual
number of death casualties; if these two values are of the same order of magnitude, the
prediction will be considered correct. (4) Invoke the SVR module in the scikit-learn package
to build a model for each risk zone. (5) Invoke the GridSearchCV module in the scikit-learn
package, and obtain parameters and search ranges; then, use the 10-fold cross-validation
method to test the robustness of the model. (6) Input the training dataset into the SVR
model for each risk zone to obtain optimal kernel functions and their corresponding model
parameters for the Z-SVR model. (7) Input the testing dataset into Z-SVR model and predict
the earthquake death tolls. (8) Since the number of earthquake casualties should not be
negative, revise negative prediction results by setting them to 0. (9) Assess the performance
of the Z-SVR model on the testing dataset.

5. Results
5.1. Spatial Division of the Study Area

Considering the vast area and diverse environments of China’s mainland, to build an
earthquake casualty prediction model with better applicability, it is helpful to propose a
machine learning approach with submodels that are applied to different regions. Using the
strata fault dataset and population dataset, we divided the study area into risk zones using
the raster calculator tool in ArcGIS software according to the proposed partition standard.
We plotted the spatial division results and overlaid historical earthquakes with various
magnitudes and numbers of casualties onto it, as shown in Figure 12.
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As shown in Figure 12, low risk zones were the most extensive, which accounted for
51.94% of China’s mainland, followed by high risk zones, which accounted for 25.59%. The
area of moderate risk zones was the smallest, which accounted for 22.47% of the study
area. According to the distribution of historical earthquakes, the majority of destructive
earthquakes occurred in high risk areas, which indicates the validity of the proposed
spatial division method. Fewer destructive earthquakes occurred in some provinces of
Northern China (Heilongjiang, Jilin, Beijing and Shanxi), Southern China (Hubei, Hunan
and Guizhou) and Eastern China (Zhejiang and Fujian), while these regions were divided
into high or moderate risk zones. This can be explained by the presence of dense strata fault
lines or high population density in these provinces. Considering that regions with fewer
earthquakes usually encounter more casualties due to failure to take necessary precautions
for disasters, it is significant for people in high and moderate risk zones to be trained with
anti-seismic knowledge and to engage in evacuation practices. Interestingly, although
earthquakes occurred in Xizang, Qinghai and Xinjiang Provinces of Western China, most
parts of these regions were divided into low risk zones. This inconsistency is due to the
low population densities of these provinces, which contain vast depopulated zones; this is
supported by the observation that most earthquakes with high seismicity caused minor
casualties in low risk zones.

5.2. Prediction Result of Z-SVR Model

This study improved the SVR model and proposed the Z-SVR model with optimal
parameters for different risk areas. We randomly selected 10 samples in low risk zones
(L1~L10), 3 in moderate risk zones (M1~M3) and 17 in high risk zones (H1~H17) to predict
the numbers of casualties and compare them with corresponding true values, which are
presented in Figure 13 and Table 6. Although the number of casualties varied over a large
range in the risk zones, the differences between the majority of the predicted values by
Z-SVR and the true values were acceptable. However, there were three samples with
noticeable error. Among these three earthquake cases, 2 occurred in Puer (H7 and H14),
and 1 occurred in Lijiang (H17); both cities are located in Yunnan Province. Considering
that Yunnan is a region with significant variation of the geological environment and a huge
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economic gap between cities and villages, further research should be conducted to develop
a specific approach for predicting earthquakes in this region.

Remote Sens. 2022, 13, x FOR PEER REVIEW 21 of 29 
 

 

economic gap between cities and villages, further research should be conducted to de-
velop a specific approach for predicting earthquakes in this region. 

 
Figure 13. Prediction result of Z-SVR compared with the corresponding true values. 

Table 6. Representative earthquakes in testing samples. 

Sample No. Time Place True Value  Predicted Value 
L1 1989/9/22 Xiaojin 1 4.6 
L3 1986/8/7 Litang 2 1.2 
L7 2017/8/8 Jiuzhaigou 25 15.8 
M1 1991/3/26 Datong-Yanggao 1 1.1 
M2 2005/11/26 Jiujiang-Ruichang 13 17.8 
H8 1953/5/4 Mile 3 3 

H13 1965/1/13 Yuanqu 11 17.9 
H16 2008/8/30 Renhe-Huili 41 39.6 

6. Discussion 
6.1. Comparison between Z-SVR and Other Models 

To evaluate the effectiveness of the proposed model, this study selected training sam-
ples and used a cross-validation method to evaluate the robustness of the Z-SVR model. 
The regression and classification performances of the proposed model were also assessed 
by predicting the numbers of casualties in testing samples and comparing the results in 
terms of numerical difference and order of magnitude. Similar experiments were also im-
plemented on other widely used machine learning methods, including random forest 
(RF), back propagation neural network (BP) and logistic regression (LR). This was fol-
lowed by a series of experiments and detailed analyses. 

Several commonly used regression model evaluation indicators were employed in 
this study, including root mean square error (RMSE) and mean absolute error (MeaAE), 
which are defined as follows: 

RMSE = ඩ1𝑛 ෍(𝑦௜ − 𝑦ො௜)ଶ௡
௜ୀଵ  (16) 

MeaAE = 1𝑛 ෍ |𝑦௜ − 𝑦ො௜|௡
௜ୀଵ  (17) 

where 𝑦ො௜ is the predicted death toll of the 𝑖th sample, 𝑦௜ is the corresponding true death 
toll, and 𝑛 is the number of samples. 

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 M1 M2 M3 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17
0

50

100

150

200

250

300

N
um

be
r o

f c
as

ua
lti

es
 (P

eo
pl

e)

Sample No.

 True value
 Predicted value

Figure 13. Prediction result of Z-SVR compared with the corresponding true values.

Table 6. Representative earthquakes in testing samples.

Sample No. Time Place True Value Predicted Value

L1 1989/9/22 Xiaojin 1 4.6
L3 1986/8/7 Litang 2 1.2
L7 2017/8/8 Jiuzhaigou 25 15.8
M1 1991/3/26 Datong-Yanggao 1 1.1
M2 2005/11/26 Jiujiang-Ruichang 13 17.8
H8 1953/5/4 Mile 3 3

H13 1965/1/13 Yuanqu 11 17.9
H16 2008/8/30 Renhe-Huili 41 39.6

6. Discussion
6.1. Comparison between Z-SVR and Other Models

To evaluate the effectiveness of the proposed model, this study selected training
samples and used a cross-validation method to evaluate the robustness of the Z-SVR model.
The regression and classification performances of the proposed model were also assessed
by predicting the numbers of casualties in testing samples and comparing the results in
terms of numerical difference and order of magnitude. Similar experiments were also
implemented on other widely used machine learning methods, including random forest
(RF), back propagation neural network (BP) and logistic regression (LR). This was followed
by a series of experiments and detailed analyses.

Several commonly used regression model evaluation indicators were employed in this
study, including root mean square error (RMSE) and mean absolute error (MeaAE), which
are defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (16)

MeaAE =
1
n

n

∑
i=1
|yi − ŷi| (17)

where ŷi is the predicted death toll of the ith sample, yi is the corresponding true death toll,
and n is the number of samples.
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The classification model evaluation indicators that were applied in this study were
Precision, Recall and F1, which are defined as follows:

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

1
F1

=
1
2

(
1

Precision
+

1
Recall

)
(20)

where TP is the number of true-positive samples, FP is the number of false-positive samples,
TN is the number of true-negative samples, and FN is the number of false-negative samples.

6.1.1. Cross-Validation

The robustness of each model was evaluated using the cross-validation method. As
discussed in Section 2.2.1, 113 seismic cases were selected as the training dataset, among
which 49 cases were in low risk areas, 13 in moderate risk areas, and 81 in high risk areas.
We randomly divided the cases in low and high risk zones into ten groups, respectively;
considering the limited number of samples, we randomly divided the cases in moderate
risk zones into five groups. The sample data in each group were not repeated. We used
RMSE and MeaAE to compare the regression precision between the Z-SVR model and
other machine learning models using the spatial division method. RMSE and MeaAE were
calculated for three degrees of risk zones (L, M and H) and the average values (RMSE(A)
and MeaAE(A)) were also given. The comparison result of all models is shown in Figure 14.
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Figure 14. Model performance evaluated by the cross-validation method.

Judging from the stability of the prediction results on the training samples, all models
performed relatively better in low and moderate risk zones than in high risk zones. A
possible explanation is that there are 64 training samples in high risk zones, much more
than in low and moderate risk zones. In addition, the true numbers of casualties in these
64 samples vary from 1 to 748, which is a huge range and increases the difficulty for
machine learning models to achieve accurate prediction. Among all prediction models,
Z-LR performed the worst, as its RMSE and MeaAE were 83.37 and 52.72, respectively,
which ranked last in the two evaluation indicators. Z-BP and Z-RF outperformed the
Z-LR model, with RMSEs of 67.30 and 74.27, respectively, and MeaAEs of 42.80 and 49.17,
respectively. In contrast to the above prediction methods, Z-SVR showed higher overall
accuracy in cross-validation experiments for all risk zones. Its RMSE was 59.15, and its
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MeaAE was 36.16, which were significantly lower than those of the compared models;
this indicates that the proposed Z-SVR model had the smallest dispersion and the highest
stability.

6.1.2. Regression Accuracy Evaluation

For samples in low, moderate and high risk zones, this study used Z-SVR and other
models to predict their death tolls. Evaluation indicators of RMSE (L, M and H) and MeaAE
(L, M and H) were calculated for the risk zones, and the overall regression performances
(RMSE(A) and MeaAE(A)) of all models were also calculated, which are plotted in Figure 15.
For samples in low and moderate risk zones, the majority of models showed relatively
high regression accuracy, while for those in high risk zones, the Z-SVR and Z-BP models
showed good regression performance. Among all prediction models, in terms of overall
MeaAE, the Z-BP model showed the best regression accuracy with the lowest value of
16.73, and the Z-SVR model also performed well with MeaAE(A) of 17.39. In terms of
the overall RMSE, the average value of Z-SVR was 35.61, which was the lowest value,
followed by 35.89 for Z-BP. The precision evaluation results from Figure 15 further prove
that the proposed spatial division method has the advantages of enhancing prediction
accuracy and stability. For example, the RMSE of the Z-SVR model was the lowest, namely,
nearly half that of the SVR model; a similar result was obtained between the Z-BP and BP
models. In addition, the best fitting results were obtained by the Z-SVR and Z-BP models,
while the worst results were obtained by the RF, SVR and LR models, among which the
SVR and BP algorithms showed obviously improved performance with the utilization
of the spatial division method. The above analysis demonstrates that spatial division is
an effective method for improving the performance of machine learning algorithms in
predicting earthquake casualties and that the proposed Z-SVR model showed good and
stable performance in casualty prediction.
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6.1.3. Classification Accuracy Evaluation

The prediction results of Z-SVR, Z-RF, Z-BP, Z-LR and their initial models were also
compared with the corresponding true values in terms of classification performance, where
pairs of prediction and true values with the same order of magnitude were considered
correct. Based on this criterion, we calculated the evaluation indicators of Precision, Recall,
and F1 for all prediction models for the risk zones, which are presented in Table 7. In
low and moderate risk zones, although the Precision of the LR model was 1, its Recall
performance was unsatisfactory, which led to a low F1 value; compared with LR and other
models, Z-SVR showed better classification performance in low and moderate risk areas
with relatively high Precision values and the highest Recall and F1 values. With regard
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to samples in high risk zones, Z-BP was the model with the best prediction performance,
with an F1 value of 0.87. However, the classification result of Z-SVR in high risk zones was
also excellent, with the highest Recall, the second-highestPrecision and the third-highest F1
values. In general, the Z-SVR model showed significant stability in classification prediction,
with the highest values of Recall and F1 and a relatively high value of Precision. The F1
order of Z-SVR in all risk areas from high to low is moderate, low, and high risk zones.
However, only a few earthquakes with casualties occurred in moderate risk areas; hence, we
obtained a limited number of historical cases for training prediction models and verifying
their performances, which made it difficult to evaluate the difference in classification
performance order between the two models.

Table 7. Comparison of classification performance between Z-SVR and other models for three degrees
of risk zones.

Indicator Model Low Risk
Zones

Moderate
Risk Zones

High Risk
Zones Total

Precision

Z-SVR 0.92 1 0.87 0.87
SVR 0.92 0.5 0.47 0.63
Z-RF 0.85 1 0.52 0.64
RF 0.77 1 0.5 0.51

Z-BP 0.72 0.83 1 0.94
BP 0.87 0.83 0.71 0.67

Z-LR 0.87 0.83 1 0.93
LR 1 1 0.86 0.91

Recall

Z-SVR 0.9 1 0.82 0.87
SVR 0.9 0.67 0.47 0.63
Z-RF 0.7 0.33 0.53 0.57
RF 0.6 0.33 0.47 0.5

Z-BP 0.5 0.67 0.76 0.67
BP 0.6 0.67 0.65 0.63

Z-LR 0.6 0.67 0.71 0.67
LR 0.4 0.33 0.65 0.53

F1

Z-SVR 0.9 1 0.81 0.87
SVR 0.9 0.56 0.46 0.63
Z-RF 0.71 0.5 0.52 0.59
RF 0.61 0.5 0.45 0.5

Z-BP 0.54 0.67 0.87 0.74
BP 0.63 0.67 0.64 0.65

Z-LR 0.63 0.67 0.83 0.74
LR 0.57 0.5 0.74 0.67

We also divided the testing samples into three groups according to the number of
casualties, where the division criterion was order of magnitude (1 to 9, 10 to 99, 100 and
greater). We compared the classification performances of Z-SVR and other models in
the groups and calculated the evaluation indicators of Precision, Recall, and F1 for all
prediction models. Figure 16 presents the comparison results of classification performance
between Z-SVR and other models on samples with various numbers of casualties. Z-SVR
provided the most balanced and accurate classification into the three groups. Although
models such as Z-BP and Z-LR showed better classification performance in terms of
Precision or Recall in some groups, the Precision and Recall values of the Z-SVR model in
the three groups were high, balanced and stable; thus, Z-SVR had the highest F1 values in
each group. In general, the Z-SVR model was the most precise and stable model, which
provided accurate classification results for earthquakes with various numbers of casualties.
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Figure 16. Classification results of Z-SVR and other models for earthquakes with casualties of different
orders of magnitude: (a) Comparison of Precision; (b) comparison of Recall; and (c) comparison
of F1.
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6.2. Future Work

Further extensive studies are needed, and recommendations for future research are
discussed as follows. First, this study analyzes the importance of features that affect seismic
mortality, which simply collects 14 features and classifies them into disaster-inducing
factors, disaster-affected bodies and disaster-formative environments. Future studies can
extend the research by refining the classification standard and increasing the number of
factors. Second, this study divides the study area into risk zones of three grades based on
regional differences, where the partition standard exerts a potential influence on the accu-
racy and applicability of the proposed model. Future studies can explore more reasonable
criteria for different study areas. Third, the proposed prediction approach is a regression
model that is based on SVR, which is essentially a data-driven model. Future studies can
build models based on deeper seismic mechanisms to predict deaths that are caused by
earthquakes.

7. Conclusions

This study evaluated the importance of 14 features that affect seismic fatality based on
the RF model. On the basis of the importance assessment, we selected magnitude, popula-
tion density, geological fault density and GDP as the input parameters of the prediction
model, among which the densities of population and geological faults were also integrated
for spatial division. This study also proposed a spatial division method based on the theory
of regional difference. We studied the regional diversity of geological fault density and
population in China’s mainland using the WorldPop population dataset (100 m resolution)
every five years from 2000 to 2020 and the strata fault line dataset and, finally, divided the
study area into zones of various risk grades by overlay analysis. Based on the results of
feature selection and spatial division, this study proposed a zoning prediction model based
on SVR. Using 113 samples in the earthquake case dataset, we implemented model training
and obtained the optimal model parameters for each risk zone to enhance the prediction
accuracy of earthquake death tolls. The following conclusions were drawn from the results
that were obtained in this study:

1. Among all selected features from the evaluation index system, the order of importance
from high to low is as follows: magnitude, collapsed buildings, epicenter intensity,
population density, geological fault density, GDP, occurrence time, focal depth, occur-
rence day, aftershock, secondary disaster, rescue capability, landform, and climatic
condition.

2. The proposed method of spatial division based on regional diversity could be used as
an effective tool to refine complex study areas. Using this method, we divided China’s
mainland into high, moderate, and low risk zones, which laid the foundation for the
construction of a prediction model with submodels that are suitable for different risk
zones. The verification results demonstrated that the proposed division method is
feasible for classifying study regions, especially those with vast area and complex
environments.

3. The proposed Z-SVR model realizes accurate prediction and good generalization
performance. We collected 143 historical earthquake cases, of which 113 cases were
selected as the training dataset and 30 for examining the prediction performance of
the model. The best model parameters were selected for each risk zone, which led
to precise prediction results in risk zones of various grades. The proposed model
also showed accurate regression and classification accuracy in the various risk zones
compared with other machine learning models, including RF, BP and LR. Moreover,
the proposed Z-SVR model was compared to the initial SVR model using the same
database. Similar experiments were also implemented on comparative machine
learning models, and we found that the prediction performances of all models with
spatial division significantly improved. The above results prove the advantages and
significance of the proposed model and spatial division method.
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