
J Supercomput (2017) 73:4796–4822
DOI 10.1007/s11227-017-2050-6

A multi-parameter scheduling method of dynamic
workloads for big data calculation in cloud computing

Ali Hanani1 · Amir Masoud Rahmani1 ·
Amir Sahafi2

Published online: 24 April 2017
© Springer Science+Business Media New York 2017

Abstract Workload scheduling in cloud computing is currently an active research
field. Scheduling plays an important role in cloud computing performance, especially
when the platform is used for big data analysis and as less predictable workloads
dynamically enter the clouds. Finding the optimized scheduling solution with dif-
ferent parameters in different environments is still a challenging issue. In dynamic
environments such as cloud, scheduling strategies should feature rapid altering to be
able to adapt more easily to the changes in input workloads. However, achieving an
optimized solution is an important issue, which has a trade-offwith the speed of finding
the solution. In this article, an ordinal optimization method is proposed that consid-
ers the volume of workloads, load balancing and the volume of exchanged messages
among virtual clusters, considering the replications. The algorithm in the present paper
is based on ordinal optimization (OO) and evolutionary OO. In any time periods, a
criterion is calculated to determine the similarity of workloads in two-consequence
time periods, which is appropriate for timely changes in the scheduling procedure.
In this paper, considering more than one parameter, a proper scheduling would be
created for each time period. This scheduler is an organization for the number of vir-
tual machines for each virtual cluster, but if there is a desirable similarity between

B Amir Masoud Rahmani
rahmani@srbiau.ac.ir

Ali Hanani
ali.hanani@srbiau.ac.ir

Amir Sahafi
sahafi@iau.ac.ir

1 Department of Computer Engineering, Science and Research Branch, Islamic Azad University,
Tehran, Iran

2 Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran,
Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2050-6&domain=pdf

A multi-parameter scheduling method of dynamic workloads… 4797

workloads of two-consequence time periods, this procedure would be ignored. The
results show that a more optimized solution is obtained in comparison with the rated
methods, such as blind pink, OO, Monte Carlo and eOO in a reasonable time. The
suggested method is flexible and it is possible to change the weight ratio of the pro-
posed criteria in different environments to be consistent with different environmental
conditions. The results show that proposed method achieved up to 28% performance
improvement in comparison with eOO.

Keywords Cloud computing · Workload scheduling · Big data · Optimization ·
Virtual clustering · Throughput

Abbreviations

OO Ordinal optimization
eOO Evolutionary ordinal optimization
VM Virtual machine
LAN Local area network
JAWS Job-aware workload scheduling
PB Petabytes
RFOH Resource fault occurrence history
IOO Iterative ordinal optimization
MOS Multi-objective scheduling
DVS Dynamic voltage scaling
VC Virtual cluster
BIG Big workflow generation
VBIG Very big workflow generation
HUGE Huge workflow generation
MEOO Multi-parameter evolutionary algorithm
FIFO First in first out

1 Introduction

The volume of data that are generated by the existing virtual community is rapidly
increasing. In other words, a large volume of data is generated and stored by various
organizations [1]. With the advent of social network Web sites, users create a lot of
data about lives by daily posting details of the activities they perform, events they
attend and places they visit [2]. Such data are referred to as big data [2] that require
high volumes of storage and computational power for its storage and mining. Cloud
computing is a type of computation, which offers scalable, computing capabilities as
a service to customers [3]. The appearing cloud-based environments with distributed
data centers, while providing strong processing resources, bring about the need for
parallel/distributed algorithms [4]. For the selfsame reason, many organizations can
present their large calculations on cloud platforms [2]. Moreover, virtualization tech-
nology conceals heterogeneous computing resources and cloud customers can meet
their alternate demands in cloud compliance [5].

123

4798 A. Hanani et al.

Cloud computing provides high-performance computing in scientific and engi-
neering applications [6,7]. Therefore, many researchers have tried different methods
to increase the efficiency in various cloud systems. One of the topics, which are paid
more attention to, is scheduling. An important aspect of scheduling paradigm is pro-
viding appropriate computing resources for the requests that are received by cloud,
regarding the high volume of workload streams with large data and at the right time
and right place [8]. The type of scheduling big data work stream in the available
resources in the cloud environment is an NP-hard problem [9,10]. The main challenge
is to maintain an acceptable trade-off between scheduling overhead and scheduling
accuracy [10].

In this paper, a new method is proposed to perform workloads–jobs that have
been made up of numerous interrelated tasks scheduling. The proposed method, like
the other heuristic ones, attempts to find a suboptimal solution in the whole answer
environment instead of a completely optimized answer, yet in a shorter time. The
algorithm is based on a method called ordinal optimization (OO) [10], which searches
for suboptimal solutions in a shorter period of time. In addition, OO can analyze the
input workloads to reach a better result. This article investigates a recent work of the
authors of [11], called evolutionary ordinal optimization (eOO) [10], to propose a
new and more complete method in workloads analysis for calculating their similarity
formula. We have also covered other important parameters in the cloud environment,
such as the problem of load balancing or message passing between virtual clusters,
to find the appropriate scheduling. The basis of involving workload similarities in
finding the solution is for the scheduler to have the ability to adapt itself to different
environmentswhere scheduling policy should change constantly formore optimization
purposes. On the other hand, when the fluctuation of the work environment is low,
frequent changing in scheduling policy is not needed, as it is feasible to impose fewer
overloads to the scheduler.

eOOmethod provides a random solution. It attempts to choose amore suitable solu-
tion by n iterations (where n is much less than the total number of possible solutions)
and selects the best solution for the scheduling problem. Then, it calculates workload
similarities with respect to the volume of workload. In the next step, if the similarity
reaches a specific threshold during the time intervals, the system continues the former
strategy; otherwise, it calculates the random solution again and changes the strategy.

The novel features of our proposed algorithm are as follows:

– Calculation of similarity based on the workloads volume does not seem suffi-
cient. As a result, we suggest that, in addition to volume, replication factors and
messaging clusters be considered in workload similarities.

– We added a new step to the scheduling algorithm so that in each time interval
the feedbacks of all executions contribute to finding a better solution under the
assumption of lack of similarity and the need to change the scheduling strategy.
At this stage, the impact of the queue for each virtual cluster has been taken into
account to have more balance between the loads on each cluster and the others.

– If a cluster is loaded too much and its queue grew more than others, then the
scheduling order should change. By giving more probability to the cluster with
more loads, its chance for absorbing more virtual machines (VMs) in the next step

123

A multi-parameter scheduling method of dynamic workloads… 4799

will increase. As a result, that cluster executes more jobs in its queue with more
VMs.

Involving load balancing and replication in the scheduling process is very helpful
in finding the optimal solution, and the implementation results show the improved
performance of the algorithm.

The organization of the rest of this paper is as follows: In Sect. 2, we survey previous
studies in the literature; in Sect. 3, the proposed algorithm is delineated. Section 4 is
dedicated to implementation and assessing the proposed algorithm, and finally, in
Sect. 5, conclusions and suggestions for future research are mentioned.

2 Related work

Many studies have aimed at resolving the scheduling issue in different areas. In this
article, we address the recently proposed algorithms for scheduling in grid and cloud
computational systems. Many efforts were made to solve the scheduling issue, using
meta-heuristic algorithms and the swarm intelligence. Hanani et al. [12] investigated
multi-processor systems scheduling, using artificial bee colony algorithm. In that study,
better results were obtained rather than genetic algorithm and ant colony optimization
algorithm by adding memory for bees in artificial bee colony [12].

Job scheduling is often used in distributed systems, such as smart grid, in order to
optimize one or more specific quality-of-service parameters that are often throughput
or makespan [13]. Some researchers have also considered other important aspects
of distributed computations along with the scheduling issue. In some of the pro-
posed methods, features such as replication, security and load balancing are included
besides scheduling [5,14–19]. For example, Mansouri et al. [14] presented a method
for improving data availability in the data grid by combining data replication and
scheduling algorithm. They made a hierarchical classification of available resources.
Interrelated sites were put in a local area network (LAN) and several LANs were orga-
nized in a region. Then, based on the site’s relationship costs (sites’ relationship cost
of one region is naturally less than the cost of sites in two different regions) to access
the required replica and elapsed time in queue, a function was used to calculate the
combined cost; then, the scheduling was done. They also did some work to manage
replicas in the case of lackof storage space [14].As another instance,Rahmati et al. [15]
combined data replication and job scheduling. They integrated these two techniques
to enhance the performance of data-intensive applications execution. They integrated
these two techniques as a single objective, aiming at reducing response time by data
access time reduction in cloud computing environment. Simulation results showed the
effectiveness of their algorithm in comparison with well-known algorithms. Further-
more, Jiang et al. [18] used security as a parameter in the grid scheduling.

Some other studies similar to our work analyze jobs and other entered data as well
as existing resources to provide more optimized scheduling according to the input
streams and existing resources. Studies like [20–24] in a grid environment and [25–
29] in other environments, such as cloud, focus on input job streams and resources
in scheduling issue. Jianhua et al. [20] suggested a method for data-aware scheduling
in the data grid. They added a data-aware module to scheduler that puts the available

123

4800 A. Hanani et al.

resources information besides the file’s data and performs the scheduling. Mei et al.
[21] proposed a novel duplication-based scheduling algorithm to prevent unnecessary
duplications that impose a huge cost and overload. Wang et al. presented a technique
called job-aware workload scheduling (JAWS). It increases the query throughput for
data-intensive scientific database clusters. The investigated dataset poses a volume in
petabytes (PB) scale. They divided queries to the 1/0-friendly sub-queries, and then,
the data requirements which overlap with workloads were recognized and carried out
the scheduling based on that [22]. Khanli et al. presented a fault- tolerant job sched-
uler in grid computing via a new strategy named resource fault occurrence history
(RFOH) in computational grid. In their work, broker maintained the history of fault
occurrence of resources in grid information server and it utilized genetic algorithm to
find a near-optimal solution for the problem. In addition, it increased the percentage
of jobs executed within specified deadline [23]. Kazem et al. proposed a modified
simulated annealing algorithm for scheduling-independent tasks in a grid environ-
ment. Experimental results showed that their algorithm improved the performance of
static instances compared to the results of other algorithms reported in the literature
[24]. Zhang et al. [25] presented a method for workflow scheduling on cloud com-
puting platform. Their method, called iterative ordinal optimization (IOO), employs
ordinal optimization in a way that it is able to reach suboptimal schedule in each iter-
ation. Their test method has been done on the IBM RC2. Zhang et al. following their
work proposed anothermethod calledmulti-objective scheduling (MOS). Thismethod
also employed OO capabilities for cloud environments [26]. Nanduri et al. offered a
scheduling method based on map reduce. Their method was also job-aware, and they
divided tasks into four categories of CPU-intensive, memory-intensive, disk-intensive
and network-intensive. Then, according to the pattern of tasks resource utilization,
a vector was achieved from a combination of the four above-mentioned categories.
This vector was calculated by map reduce method, and it formed the queue-based
scheduling [27]. Navimpour et al. suggested a method to schedule the jobs on human
resources in the expert cloud based on genetic algorithm. In this method, chromosome
or candidate solution was represented by a vector; fitness function was calculated
based on response time; and one-point crossover and swap mutation were also used.
The results indicate that the proposed method could schedule the received jobs in
appropriate time with high accuracy in comparison with common methods. Also, the
proposed method had better performance in terms of total execution time, service plus
wait time, failure rate and human resource utilization rate in comparison with com-
monmethods [28]. Li et al. proposed an online optimization for scheduling preemptive
tasks on IaaS cloud systems. They recommended two online dynamic resource allo-
cation algorithms for the IaaS cloud system with preemptive tasks. Their algorithms
adjust the resource allocation dynamically based on the updated information of actual
task executions. Their results showed that their algorithms can significantly improve
the performance in the situation where resource contention is fierce [29]. Mezmaz et
al. proposed a meta-heuristic for energy-aware scheduling for cloud computing sys-
tems. They proposed a new parallel biobjective hybrid genetic algorithm that takes
into account makespan and energy consumption. They focused on the island parallel
and the multi-start parallel models. Their algorithm was based on dynamic voltage
scaling (DVS) to optimize energy consumption. In terms of energy consumption, the

123

A multi-parameter scheduling method of dynamic workloads… 4801

results showed that their approach outperforms the previous scheduling. In terms of
makespan, the results were significantly better [30]. In [31], Omara et al. proposed a
genetic algorithm-based scheduling for task scheduling problem. They added some
heuristics to their genetic algorithm-based scheduling and they obtained better results
compared with traditional genetic algorithm-based scheduling.

Abouelela et al. proposed a top-down hierarchical framework for scheduling big
data in optical grids. Their method ensures that each domain executes intra-domain
scheduling algorithm to schedule its own computing and networking resources. For
this framework, they introduced iterative scheduling algorithm and k-shortest paths
algorithm. They have carried out some evaluations, and their results showed that their
frameworkwith these two algorithms is proper for data-intensive applications [32]. Lin
et al. proposed a scheduling algorithm for big data workflows in multicloud environ-
ment. Their algorithm, aiming execution cost of workloadsminimization, incorporates
the concept of partial critical paths, considering quality of service. Their method, con-
sidering characteristics of multiclouds, showed better performance than many other
comparative algorithms in all different cases. It also showed that the pretreatment pro-
cedure has a significant effect on the performance and runtime of proposed algorithm
[33]. Somasundaram et al. proposed a swarm intelligence-based scheduling for big
data applications. They have used particle swarm optimization-based profiling algo-
rithm to profile applications and, using these profile templates, prefer proper resource
list for each submitted big data application. According to these profiles, proper cloud
resources from available resources allocate to users’ applications. Their evaluations
showed that the proposed algorithm maximizes application success ratio, scheduling
success rate, utilization of cloud resources and user satisfaction [34].

3 Suggested algorithm

In this section, we first introduce different aspects of the scheduling problem, and then,
we will elaborate the proposed algorithm.

3.1 Problem definition

The model used in this paper to describe and solve the scheduling problem is based on
the proposedmodel byZhang et al. [10]with small changes tomake itmore compatible
with our purposes. Using their predefined parameters, we are able to understand the
problem more easily and perform better comparisons. Table 1 shows the most used
notation and parameters. Some of the notations used are taken from [10] and others
are generated by authors.

In the beginning, we assume that a job (or a workload) is composed of several
related tasks, is capable of parallelization and can be scheduled in a virtual cluster
consisting of multiple virtual machines. It should be noted that putting interrelated
tasks and the tasks with the same type is also feasible. Let C be the number of existing
jobs (we assume that job and workload are the same) at the scheduling moment, then
c ε [1.C] shows the number of available jobs.

123

4802 A. Hanani et al.

Table 1 Notations and
parameters

Notations Definitions

Ti Throughput at i th scheduling period

δc(t) The total workload for VCc at time t

δc(t) Remaining workload for VCc at time t

Si The i th scheduling period

c or C Index of a VC or the number of VCs

VCc cth virtual cluster

VMk kth virtual machine

i or I Index of time or the last scheduling point

θc(ti) Number of VMs in VCc allocated at time ti for Si stage

θ The number of available VMs

Rδc The workload required version of δc

LFNi Local file name for the i th replica

TCδc The time cost for sending Rδc to VCc

Mi, j The number of messages between the clusters VCi ,VC j

Bci The bandwidth of sending LFNi to cluster c

Virtual machines (VMs) are computational units that are placed on top of the phys-
ical layer. The number of VMs during the scheduling is supposed to be fixed, and
the employed scheduling algorithm categorizes VMs in all of C groups. Each group
called virtual cluster (VC) serves a job. All the tasks of the cth job are assigned to cth
VC. As a result, we should divide VMs to C VCs [10].

According to Fig. 1, the workload dispatcher sends tasks to VCs to run using the
information of the similarity calculation and the scheduling improver sectors.

The number of related VMs for each VCs is different in any time interval. The
purpose of the new algorithm is to find the optimal number of VMs related to each
virtual cluster in order to improve the throughput and makespan to an acceptable level.
Let θ(ti) be the scheduling in i time interval, then its value is a vector by C element
that each element indicates the number of clusters corresponding to that number of
VMs as shown in Eq. (1)

θ(ti) = [θ1(ti), θ2(ti), . . . , θc(ti), . . . , θC (ti)] (1)

where θc(ti) is the number of usedVMs in the cth VC, θ is the total number of available
VMs, and θ(ti) is the order which shows the number of virtual machines per cluster.
The goal is to find the best order for any time interval where:

∑C
c=1 θc(ti) = θ .

If at the time interval ti , θ(ti) scheduling is employed, this strategy will be valid
until ti+1. At the next time point (ti+1) another scheduling vector will be used. The new
scheduling vector, θ(ti+1), is generated during the simulation phase from ti to ti+1. In
the proposed algorithm, we try to use the θ(ti) feedback from ti to ti+1 for generating
θ(ti+1). In addition, job similarities are used for optimizing the scheduling algorithm.
In other words, if the similarity between workloads from ti to ti+1 is acceptable, then
the same approach will be used and θ(ti) = θ(ti+1). The same strategy will help to

123

A multi-parameter scheduling method of dynamic workloads… 4803

Fig. 1 The proposed cloud platform is made up of two physical servers and two physical clusters each
of which is divided into eight virtual machines organized in virtual clusters. For example, in VC1 there
are eight virtual machines: Four VMs are located at physical server 1 and other four VMs are placed on
physical server 2. The order will be changed during the scheduling

have less scheduling overhead between two time intervals. Otherwise, the scheduling
vector should be renewed.Anewscheduling vector θ(ti+1) is generatedwithn iteration
manner as it was explained before.

If δc(t) is the workload of related cth virtual cluster at time t , the workload is exe-
cuted at the end of the time interval or before its completion; otherwise, the remaining
amount will be transferred to the next time interval. The remaining amount of work-
load is shown with δc(t). Time of completion of each cluster in each time interval
will be calculated separately (if a workload will not be complete at the end of a time
period, ti , ti is considered as its completion time).

The “throughput” criterion is used for different scheduling measurements in each
time interval. Throughput is the number of tasks carried out in the time unit. A through-

123

4804 A. Hanani et al.

put is calculated for each time interval. Throughput for the time interval i is shown as
Ti . This throughput is calculated for all clusters in a time interval.

Considering θ(ti) = [θ1(ti), θ2(ti), . . . , θc(ti), . . . , θC (ti)] scheduling, task
throughput is the total number of completed tasks divided by the total time devoted to
running tasks.

3.2 The introduction of the proposed technique

According to Fig. 2, the proposed algorithm is divided into the following general
components:

1. Primary scheduling (primary calculation of the number of virtual machines per
cluster) phase.

2. Similarity calculation phase.
3. Scheduling improvement phase.

After the primary scheduling, which repeats n times (n is much smaller than the
entire condition space), based on the best throughput, one of the n random modes is
selected as the scheduling strategy. Similarities of newly entered jobs are compared
with completed jobs during and after each time interval (time interval duration will be
defined based on the usage). If the similarity is more than a threshold, continuing the
scheduling in accordancewith the previous interval is feasible; otherwise, by involving
the information of scheduling improvement level, another time scheduling should be
employed. Creating the new scheduling vector starts by n time random iterations.
It chooses the best created θ among the n random generated vectors, based on the
throughput. Also, the probable cluster weight changes according to the feedback from
the previous time interval and the importance of features, such as load balancing and
replication. The clusters with more loads absorb more VMs in the next step and have
more calculation power for new courses. In the following, we delineate each stage of
the above-mentioned algorithm.

3.2.1 Primary scheduling phase

In this phase, the number of VCs is determined based on the number of initial work-
loads. Then, the virtual machines are equally distributed among the existing clusters
to achieve θ(t0) = [θ1(t0), θ2(t0), . . . , θc(t0), . . . , θC (t0)] vector; random choosing is
based on a random number which at first is constant for each cluster and equal to 1

C .
But it may change during the simulation. If the estimated amount of a cluster is higher,
the possibility of assigning more VMs to it is stronger. Then, we calculate throughput
for this scheduling and repeat it n times, and the scheduling with the best throughput
will be selected as the primary scheduling and workloads will be assigned to their
corresponding VCs.

3.2.2 Similarity calculation phase

This phase has three parts and similar workloads are calculated from three different
perspectives. If the similarity is lower than a threshold, the scheduling vector should

123

A multi-parameter scheduling method of dynamic workloads… 4805

Fig. 2 The flowchart of the proposed algorithm phases

be calculated again; otherwise, we can continue the previous algorithm. To calcu-
late resemblance to the workloads more accurately, the following three criteria are
employed:

– Similarity in size.
– Similarity in replication.
– Similarity in message passing.

Using a good similarity calculation, we can achieve better comparison between
two time periods. As creating new scheduling has some overhead, it is desirable to
decrease these procedures. On the other hand, if similarity standard is more accurate,
deciding about creating a new scheduling would be more precise. In the other words,
if workloads of two-consequence time periods are similar to a more precise standard,
changing scheduler would take place in right place, and in addition to time reduction of
runningworkloadswith a proper scheduler, the overhead of schedulingwould be lesser

123

4806 A. Hanani et al.

due to the reduction of changing scheduler. In the following, each part is explained in
detail.

Similarity in the size of workloads

Similarity in the size is shown by α parameter, which is extracted from [10], where it
is the only criterion for calculation of workloads similarities. In the current paper, α is
one of the parameters that aim at determining the similarity of workloads in different
time intervals. This parameter is calculated through Eq. (2)

α(t1, t2) =
∑C

c=1 (δc(t1) × δc(t2))
√∑C

c=1 δc(t1)2 × ∑C
c=1 δc(t2)2

(2)

where δc(t) is the volume of workloads in cluster c at time t .

Similarity in required replicas to do one workload in two time periods t1 and t2

If the settled workload in the cluster C needs to run the data in other clusters, the
transfer cost of these files will be an influential factor to cluster c. This cost can be
calculated in two time intervals and considered as a measure of similarity. It means
that if the cost of the replica in time t1 is not discriminated from the cost of time t2, it
can be concluded that there was not a large fluctuation in workloads and scheduling
algorithm did not change. These factors will be used to improve the scheduling as
well.

If the workload requires a version of δc which is shown as Rδc and LFNi refers to
the local file name for the i th replica, then:

Rδc = {LFN1,LFN2, . . . ,LFNn} (3)

If the LFNi exists in cluster c, there will be no cost; otherwise, the cost is calculated
by Eq. (4)

TCδc = 1

parc
×

n∑

i=1

|LFNi |
Bci

(4)

parc is a fixed ratio for showing the amount of parallelism degree to download the
replica in cluster c. Bci is the bandwidth of sending LFNi to cluster c. The parameter
β is defined as a similarity in replica as shown in Eq. (5)

β(t1, t2) =
∑C

c=1

(
TCδc(t1) × TCδc (t2)

)

√∑C
c=1 TCδc (t1)

2 × ∑C
c=1 TCδc (t2)

2
. (5)

Message passing among clusters

The number of sent messages between two clusters is a criterion for the similarity in
two time intervals. Figure 3 shows the hypothetical example of communication graph
with four clusters. Nodes are clusters and edges indicate the number of messages that
are exchanged between two clusters.

123

A multi-parameter scheduling method of dynamic workloads… 4807

vc1 vc2

vc3 vc4

200

130

70 10
0

40

Fig. 3 An example for message passing among VCs. Asterisk Weights of edges show the number of
commuted messages

Let Mi, j be the summation of the number of messages between the clusters
VCi ,VC j , then Mi, j = Mj,i and there is no need to calculate Mj,i separately. It
seems calculation of similarity in t1 and t2 intervals in terms of exchanging messages
between clusters is sufficient from the viewpoint of accuracy. In this case, let C be the
total number of clusters corresponding to graph matrix element, and C2 be exchanged
messages; with the proposed algorithm, calculating the similarity in messaging has

the complexity of O
(
C(C−1)

2

)
instead of O

(
C2

)
.

γ is used as the degree of similarity of the time intervals t1 and t2, which is calculated
by Eq. (6)

γ (t1, t2) =
⎛

⎝
C∑

i=1

i∑

j=1

∣
∣Mi j (t1) − Mi j (t2)

∣
∣

Mi j (t1) + Mi j (t2)

⎞

⎠ /(C(C + 1)/2) (6)

Mi j (t) is the total number of messages from cluster i to cluster j and vice versa at
time t .

When Mi j (t1) = Mi j (t2) = 0, there were no exchanged messages between the two
clusters and the amount of fraction is considered one in that repetition.

Finally, the similarity is defined as shown in Eq. (7)

Sim (t1, t2) = w1 × α(t1, t2) + w2 × β(t1, t2) + w3 × γ (t1, t2)
where

∑3
i=1 wi = 1.

(7)

According to the calculated similarity, the key decision could be made on changing
the scheduling policy in the next time interval or continuing the last policy with no
change. If the Sim(t1, t2) is less than a specific threshold, then the scheduling order
should be changed. Due to this change, θ should be calculated with n time repetition

123

4808 A. Hanani et al.

and selecting the best θ based on the throughput. When the scheduler decides to
change the scheduling order, it must divide the scheduling interval adaptively into
smaller intervals for separating the scheduling. On the other hand, if the similarity is
in an acceptable range of values, it is not necessary to change the scheduling policy and
two scheduling intervals could be merged to continue scheduling with the least order.

3.2.3 Improving scheduling using load balancing phase

At the moment of time interval completion or when the interval is broken into two
parts, the random assignment of machines into clusters is done several times, and
the scheduling with the best throughput is chosen. It is obvious that such random
operations which have been conducted up to now do not involve the existing feedback
in the next time interval of scheduling.

In this section, we try to perform the scheduling with respect to the existing status
to make improvements in the next scheduling tasks. This is done while running work-
loads. It means that in order to enhance the running speed and not to stop running
works for the reason of simulation actions, simulation stage will be done parallel with
execution stage. In the following, a criterion is defined for considering the load of each
cluster.

As it was mentioned, selecting the number of machines per cluster at the beginning
stage is a random process and most probably equal to 1

C . At each step, we attempt to
distribute the number of virtual machines based on improvement of stages targeted.
That is, if workload of one cluster queue is more than the average of workload queues,
it probably will be enhanced in the way that in the next scheduling interval there exists
more chance for assigning VMs to that VC. As illustrated in Fig. 4, each cluster has
a queue. The entered workloads for each cluster are sent to a specific queue.

To balance the workload of each cluster, deviation amount of waiting works in the
queue is calculated and the probability ratio will be changed for each cluster according
to the deviation

• qδ(t) total volume of workloads in all queues at time t
• q̄δ(t) average volume of workloads in all queues
• qδc (t) volume of workload in the cluster queue c at time t .

Standard deviation is calculated for the volume of workload in queue. If the devia-
tion is less than a certain value, it does not need to take other steps and the algorithm
will go to the last step (similarity calculation); otherwise, the scheduling policy should
be changed to achieve more optimized load balancing. Therefore, the following steps
are executed:

First, the standard deviation should be calculated through Eq. (8)

σ =
√
√
√
√ 1

C

C∑

c=1

(
qδc (t) − q̄δ(t)

)2
. (8)

Second, if σ is more than a certain threshold, the scheduling policy should be
changed. Finding suitable threshold is done by trial and error.

123

A multi-parameter scheduling method of dynamic workloads… 4809

Fig. 4 Queues of VCs, which contain workloads of similar types

Table 2 Details of workloads

Jobs Number of tasks Total length
(no. of instructions)

Size of needed file (if
exist) (MB)

Job 1 6 24,000 300

Job 2 6 82,000 300

Job 3 3 360,000 300

Job 4 4 80,000 300

Job 5 2 70,000 300

Job 6 10 38,000 300

Job 7 8 400,000 300

Third, the probability of clusters should be calculated again. For each c, if pc(t) is
the eventual ratio for each virtual machine assignment for cluster c at time t , it can
change over the time as shown in Eq. (9)

∀c ∈ [1,C] , (qδc (t) − q̄δ(t)) = ϕc

ϕc

⎧
⎪⎨

⎪⎩

>0 → pc(t) = pc(t) + qδc (t)
qδ(t)

<0 → pc(t) = pc(t) − qδc (t)
qδ(t)=0 → pc(t) = pc(t)

.
(9)

However, if pc(t) is more than one or less than zero, this step will fail. By changing
clusters probability in the next scheduling interval, the number ofmachineswill change
according to the targeted probability. In fact, we aim at raising the possibility of the

123

4810 A. Hanani et al.

0

20000

40000

60000

80000

100000

120000

20% 30% 40% 50% 60% 70% 80%

M
A

KE
SP

A
N

EXISTANCE POSSIBILITIES OF DIFFERENT REPLICAS

MEOO eOO Blindpick FIFO

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

20% 30% 40% 50% 60% 70% 80%

M
A

KE
SP

A
N

EXISTANCE POSSIBILITIES OF DIFFERENT REPLICAS

MEOO eOO Blindpick FIFO

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

20% 30% 40% 50% 60% 70% 80%

M
A

KE
SP

A
N

EXISTANCE POSSIBILITIES OF DIFFERENT REPLICAS

MEOO eOO Blindpick FIFO

(a)

(b)

(c)

Fig. 5 Makespan of running simulation of BIG scenario for existence possibilities of different replicas,
a 32 virtual machines, b 64 virtual machines, c 128 virtual machines

busier clusters to privilege higher chances for absorbing more VMs, and also we
decrease the possibility of clusters the queues of which are less congested. In this way,
we reach load balancing for VCs over time.

123

A multi-parameter scheduling method of dynamic workloads… 4811

0

50

100

150

200

250

300

350

400

450

20% 30% 40% 50% 60% 70% 80%

SI
M

U
LA

TI
O

N
 T

IM
E

POSSIBILITIES OF DIFFERENT REPLICAS

MEOO eOO Blindpick FIFO

Fig. 6 Simulation time for 64 virtual machines for possibilities of different replicas

4 Results and discussion

In this section, we present detailed results for the aforementioned multitasking work-
load scheduling.

The simulations are carried out on a PC with the Intel Dual Core CPU with 2
GHz frequency, 3 Gigabytes of Ram and a 32-bit windows 7 operating system. This
simulation is performed by CloudSim version 3.0 and Java Development Kit 1.7.0 in
NetBeans IDE 8.0.2.

We utilized seven clusters for distributing the nodes. In three scenarios, we used 32,
64 and 128 nodes. Also, a data center was utilized, which comprised of four servers
each of which had eight CPUs (2.0 GHz), 8 GB of Ram and a 32-bit Linux system.
Each worker node had one CPU (1.0 GHz), 512-MB Ram and a 32-bit Linux system.
Workers were interconnected by a connection with a 1000-Mbit bandwidth.

Since we used the simulation method for evaluation, we evaluated our scheduler
using jobs generated by ourselves. It was aimed to mime the benchmarking applica-
tions that were used in [10]. Since there were seven clusters, there were seven types
of jobs as well. In our simulations, we had one thousand jobs that were randomly
generated. But, for each simulation, the seed of random generator was identical to
others in order to have the same order of jobs to provide a fair simulation. Details of
jobs are shown in Table 2.

According to Table 2, there are seven jobs (workloads), each of which has a special
number of tasks (cloudlets), length and file size. For example, job 1 has six tasks with
a total length of 24,000 million instructions, and if it needs a file for replication, the
file size will be 300 MB. It must be noted that CloudSim is not a tool for big data, we
mime the behavior of the big data by extending the total length of jobs. Actually, we
created jobs with more instructions by this means and, as a result, jobs take more time
for the operation.

We have designed some scenarios for a proper validation and comparison according
to [10]. As the current paper is focused on big data, we have designed three compre-
hensive scenarios that in each of them file sizes are different, to test methods in the

123

4812 A. Hanani et al.

0

2000000

4000000

6000000

8000000

10000000

12000000

20% 30% 40% 50% 60% 70% 80%

M
A

KE
SP

A
N

DIFFERENT REPLICAS EXISTANCE POSSIBILITIES

FIFO MEOO eOO Blindpick

(c)

(b)

(a)

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

20% 30% 40% 50% 60% 70% 80%

M
A

KE
SP

A
N

DIFFERENT REPLICAS EXISTANT POSSIBILITIES

MEOO eOO Blindpick FIFO

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

20% 30% 40% 50% 60% 70% 80%

M
A

KE
SP

A
N

DIFFERENT REPLICAS EXISTANCE POSSIBILITIES

MEOO eOO Blindpick FIFO

Fig. 7 Makespan of running simulation for VBIG scenario for existence possibilities of different replicas,
a 32 virtual machines, b 64 virtual machines, c 128 virtual machines

123

A multi-parameter scheduling method of dynamic workloads… 4813

0

50

100

150

200

250

300

350

400

450

20% 30% 40% 50% 60% 70% 80%

SI
M

U
LA

TI
O

N
 T

IM
E

DIFFRENT REPLICAS EXISTANCE POSSIBILITIES

MEOO eOO Blindpick FIFO

Fig. 8 Simulation time for 64 virtual machines for different possibilities of replicas

situations that workloads are big, very big and huge. On the other hand, as replica-
tion and message passing is one of the other important parameters, we have tested
all methods in all scenarios with a different probability of message passing existence
among virtual clusters.

Simulation is performed in three scenarios; Scenario 1:Weused the numbers that are
presented in Table 2 as the boundaries of our experiment and called it “Big workflow
generation” or “BIG.” Scenario 2: We multiplied the total length of each task and
file size by 10 and named it “Workflow generation” or “VBIG.” And Scenario 3:
We multiplied the total length of each task and file size by 100 and called it “Huge
workflow generation” or “HUGE.”

The results of each scenario were compared for 32, 64 and 128 nodes. For each of
them, the simulationwas run for existence possibility of different replicas. In effect, the
proposed algorithmwas tested in situations where possibilities of needing replications
were 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. We have called proposed method as multi-
parameter evolutionary ordinal optimization (MEOO) and it is compared with eOO,
BlindPick and FIFO methods.

Scenario 1: Big workflow generation (BIG)

Figure 5 indicates the comparison of Scenario 1 for different replicas possibility for
32 (5.a), 64 (5.b) and 128 (5.c) virtual machines.

It was observed that the variation of existence possibility of replications has a very
limited impact on all of the tested methods, because the size of replications is very
smaller than the actual size of running workloads. As the replication rate raises, we
can see better improvement in proposed method. In Fig. 5 we can see the improvement
of our method in terms of makespan. After rising replica existence ratio from 0.2 to
0.8, in comparison with eOO, BlindPick and first in first out (FIFO), the improvement
is raised from 0.25, 0.11 and 0.69 to 0.29, 015 and 0.70, respectively. FIFO always
had the worst and the proposed algorithm (MEOO) always had the best makespan
among the tested algorithms. By increasing the numbers of VMs, performance was
improved in all of them. In Fig. 5 we can see that in terms of makespan, our method

123

4814 A. Hanani et al.

0

2000000

4000000

6000000

8000000

10000000

12000000

20% 30% 40% 50% 60% 70% 80%

M
A

KE
SP

A
N

DIFFERENT REPLICAS EXISTANCE POSSIBILITIES

FIFO MEOO eOO Blindpick

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

20% 30% 40% 50% 60% 70% 80%

M
A

KE
SP

A
N

DIFFERENT REPLICAS EXISTANCE POSSIBILITIES

MEOO eOO Blindpick FIFO

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

20% 30% 40% 50% 60% 70% 80%

M
A

KE
SP

A
N

DIFFERENT REPLICAS EXISTANCE POSSIBILITIES

MEOO eOO Blindpick FIFO

(a)

(b)

(c)

Fig. 9 Makespan of running simulation for HUGE scenario for each existence possibility of different
replicas, a 32 virtual machines, b 64 virtual machines, c 128 virtual machines

123

A multi-parameter scheduling method of dynamic workloads… 4815

0

50

100

150

200

250

300

20% 30% 40% 50% 60% 70% 80%

SI
M

U
LA

TI
O

N
 T

IM
E

DIFFERENT REPLICA EXISTANCE POSSIBILITY

MEOO eOO Blindpick FIFO

Fig. 10 Simulation time for 64 virtual machines for different possibilities of replicas

0%

10%

20%

30%

40%

50%

60%

70%

80%

20% 30% 40% 50% 60% 70% 80%

Im
pr

ov
em

en
t

Replica Existance Possibility

eOO – 32 VMs

blindpick -32 VMs

FIFO -32 VMs

eOO -64 VMs

blindpick -64 VMs

FIFO -64 VMs

eOO -128 VMs

blindpick -128 VMs

FIFO -128 VMs

Fig. 11 Performance improvement of the proposed algorithm compared to the others in BIG scenarios

shows better results in comparison with other methods. In some cases, the proposed
algorithm and BlindPick had almost similar performance, but as it is shown in Fig. 6,
the proposed algorithm had much less simulation time and consequently a much less
overhead. According to Fig. 6, BlindPick had a very bad overhead, although it had
nearly the same makespan as the proposed algorithm in some situations. For the sake
of brevity, Fig. 6 just depicts the results for 64 VMs; other results for 32 and 128 VMs
are similar to 64.

Scenario 2: Very big workflow generation (VBIG)

Figure 7 indicates the comparison of Scenario 2 for different replicas possibility for
32 (7.a), 64 (7.b) and 128 (7.c) virtual machines.

Like Scenario 1, the FIFO algorithm always had the worst and the proposed algo-
rithm (MEOO) always had the best makespan among the tested ones. By increasing
the numbers of VMs, all algorithmsworked better. In some situations, the performance

123

4816 A. Hanani et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

20% 30% 40% 50% 60% 70% 80%

Im
pr

ov
em

en
t

Replica Existance Possibility

eOO -32 VMs

blindpick -32 VMs

FIFO -32 VMs

eOO – 64 VMs

blindpick -64 VMs

FIFO -64 VMs

eOO -128 VMs

blindpick -128 VMs

FIFO -128 VMs

Fig. 12 Performance improvement of the proposed algorithm compared to the others in VERY BIG sce-
narios

0%

10%

20%

30%

40%

50%

60%

70%

80%

20% 30% 40% 50% 60% 70% 80%

Im
pr

ov
em

en
t

Replica Existance Possibility

eOO -32 VMs

blindpick -32 VMs

FIFO -32 VMs

eOO – 64 VMs

blindpick -64 VMs

FIFO -64 VMs

eOO -128 VMs

blindpick -128 VMs

FIFO -128 VMs

Fig. 13 Performance improvement of the proposed algorithm compared to the others in HUGE scenarios

of the proposed algorithm and BlindPick was analogous, but according to Fig. 8 the
proposed algorithm had much less simulation time and, as a result, it had a much less
overhead. For the sake of brevity, Fig. 8 only illustrates the results for 64 VMs; other
results for 32 and 128 VMs are similar to 64.

Scenario 3: Huge workflow generation (HUGE)

Figure 9 indicates the comparison of Scenario 3 for different replicas possibility for
32 (9.a), 64 (9.b) and 128 (9.c) virtual machines.

Likewise, the FIFO algorithm was always the worst and the proposed one (MEOO)
outperformed the others. Also, increasing the numbers ofVMs caused all algorithms to

123

A multi-parameter scheduling method of dynamic workloads… 4817

-250%

-200%

-150%

-100%

-50%

0%

50%

100%

150%

20% 30% 40% 50% 60% 70% 80%

Im
pr

ov
em

en
t

Replica Existance Possibility

eOO -32 VMs

blindpick -32 VMs

FIFO -32 VMs

eOO – 64 VMs

blindpick -64 VMs

FIFO -64 VMs

eOO -128 VMs

blindpick -128 VMs

FIFO -128 VMs

Fig. 14 Overhead reduction of the proposed algorithm compared to the others in BIG scenarios

-500%

-400%

-300%

-200%

-100%

0%

100%

200%

20% 30% 40% 50% 60% 70% 80%

Im
pr

ov
em

en
t

Replica Existance Possibility

eOO -32 VMs

blindpick -32 VMs

FIFO -32 VMs

eOO – 64 VMs

blindpick -64 VMs

FIFO -64 VMs

eOO -128 VMs

blindpick -128 VMs

FIFO -128 VMs

Fig. 15 Overhead reduction of the proposed algorithm compared to the others in VBIG scenarios

have better performance. As shown in Fig. 10, the overhead of the proposed algorithm
is much less than BlindPick in similar situations.

In all scenarios, the proposed algorithm outperformed the others and it had a better
makespan. The improvements in Scenarios 1, 2 and 3 are shown in Figs. 11, 12 and 13,
respectively. These charts are shown as three tables in “Appendix 1” section.

In all scenarios and in all situations with different replications, the proposed algo-
rithm works better than the others. Overall, MEOO had 45% speedup in comparison
with FIFO, 3–10%withBlindPick and 5–10%with eOO.Rising the amount of replica-
tion existence causes better performance.As these replications are small in comparison
with these big data, its influence is about 1%.

123

4818 A. Hanani et al.

-400%

-300%

-200%

-100%

0%

100%

200%

20% 30% 40% 50% 60% 70% 80%

Im
pr

ov
em

en
t

Replica Existance Possibility

eOO -32 VMs

blindpick -32 VMs

FIFO -32 VMs

eOO – 64 VMs

blindpick -64 VMs

FIFO -64 VMs

eOO -128 VMs

blindpick -128 VMs

FIFO -128 VMs

Fig. 16 Overhead reduction of the proposed algorithm compared to the others in HUGE scenarios

Simulation time can be supposed as overhead. In Figs. 14, 15 and 16, the overhead
of the proposed algorithm is compared to the other tested ones. Totally, MEOO had
80–90 and 5% overhead time reduction compared to BlindPick and eOO, respectively.
But FIFO had less overhead time because of its simplicity.

5 Conclusion

Aminimal-overhead algorithm for dynamic multitasking workload scheduling is pro-
posed in this work. This algorithm is based on allocating virtual cluster resources on
demand. The most important advantage of MEOO algorithm is impressively decreas-
ing the overhead in creating suboptimal schedules. On the other hand, the major
technical contribution of this study is the acceptable performance of MEOO in all
situations with different existence possibilities of replications, a different number of
virtual machines and different data sizes. MEOO was tested with prominent extant
methods through simulation. The results in different scenarios and situations showed
that proposed method achieve less makespan and as a result more throughput. It
should be mentioned that MEOO always has reached better makespan and perfor-
mance in comparison with other methods, and its overhead is always much less than
the other methods, except FIFO. The better throughput and makespan in cloud com-
puting can cause many improvements in cloud indirectly; consumers’ costs, efficient
use of resources, increased outcome for service providers and energy saving are just
some of these improvements. As a suggestion for further research, we recommend the
use of statistical analysis for determining similarity. Furthermore, we strongly suggest
using queue theory for managing queues in order to make a probable improvement.

Appendix 1: Performance improvement of proposed method

See Tables 3, 4 and 5.

123

A multi-parameter scheduling method of dynamic workloads… 4819

Table 3 Performance improvement of the proposed algorithm compared to the others in BIG scenarios

Algorithm 20% 30% 40% 50% 60% 70% 80%

eOO-32 VMs 0.253 0.298 0.253 0.287 0.297 0.275 0.287

BlindPick-32 VMs 0.115 0.169 0.172 0.157 0.169 0.144 0.157

FIFO-32 VMs 0.690 0.707 0.688 0.702 0.706 0.696 0.701

eOO-64 VMs 0.170 0.179 0.180 0.172 0.170 0.160 0.155

BlindPick-64 VMs 0.029 0.041 0.042 0.033 0.032 0.020 0.014

FIFO-64 VMs 0.407 0.413 0.412 0.406 0.405 0.397 0.393

eOO-128 VMs 0.072 0.072 0.081 0.072 0.065 0.061 0.056

BlindPick-128 VMs 0.046 0.046 0.053 0.044 0.039 0.036 0.029

FIFO-128 VMs 0.463 0.463 0.463 0.458 0.454 0.452 0.448

Table 4 Performance improvement of the proposed algorithm compared to the others in VERY BIG
scenarios

Algorithm 20% 30% 40% 50% 60% 70% 80%

eOO-32 VMs 0.256 0.265 0.263 0.276 0.255 0.249 0.271

BlindPick-32 VMs 0.101 0.113 0.112 0.129 0.103 0.096 0.122

FIFO-32 VMs 0.689 0.692 0.691 0.696 0.687 0.684 0.693

eOO-64 VMs 0.177 0.185 0.179 0.175 0.165 0.165 0.161

BlindPick-64 VMs 0.038 0.048 0.043 0.038 0.027 0.027 0.023

FIFO-64 VMs 0.410 0.414 0.410 0.406 0.398 0.398 0.395

eOO-128 VMs 0.078 0.085 0.084 0.074 0.071 0.064 0.048

BlindPick-128 VMs 0.052 0.060 0.059 0.049 0.040 0.039 0.020

FIFO-128 VMs 0.463 0.465 0.463 0.457 0.452 0.450 0.412

Table 5 Performance improvement of the proposed algorithm compared to the others in HUGE scenarios

Algorithm 20% 30% 40% 50% 60% 70% 80%

eOO-32 VMs 0.281 0.281 0.286 0.260 0.278 0.291 0.248

BlindPick-32 VMs 0.152 0.152 0.155 0.122 0.143 0.156 0.105

FIFO-32 VMs 0.699 0.699 0.700 0.689 0.696 0.701 0.683

eOO-64 VMs 0.181 0.181 0.190 0.174 0.164 0.165 0.153

BlindPick-64 VMs 0.042 0.042 0.047 0.026 0.011 0.010 0.002

FIFO-64 VMs 0.412 0.412 0.417 0.405 0.397 0.398 0.389

eOO-128 VMs 0.089 0.089 0.087 0.079 0.073 0.069 0.062

BlindPick-128 VMs 0.069 0.069 0.062 0.051 0.042 0.035 0.028

FIFO-128 VMs 0.467 0.467 0.465 0.460 0.455 0.452 0.448

123

4820 A. Hanani et al.

Appendix 2: Overhead reduction of proposed algorithm

See Tables 6, 7 and 8.

Table 6 Overhead reduction of the proposed algorithm compared to the others in BIG scenarios

Algorithm 20% 30% 40% 50% 60% 70% 80%

eOO-32 VMs 0.173 0.607 0.489 0.520 0.511 0.463 0.428

BlindPick-32 VMs 0.844 0.904 0.887 0.904 0.794 0.911 0.889

FIFO-32 VMs −2.166 −0.666 −0.846 −1.090 −0.833 −1.000 −1.000

eOO-64 VMs 0.275 0.635 0.648 0.457 0.419 0.339 0.473

BlindPick-64 VMs 0.865 0.908 0.913 0.904 0.871 0.881 0.903

FIFO-64 VMs −1.800 −0.800 −0.733 −1.285 −1.769 −1.846 −1.000

eOO-128 VMs 0.514 0.633 0.612 0.548 0.565 0.500 0.511

BlindPick-128 VMs 0.883 0.945 0.908 0.928 0.888 0.906 0.903

FIFO-128 VMs −1.77 −0.941 −1.000 −1.625 −1.222 −1.100 −1.095

Table 7 Overhead reduction of the proposed algorithm compared to the others in VBIG scenarios

Algorithm 20% 30% 40% 50% 60% 70% 80%

eOO-32 VMs 0.232 0.475 0.408 0.368 0.509 0.465 0.381

BlindPick-32 VMs 0.811 0.864 0.884 0.854 0.889 0.853 0.864

FIFO-32 VMs −2.909 −1.133 −1.230 −1.571 −1.076 −1.818 −2.090

eOO-64 VMs 0.393 0.507 0.585 0.354 0.308 0.268 0.305

BlindPick-64 VMs 0.887 0.924 0.913 0.871 0.826 0.836 0.867

FIFO-64 VMs −2.076 −0.882 −1.230 −1.000 −1.764 −2.062 −1.928

eOO-128 VMs 0.406 0.623 0.653 0.530 0.611 0.360 0.048

BlindPick-128 VMs 0.796 0.933 0.929 0.916 0.912 0.846 0.785

FIFO-128 VMs −1.250 −0.590 −0.346 −1.473 −0.904 −1.818 −4.210

123

A multi-parameter scheduling method of dynamic workloads… 4821

Table 8 Overhead reduction of the proposed algorithm compared to the others in HUGE scenarios

Algorithm 20% 30% 40% 50% 60% 70% 80%

eOO-32 VMs 0.35 0.428 0.480 0.442 0.305 0.430 0.392

BlindPick-32 VMs 0.846 0.823 0.884 0.872 0.829 0.856 0.878

FIFO-32 VMs −1.78 −2.076 −1.166 −0.789 −1.733 −1.642 −1.583

eOO-64 VMs 0.407 0.592 0.582 0.512 0.392 0.466 0.369

BlindPick-64 VMs 0.853 0.903 0.909 0.883 0.838 0.879 0.876

FIFO-64 VMs −2 −0.823 −0.736 −0.727 −1.285 −1.352 −1.277

eOO-128 VMs 0.195 0.614 0.494 0.567 0.425 0.538 0.517

BlindPick-128 VMs 0.843 0.906 0.859 0.925 0.869 0.882 0.853

FIFO-128 VMs −3.625 −1.333 −1.380 −1.285 −1.952 −1.000 −1.074

References

1. Schomm F, Stahl F, Vossen G (2013) Marketplaces for data: an initial survey. ACM SIGMOD Rec
42(1):15–26

2. Assunção MD et al (2015) Big data computing and clouds: trends and future directions. J Parallel
Distrib Comput 79:3–15

3. Gartner I (2008) Gartner says contrasting views on cloud computing are creating confusion. http://
www.gartner.com/newsroom/id/766215. Accessed on 9 July 2015

4. Kambatla K et al (2014) Trends in big data analytics. J Parallel Distrib Comput 74(7):2561–2573
5. Djebbar EI, Belalem G (2013) Optimization of tasks scheduling by an efficacy data placement and

replication in cloud computing. In:AversaR,Kolodziej J, Zhang J,AmatoF, FortinoG (eds)Algorithms
andArchitectures for Parallel Processing. ICA3PP 2013. LectureNotes in Computer Science, vol 8286.
Springer, Cham, pp 22–29

6. Vecchiola C, Pandey S, Buyya R (2009) High-performance cloud computing: a view of scientific
applications. In: 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks
(ISPAN). IEEE

7. Ismail L, Barua R (2013) Implementation and performance evaluation of a distributed conjugate gra-
dient method in a cloud computing environment. Softw Pract Exp 43(3):281–304

8. Piraghaj SF et al (2016) Virtual machine customization and task mapping architecture for efficient
allocation of cloud data center resources. Comput J 59(2):208–224

9. Yang C et al (2017) Big data and cloud computing: innovation opportunities and challenges. Int J Dig
Earth 10(1):13–53

10. Zhang F, Cao J, TanW, Khan SU, Li K, Zomaya AY (2014) Evolutionary scheduling of dynamic multi-
taskingworkloads for big-data analytics in elastic cloud. IEEETrans Emerg TopComput 2(3):338–351

11. HoY-C, Zhao Q-C, Jia Q-S (2008) Ordinal optimization: soft optimization for hard problems. Springer
Science & Business Media, Berlin

12. Hanani A, Nourossana S, Javadi H, Rahmani AM (2010) Solving the scheduling problem in multi-
processor systems with communication cost and precedence using bee colony system. In: 2010 3rd
International Conference on Advanced Computer Theory and Engineering (ICACTE), vol 5. IEEE, pp
V5–V464

13. Moon S, Lee J-W (2016) Multi-residential demand response scheduling with multi-class appliances
in smart grid. IEEE Trans Smart Grid. doi:10.1109/TSG.2016.2614546

14. Mansouri N, Dastghaibyfard GH, Mansouri E (2013) Combination of data replication and scheduling
algorithm for improving data availability in data grids. J Netw Comput Appl 36(2):711–722

15. Rahmati B, Rahmani AM, Rezaei A (2017) Data replication-based scheduling in cloud computing
environment. J Adv Comput Eng Technol

16. Wang K et al (2016) Load-balanced and locality-aware scheduling for data-intensive workloads at
extreme scales. Concurr Comput Pract Exp 28(1):70–94

123

http://www.gartner.com/newsroom/id/766215
http://www.gartner.com/newsroom/id/766215
http://dx.doi.org/10.1109/TSG.2016.2614546

4822 A. Hanani et al.

17. Liu C et al (2016) HKE-BC: hierarchical key exchange for secure scheduling and auditing of big data
in cloud computing. Concurr Comput Pract Exp 28(1):646–660

18. Jiang C, Wang C, Liu X, Zhao Y (2007) Adaptive replication based security aware and fault tolerant
job scheduling for grids. In: SNPD 2007. 8th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing, vol 2. IEEE, pp 597–602

19. Gai K, Qiu M, Zhao H (2016) Security-aware efficient mass distributed storage approach for cloud
systems in big data. In: 2016 IEEE 2nd International Conference on Big Data Security on Cloud (Big-
DataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC),
and IEEE International Conference on Intelligent Data and Security (IDS). IEEE

20. Jiang J, Xu G, Wei X (2006) An enhanced data-aware scheduling algorithm for batch-mode datain-
tensive jobs on data grid. In: International Conference on Hybrid Information Technology, 2006.
ICHIT’06, vol 1. IEEE

21. Mei J, Li K, Li K (2014) A resource-aware scheduling algorithm with reduced task duplication on
heterogeneous computing systems. J Supercomput 68(3):1347–1377

22. Wang X, Perlman E, Burns R, Malik T, Budavári T, Meneveau C, Szalay A (2010) Jaws: job-aware
workload scheduling for the exploration of turbulence simulations. In: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society, pp 1–11

23. Khanli LM, Far ME, Rahmani AM(2010) RFOH: a new fault tolerant job scheduler in grid computing.
In: 2010 Second International Conference on Computer Engineering and Applications (ICCEA), vol
1. IEEE

24. Kazem AAP, Rahmani AM, Aghdam HH (2008) A modified simulated annealing algorithm for static
task scheduling in grid computing. In: International Conference on Computer Science and Information
Technology, 2008. ICCSIT’08. IEEE

25. Zhang F, Cao J, Hwang K, Li K, Khan S (2015) Adaptive workflow scheduling on cloud computing
platforms with iterative ordinal optimization. IEEE Trans Cloud Comput 3(2):156–168

26. Zhang F, Cao J, Li K, Khan SU, Hwang K (2014) Multi-objective scheduling of many tasks in cloud
platforms. Future Gener Comput Syst 37:309–320

27. Nanduri R, Maheshwari N, Reddyraja A, Varma V (2011) Job aware scheduling algorithm for mapre-
duce framework. In: 2011 IEEE 3rd International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE, pp 724–729

28. Navimipour JN et al (2014) Job scheduling in the expert cloud based on genetic algorithms. Kybernetes
43(8):1262–1275

29. Li J et al (2012) Online optimization for scheduling preemptable tasks on IaaS cloud systems. J Parallel
Distrib Comput 72(5):666–677

30. Mezmaz M et al (2011) A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for
cloud computing systems. J Parallel Distrib Comput 71(11):1497–1508

31. Omara FA, Arafa MM (2010) Genetic algorithms for task scheduling problem. J Parallel Distrib
Comput 70(1):13–22

32. AbouelelaM, El-DariebyM (2016) Scheduling big data applicationswithin advance reservation frame-
work in optical grids. Appl Soft Comput 38:1049–1059

33. Lin B et al (2016) A pretreatment workflow scheduling approach for big data applications inmulticloud
environments. IEEE Trans Netw Serv Manag 13(3):581–594

34. Somasundaram TS, Govindarajan K, Kumar VS (2016) Swarm intelligence (SI) based profiling and
scheduling of big data applications. In: 2016 IEEE International Conference on Big Data (Big Data).
IEEE

123

	A multi-parameter scheduling method of dynamic workloads for big data calculation in cloud computing
	Abstract
	1 Introduction
	2 Related work
	3 Suggested algorithm
	3.1 Problem definition
	3.2 The introduction of the proposed technique
	3.2.1 Primary scheduling phase
	3.2.2 Similarity calculation phase
	3.2.3 Improving scheduling using load balancing phase

	4 Results and discussion
	5 Conclusion
	Appendix 1: Performance improvement of proposed method
	Appendix 2: Overhead reduction of proposed algorithm
	References

