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a b s t r a c t

Handheld mobile devices have evolved from simple voice communication devices to general purpose
devices capable of executing complex applications. Despite this evolution, the applications executing on
the mobile devices suffer due to their constrained resources. The constraints such as limited battery
lifetime, limited storage and processing capabilities produce an adverse impact on the performance of
applications executing on the mobile devices.

Computation offloading addresses the issue of limited resources by transferring the computation
workload to other systems having better resources. It may be oriented towards extending battery lifetime,
enhancing storage capacity or improving the performance of an application. In this paper, we perform a
survey of the computation offloading strategies correlated with performance improvement for an applica-
tion. We categorize these approaches in terms of their workload distribution and offloading decisions. We
also describe the evolution of the computation offloading based environment as well as a categorization of
application partitioning mechanisms adopted in various contributions. Furthermore, we present a parameter-
wise comparison of automated frameworks, the application domains that benefit from computation
offloading and the future challenges impeding the evolution of computation offloading.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

With the advent of smartphone technologies, the mobile
devices have become ubiquitous. These devices are no longer
constrained to providing only communication services. Instead,
these devices are capable of executing applications with diverse
requirements. The processing required by these applications may
range from simple mathematical computations performed by a
calculator to a very complex voice recognition system.

The execution of complex applications requires the mobile
devices to possess powerful resources. The scarcity of these
resources has adverse effects on the ever-growing usage of the
mobile devices. For instance, the statistics according to StatCounter
show that about 30.66% of the platforms used for web browsing are
the mobile systems (smartphones/tablets) (StatCounter, 2014).
Consequently, the mobile market plays a significant role in e-
commerce and sales growth. This role is however diminished by
the fact that the mobile systems have limited energy and power
resources. Although there have been efforts to incorporate high
performance multiple core processors in smartphones, the gap
between the existing and the required resources continues to grow.
In this context, the computation offloading is a mechanism that
enables us to bridge the gap by making intensive computations
execute on large systems having sufficient resources as required by
the application. This not only makes a resource constrained mobile
system seem like a high-end powerful machine, but also enables to
perfectly utilize the existing resources.

The computation offloading is not a novel idea as it has evolved
from various paradigms incorporating distributed computing
(Dinh et al., 2013; Kumar and Lu, 2010; Sanaei et al., 2014;
Fontana et al., 2013). The performance improvement of an appli-
cation is achieved by partitioning it into several subprograms each
of which may be assigned to a different processor for execution.
Each processor makes use of its own memory and/or shares the
memory with other processors to perform computations in paral-
lel. Subsequently, the results are returned to the processor con-
trolling the overall execution.

A cloud computing platform is also based on the intuition of
distributed computing and offers the compute services through a
Service Level Agreement (SLA) on a large network usually the
Internet. It differs from other computing paradigms since an
assurance regarding availability of services is provided to the
users. The Mobile Cloud Computing (MCC) therefore refers to
provision of services through a cloud to mobile devices that are
characterized with limited resources (Dinh et al., 2013; Kumar and
Lu, 2010; Sanaei et al., 2014; Fontana et al., 2013; Juntunen et al.,
2012; Khan et al., 2014b; Berl et al., 2010). The computation of a
mobile application may be offloaded to another resource-rich
system termed as surrogate. Such kind of computation offloading
not only mitigates the issue of limited resources of mobile devices
but also enables to harness the processing power of high-end
machines that will otherwise be idle (Barbera et al., 2013; Ou et al.,
2007; Cui et al., 2013; Sanaei et al., 2012; Miettinen and Hirvisalo,
2009; Kumar et al., 2013; Satyanarayanan et al., 2009).

In this paper, we perform a comprehensive survey of the
computation offloading strategies impacting the performance of
the applications executing on mobile devices. Although the com-
putation offloading has also been aimed at saving energy required
for executing an application (Lu et al., 2013; Hong et al., 2009;
Wen et al., 2012; Rudenko et al., 1998; Nurminen, 2010;
Nimmagadda et al., 2009; Miettinen and Nurminen, 2010; Mayo
and Ranganathan, 2004; Sinha and Kulkarni, 2011; Ge et al., 2012),
but in this paper, we mainly consider the contributions which
impact the execution performance (computation speed) of appli-
cations running on mobile devices. The survey encompasses the
research work for computation offloading arranged in terms of

multiple aspects including the taxonomy, strategies, evolution
pattern and relevant application domains. We also present a
categorization of partitioning approaches adopted in different
contributions and a parameter-wise comparison of main offload-
ing frameworks. We also discuss main issues related to computa-
tion offloading and suggest possible approaches to address these
issues effectively.

The rest of the paper is organized as follows. Section 2
describes the offloading taxonomy in terms of architectures and
criteria for its effectiveness. The evolution of offloading and
wireless technologies is described in Section 3. The offloading
approaches and contributions aimed at performance improvement
are surveyed in Section 4. A categorization of partitioning
approaches used in computation offloading is given in Section 5.
A parameter-wise comparison of the automated computation
offloading frameworks is described in Section 6, whereas the
applications benefiting from computation offloading are discussed
in Section 7. The main issues related to an effective implementa-
tion of computation offloading are discussed in Section 8 together
with their solutions before concluding at Section 9.

2. Offloading taxonomy: architectures and effectiveness

Many clients such as mobile phones or low power laptops
require computation to be offloaded to powerful server machines.
The decision of offloading may not always be beneficial to leverage
the performance or energy requirements as a significant overhead
is involved while offloading computations. This section describes
succinctly the general architectures for which offloading may be
required and the parameters that impact its effectiveness.

2.1. Computation offloading architectures

In an environment supporting computation offloading, the
users with mobile devices are connected to a high performance
server in different ways. The simplest form of this connection is
made through Wi-Fi based networks that connect mobile devices
to other machines using wireless routers as shown in Fig. 1. The
wireless router not only connects devices to a local network but
also may be connected to a DSL device thereby providing connec-
tions to remote servers through Internet.

Similarly, in a more complex form, the users with mobile
devices first connect to a wireless network through devices such
as Base Transceiver Station (BTS), Base Station Controller (BSC),
and Mobile Switching Center (MSC) to transfer data to public data
networks. The communication data is then transferred through
gateways to any local network on which the high performance
machines are hosted.

Fig. 1. Offloading architecture.
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After establishing a connection with the high performance
machines, the mobile devices may perform a lookup operation
to search for services that may be provided by the high perfor-
mance server machines. This may also be termed as the first
operation initiated by the application. The application may how-
ever opt to perform the lookup operation at a later time during
execution depending upon the time at which the offloading
decision is made and the requirement of the application. The
client machines in these environments are usually low power
mobile devices, and consequently, the computation offloading
strategies take into account the cost/benefit analysis in terms of
the execution time and energy requirements. The server machines
are mostly the high-end standalone servers, or machines con-
nected to form a grid, cluster, cloud or a combination of these. The
computers in a grid are loosely coupled, whereas those in a cluster
are tightly coupled with highly efficient interconnection interfaces
such as Myrinet. A cloud system, in contrast, uses virtualization to
enable multiple operating systems so that remote users can access
services offered by the cloud platform.

2.2. Trade-offs for offloading decisions

For minimization of execution time and reduction of energy,
the computation offloading from a mobile device to a server
machine is performed by applying a specific criterion to ensure
that the offloading will be beneficial (Li et al., 2001; Xian et al.,
2007; Wolski et al., 2008; Nimmagadda et al., 2010; Cuervo et al.,
2010; Wang and Li, 2004b; Niu et al., 2014; Elgazzar et al., 2013).
The required criteria take into account several parameters as
elaborated below.

For minimizing execution time, let Or be the overhead of
runtime activities including the time for data transfer and the
time for offloading code, i.e.

Or ¼ TdþTo; ð1Þ
where Td is the time for data transfer and To is the time taken for
offloading code (performing offloading decision, partitioning and
the code transfer). Let Ts be the time to execute code on the server
machine and Tm be the time to execute code on the mobile device.
The computation offloading is considered effective for minimiza-
tion of execution time, if we have

TsþOroTm: ð2Þ
Similarly, for energy reduction, let Ed represent the energy for

data transfer and Eo represent the energy required for offloading.
Let Em represent the energy required for execution of entire
application on the mobile device and Er be the energy required
for runtime activities. The computation offloading is effective for
reducing requirements if

EroEm; ð3Þ
where Er is represented as

Er ¼ EdþEo: ð4Þ

3. Evolution of offloading and wireless technology

The term “offloading” has been used widely since year 1995. Its
usage has evolved together with the evolution of distributed and
parallel computing paradigms. Figure 2 shows the number of
publications each year1 citing the term offloading.

Similarly, the research work referring to the terms “data offloading”
and “computation offloading” is also increasing gradually, as shown in

Fig. 3. Most of the data offloading systems aim at storage of data to
remote servers with large storage repositories. One of the objectives of
the recently evolved Mobile Cloud Computing (MCC) is to provide
storage facilities to the users. The synchronization of data with that
existing on the cloud storage repository is also provided by MCC.
Similar to data offloading, the computation offloading has also evolved
to be incorporated in MCC. In general, it aims at energy minimization
and performance improvement.

Figure 4 shows a quantitative and chronological evolution of
several parameters related to wireless technology. The smart-
phones have evolved to contain multi-core based processors.
Similarly, with the implementation of 3G and 4G based networks,
the wireless technology is now able to offer more bandwidth than
the previous generations. The orientation of offloading research
has evolved from defining manual mechanisms to automated
transparent offloading mechanisms. The energy requirements
(Joules) as given in Balasubramanian et al. (2009) for 50 kB data
transfer (download with intervals of 20 s) through GSM, 3G and

Fig. 2. Offloading usage trend.

Fig. 3. Data and computation offloading usage trend.

Fig. 4. Evolution of wireless technology.

1 Statistics obtained from the ACM Digital Library for duration up to July 2014.
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Wi-Fi are also shown. The Wi-Fi based data transmission requires
the highest amount of energy.

4. Offloading architectures and approaches

We categorize computation offloading approaches into static
and dynamic depending upon the time at which the decision of
offloading takes place.

4.1. Static offloading

As shown in Fig. 5, the static offloading approach makes use of
performance prediction models or offline profiling to estimate the
performance (Li et al., 2001; Xian et al., 2007; Chu et al., 2004;
Ding and Li, 2003; Gurun et al., 2008; Ou et al., 2007). The
application is then partitioned into client and server partitions
which may subsequently be executed.

A comparison of different static offloading strategies is shown
in Table 1. The comparison is performed in terms of core

components (the basic component on which processing takes
place), the parameters considered for offloading decision, the
offloading approach and the benchmarks for which the strategy
are shown to be beneficial.

The approach suggested in Li et al. (2001) first generates a cost
graph for the application. The cost graph takes into account the
computation time and the data to be transferred. The suggested
approach then distributes the program into client and server
subtasks. The data communication among the tasks being exe-
cuted by hosts takes place using the primitives of push and pull.
The primitives correspond to sending and receiving the modified
data. The application is modeled to produce the cost graphs
representing energy consumption and data communication. The
sum of both these parameters is minimized by suggesting a
branch-and-bound algorithm and a pruning heuristic that reduces
the search space to provide a near-optimal solution. The suggested
approach produces a significant improvement in execution time
and energy consumption for benchmarks from Mediabench suite
and gnugo game.

An adaptive approach presented in Xian et al. (2007) performs
computation offloading by using an initial profile obtained by
executing the program. If the program does not run to completion
within a specified timeout, the offloading takes place and the rest
of the computations are performed on some server. The minimum
time required for executing the code on the mobile system is
computed using the energy consumption on the local mobile
processor. With the reduced energy consumption, a significant
improvement in the performance is achieved for image processing
benchmarks.

A framework called Roam which may be used for offloading of
applications is suggested in Chu et al. (2004). The framework
enables partitioning of an application into several components
that may then be migrated to any other platform. This architecture
supports heterogeneity in that the application components may be
migrated to another system having a different execution environ-
ment. The approach of application offloading incorporates adapta-
tion of three different types. The first one, dynamic instantiation
based adaptation, partitions an application into several device
dependent components. Each component has implementation for
multiple platforms. The approach then takes into account the
capabilities of the target system in order to select the components
to be migrated. The second type, offloading computation, makes theFig. 5. Static offloading mechanism.

Table 1
Comparison of static offloading strategies.

Framework
contribution

Core component Parameters Offloading
approach

Candidate applications

Li et al. (2001) Cost graph Computation and data transfer time Static Mediabench & gnugo
Xian et al. (2007) Execution profile Energy consumption and time required for

execution
Static Image processing

Chu et al. (2004) Application components Components categorization Static General applications
Ou and Yang (2006) Multi-cost graph Computation and communication costs Static Audio and video applications
Messer et al. (2002) Execution profile Communication cost and connectivity of nodes Static Text editor, Biomer and Voxel
Rim et al. (2006) Java bytecode Configuration based Static SciMark benchmark
Othman and Hailes

(1998)
Jobs Power consumption for execution and data

transfer
Static General applications

Wang and Li (2004b) Control flow graph Execution, communication, scheduling and
bookkeeping costs

Static Image processing, speech recognition and
compression

Wang and Dey
(2010)

3D rendering Communication and computation costs Static Games processing

Rachuri et al. (2011) Mobile phone sensor
samples

Energy, latency and data traffic Static Social behavior

Balan et al. (2007) Functions based
modules

Configuration based Static Natural language, speech processing and
computer vision

Chun et al. (2011) Execution profiles Computation cost and migration cost Static Virus scanning and image search
Ou et al. (2007) Analytical model Surrogates coverage Static General applications
Gurun et al. (2004) Performance history Prediction errors Static General applications
Niu et al. (2014) Object relation graph Bandwidth, execution cost and data transfer Static Dacapo benchmark
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applications use distributed resources by offloading components
to remote servers. It is mainly required for offloading the applica-
tion logic based code. The third type transformationmakes the user
interface components compatible with the target device at run-
time. The decision of partitioning is however static and is made at
the time of designing the application.

The application partitioning algorithm suggested in Ou and
Yang (2006) divides the application into two main parts. The first
part contains the partition that cannot be offloaded and will
execute on the mobile device locally. The second part contains k
partitions that can be offloaded to surrogates. The partitions are
formed by modeling the computation and communication costs of
the application components as a dynamic multi-cost graph. A
special tightest and lightest vertex solution algorithm is then used
to select a vertex in a partition. The algorithm considers the edge
weights and vertex weights for partitioning. On the IBM laptop
X31 and using two desktop PCs as surrogates, the application
partitioning is shown to improve the performance for PI calcula-
tion, MP4 player and MP4 audio/video generation benchmarks.

A prototype platform AIDE suggested in Messer et al. (2002)
makes use of three modules for profiling the application execu-
tion, partitioning and migration of code. Initially, a Java application
is partitioned by providing a set of min-cut partitioning. All the
partitions are then evaluated by placing one node in first partition
and all others in second partition. The nodes of second partition
having the highest connectivity are moved to first partition
iteratively. Subsequently, the minimum cut represents partitioning
with the lowest inter-partition weight with respect to the com-
munication cost between two partitions. For a diverse set of
benchmarks including the JavaNote (text editor), Biomer (molecu-
lar editor) and Voxel (fractal landscape), the AIDE platform is
shown to reduce the execution time significantly.

The framework DiET (Rim et al., 2006) is able to make
modification to Java bytecode to support offloading of methods.
The mobile users request to execute an application available
through service providers. The client part of the application is
downloaded to the mobile device. The complex computation
based methods are modified with remote procedure calls in the
client part. The server reads the requests and executes the code.
Moreover, the automated offloading mechanism is portable and
requires no special JVM dependent instructions. For the SciMark
benchmark, the suggested approach is able to produce up to 59%
of speedup for the MonteCarlo integration method.

In Othman and Hailes (1998), the authors target offloading in a
wireless network from a mobile device to the mobile support
station (MSS). It estimates the power consumption by the CPU in
case of local execution and power consumption for data/results
transfer to/from the remote server together with the response
time for executing on the local machine and the MSS. If it is found
beneficial to use the MSS, the jobs are offloaded. Consequently,
there is a significant improvement in response time for execution
of different jobs offloaded to the MSS.

The strategy proposed in Wang and Li (2004b) implements
computation offloading by partitioning the code in client and
server parts. A polynomial time algorithm is suggested to achieve
optimal partitioning of code for a given set of input data. For a
program, a control flow graph is built where each vertex is a basic
block and each edge represents dependencies. A point-to analysis
is then performed to identify the memory addresses or locations
during data transfer. For distribution, various constraints are used
to ensure data consistency. A cost analysis that takes into account
the costs required for execution, scheduling, bookkeeping and
communication is used to model the problem as a minimization
problem. The problem is then represented as the min-cut network
flow problem and is solved using an option-clustering heuristic.
On an IPAQ 3970, and a Pentium-IV based server, the suggested

offloading approach is able to reduce execution time for photo
processing, graphics compression/de-compression, speech recog-
nition and graph drawing benchmarks.

In Wang and Dey (2010), an approach for adapting the render-
ing settings for games in a mobile cloud is described. A static
analysis is initially performed to select optimal settings for 3D
rendering. These settings correspond to different adaptation levels
where each level is associated with a total of communication and
computation costs. During execution, an algorithmworks to adjust
the rendering settings in conformance with the existing commu-
nication and computation costs. For the game PlaneShift being
played on a netbook, and using game server having GPU, the
experimental results show an improvement in the performance in
terms of the Game Mean Opinion Score (GMOS) corresponding to
the gaming user experience.

A mobile phone based framework to capture the users' social
behavior in a working environment is specified in Rachuri et al.
(2011). The quantitative information such as the most sociable
person in the environment and the number of interactions
between two users have been useful for increasing productivity
of organizations. To obtain such information, the mobile phone
sensors are used to capture the behavior. The sensors sample the
data at a specific rate. The samples are then processed to infer the
required information. Due to the limited capability of the mobile
devices, the processing is distributed among several devices. The
decision of performing the computation locally or remotely is
made by considering the parameters of energy, latency and data
traffic. The overall task with these parameters is first divided into
subtasks and a configuration for processing the task is found using
the multi-criteria decision theory. With a Nokia 6120 mobile
phone as a client and an Intel Xeon based server, the suggested
approach is efficiently able to process the data and infer the
required information.

An approach to partition the application for offloading using a
language Vivendi is suggested in Balan et al. (2007). The language
Vivendi is developed to describe the relevant specification of the
application whose computation is to be offloaded. A file in the
Vivendi language may contain the prototypes of functions that can
be executed remotely. The next part of the approach incorporates
Chroma (Balan et al., 2003) to monitor resources and predict the
behavior. Subsequently, the stubs may be generated using the
Vivendi stub generator and all function calls at corresponding
points are replaced by calls to stubs. All the modules are then
compiled and linked to generate an executable application. The
suggested approach is able to support offloading for diverse
applications including the natural language, speech and computer
vision based applications.

The framework CloneCloud (Chun et al., 2011) facilitates the
execution of a mobile application on the cloud. The CloneCloud
initially partitions the application to make its parts execute on the
mobile device and the cloud servers. A static offline analysis is
performed to identify the partition. A dynamic profiler then
generates profiles corresponding to different inputs. Consequently,
a profile tree representing the execution traces is constructed. For
each call of code, the computation cost and the migration cost in
the case of local, remote or hybrid execution are computed. The
optimization problem is then solved by minimizing these costs
using an integer linear programming (ILP) solver. On an Android
phone used as a client, and an Intel Xeon based server running
mobile clones, the experimental results of clone execution show
up to 20 times speedup for the applications including the virus
scanning, image search and behavior profiling.

In Ou et al. (2007), an analytical model is presented for
analyzing the performance of offloading systems. The model takes
into account the distribution of surrogates and shows that in the
areas well covered by surrogates, the offloading may result in
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speedup in the performance. In contrast, the areas with less
coverage of surrogates, the offloading does not improve the
performance.

The framework NWSLite (Gurun et al., 2004) is used for
predicting the costs of location and remote execution. Its predic-
tion model uses a non-parametric approach. The NWSLite frame-
work incorporates a large number of models each with different
parameterizations. It forecasts measurements based on the per-
formance history. The predictors are ranked with respect to the
prediction errors and the best prediction model having the
smallest prediction error. The NWSLite prediction models are
executed in parallel thereby making it more efficient than the
previously suggested LSQ (Noble et al., 1997) and RPF (Rudenko et
al., 1999).

The authors in Niu et al. (2014) aim at improving the execution
performance by using the branch-and-bound and min-cut based
approaches for partitioning mobile applications. It works by
performing a static analysis & profiling, followed by the generation

of a weighted object relation graph (WORG), which is used to
represent the objects and relations between objects. The band-
width parameter is then used together with the WORG to partition
an application into client and server parts. The branch-and-bound
based algorithm produces optimal partitioning results for small
applications, whereas the min-cut based approach works for large
applications. Using a ThinkPad notebook for customized and the
Dacapo suite benchmarks, the branch-and-bound and the min-cut
based approaches produce speedups of 44.17% and 37.44%,
respectively.

4.2. Dynamic offloading

As shown in Fig. 6, the dynamic offloading strategies initially
perform static analysis of the code and instrumentation in order to
perform dynamic/online profiling during execution (Chen et al.,
2004; Chun and Maniatis, 2009; Wang and Li, 2004a; Marin, 2013;
Yang et al., 2013). Based on the information obtained from
dynamic profiling, the application is partitioned into client and
server partitions. The execution then continues with the updated
configuration.

A comparison of different dynamic offloading strategies is
shown in Table 2. The comparison is performed in terms of core
components, the parameters considered for offloading decision,
the offloading approach and the benchmarks for which the
strategy is shown to be beneficial.

In Chen et al. (2004), the authors suggest to perform compres-
sion and de-compression operations simultaneously during com-
putation offloading. For any application requiring the data to be
transferred, it reduces the penalty of data transfer. Consequently,
the application performance improves if the benefit produced by
the data compression (in terms of the reduced number of packets)
is higher than the overall cost of data compression and de-
compression. The suggested approach is shown to be effective
for making decision of Java code to be compiled and executed on
remote server or locally.

With the notion of augmented execution, an application may
be executed on some clones of a smartphone (Chun and Maniatis,
2009). The runtime engine offloads the computation in a seamless
way to another system that contains a clone of the entire system
image. Consequently, the results may be integrated back to the
smartphone. A special case of multiplicity based augmentation isFig. 6. Dynamic offloading mechanism.

Table 2
Comparison of dynamic offloading strategies.

Framework contribution Core component Parameters Offloading
Approach

Candidate Applications

Chen et al. (2004) Application code Data transfer Dynamic Compilation and execution of Java code
Chun and Maniatis (2009) System clones Fixed configuration Dynamic Data parallel applications and file system

scanning
Wang and Li (2004a) Application graph Computation, communication, registration and

scheduling costs
Dynamic FFT, encode and decode benchmarks

Gu et al. (2003) Application graph Graph dependencies, network traffic, call delay and
memory sizes

Dynamic Image and text editors

Tilevich and Smaragdakis
(2002)

Application code Fixed configuration Dynamic Speech synthesis and MS-PowerPoint

Huerta-Canepa and Lee
(2008)

Execution profile Class usage and frequency Dynamic General applications

Yang et al. (2008) Multi-cost graph Communication cost and class weight Dynamic Text recognition and translation
Nimmagadda et al. (2010) Real-time

constraints
Network bandwidth and server speed Dynamic Real-time surveillance

Cuervo et al. (2010) Application
profile

Energy consumption, bandwidth and latency Dynamic Face recognition and games

Kremer et al. (2003) Application code Safety for remote execution Dynamic Face recognition
Flinn et al. (2001) Application

profile
Application fidelities Dynamic General applications

Sivavakeesar et al. (2006) Lookup service Lookup latency Dynamic General applications
Wolski et al. (2008) Estimation model Network bandwidth and execution costs Dynamic General applications
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presented that could work for performance improvement of data
parallel applications. It requires multiple clones of the smartphone
image. Similarly, a hardware based augmented execution is shown
to improve the performance of scanning the file system.

In Wang and Li (2004a), the application partitioning is per-
formed through a parametric analysis of the computation and
communication costs. The problem of finding optimal partitioning
is modeled as the min-cut network flow problem. The modules of
the application distributed on the mobile device of the server
depending upon the current value of runtime parameters. A
program is first divided into modules or tasks that are executed
on the server or the mobile device exclusively. A cost analysis then
takes into account the computation, communication, task schedul-
ing, and data registration costs and formulates the optimal
partitioning as a single-source single-sink min-cut network flow
problem. Using the mobile client HP IPAQ 3970, and a server
machine having P4 processor, the results show that an effective
partitioning significantly impacts the performance of several
applications such as FFT, encode and decode from Mediabench
and Minbench benchmarks.

An architecture of an inference engine is proposed in Gu et al.
(2003) for deciding the time of offloading and the application
partition to be offloaded. The inference engine employs a fuzzy
model and is implemented in the AIDE framework (Messer et al.,
2002). Each class of a Java application is represented as a node in a
weighted graph. Each class is annotated with a flag describing
whether or not the class may be offloaded to a server. The
inference engine uses a min-cut based algorithm to find all 2-
way cuts of the weighted graph. The nodes in the graph that may
not be migrated to the surrogate are merged in the partition which
will be executed on the mobile device. The other nodes are
merged taking into account the dependencies and the metrics of
network traffic, function call delay and memory size. The experi-
ments performed for the evaluation of an image editor, a text
editor and a molecular editor show that the suggested approach
minimizes the traffic requirements while working with a very
small offloading overhead.

An automated approach of partitioning a Java application for
remote execution is presented in Tilevich and Smaragdakis (2002).
A platform called J-orchestra is developed to perform replacement
of the object code i.e. bytecode of method calls with the remote
invocation. It divides an application into a client–server based
model whose most of the I/O operations are performed on the
client machine and the rest of the execution takes place on the
server machine. With an iPAQ PDA, the J-orchestra has been
shown to automatically distribute applications such as speech
synthesis and MS PowerPoint.

The approach presented in Huerta-Canepa and Lee (2008)
provides an adaptable offloading mechanism based on the appli-
cation's execution behavior. A history of the execution pattern is
maintained and is later used for making offloading decision. The
static offloading policy offloads the most used classes, whereas the
dynamic offloading moves only the invoked classes. The decision
of offloading, i.e. static, dynamic, no action, or profile is made for
each resource. Subsequently, the most common decision is opted
for implementation. On PDAs, the offloading approach makes the
application execute faster than local execution and is beneficial for
applications with large execution times.

An offloading service for mobile handsets which may be used
during mobility is presented in Yang et al. (2008). Initially, the
resource information is collected and is followed by partitioning of
application execution on the local system and the surrogate. The
discovery of a suitable surrogate is made using the instantiation of
classes for remote execution. The instrumented classes are then
offloaded to the surrogates. The application partitioning uses a
multi-cost graph, each of whose vertices is a class. The problem of

graph partitioning is then solved by using a kþ1 partitioning
algorithm. The proposed algorithm takes into account the weight
of one class together with the weights of one-hop weights while
minimizing the communication cost. On an HP iPAQ PDA, the
suggested approach is applied to the autoTranslator software to
recognize text in German language and translate it to English. The
approach performs 3–5 times better than the randomly selected
and the highest transfer rate based algorithms.

In Nimmagadda et al. (2010), an approach for object recogni-
tion and tracing is presented, which may be used in the real-time
surveillance systems. The approach performs computation off-
loading on the basis of real-time constraints. These constraints use
various ranges of network bandwidth and server speed to make
the offloading decision of executing code locally on a robot or
remotely on a server.

The MAUI framework Cuervo et al. (2010) supports fine-grained
offloading of code in an automated way. To accomplish the
portability of applications, two versions are created corresponding
to execution on the mobile phone and the server. The MAUI
architecture contains decision engine, proxy and profiler on both
the client and the server. The server part also contains the
coordinator component to create an instance of the partitioned
application. Initially, the methods to be offloaded are annotated by
the programmer. These methods are identified by MAUI through
Reflection API. Subsequently, the state of the application required
for transfer or return to/from the server is identified. The MAUI
profile provides feedback regarding energy consumption, band-
width and latency, etc. to the MAUI solver that in turn decides
whether or not the code should be offloaded to the server. The
solver models it as an optimization problem for minimizing the
energy consumption subject to various latency constraints. Using
MAUI, the code offloading for face recognition, video game and
chess game is shown to improve the execution time.

The application partitioning by performing code analysis is
suggested in Kremer et al. (2003). The subtasks that are safe for
remote execution are first identified. Subsequently, an analysis is
performed to estimate the actual gains after offloading. Finally,
two versions corresponding to execution on local and remote
machine are generated. The suggested approach is implemented in
the SUIF2 compiler (Aigner et al., 2000), and is able to achieve
almost 13 times and 15 times speedup in the performance of face
recognition code on Skiff and iPAQ mobile appliances.

In Flinn et al. (2001), the architecture of a framework Spectra is
presented. The Spectra framework does not require the application
to describe the resources to be used, instead, it can predict the
application behavior for future execution. It is implemented as
part of the Aura framework (Sousa, 2002) and uses the application
fidelities as parameters to decide to perform execution on local
and remote machines exclusively or hybridly. The CPU availability,
network bandwidth, battery energy and data access costs are
estimated by monitors to predict the application behavior. The
Spectra framework then selects the best location and fidelity for
application execution while taking as an input the application
description and the application behavior parameters. Using a
Pocket PC with an SA-1100 processor as a client and an IBM T20
Laptop as a server, the Spectra framework is shown to select the
best option for local, remote or hybrid execution.

In Sivavakeesar et al. (2006), two strategies of service discovery
for offloading applications are presented. These strategies are
based on flooding and unicasting. Every device is represented by
a node and is associated to a lookup server that is used to store
service description. When a service is required by a node, a service
lookup is performed. The scope of the search (in terms of the area)
for the server machine is increased gradually if no response is
received from the lookup server. With flooding, the lookup
message is broadcast, in contrast to unicast, which is useful for
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large environments. The experimental results show that the
service discovery based approach for cyberaging applications is
able to reduce the latency of the service lookup operation.

An approach for deciding offloading between the local and the
remote system by making use of the bandwidth parameter is
provided in Wolski et al. (2008). The problem of estimating the
local and remote execution costs is modeled as a statistical
decision problem. The remote execution cost is computed as a
function of the bandwidth available for transfer of data between
the local and the remote systems. The Bayesian approach is then
used to solve the problem and make the prediction regarding the
offloading decision.

5. Application partitioning for computation offloading

Together with the evolution of wireless technology, the
research in the field of computation offloading has also evolved
vigorously. As discussed earlier, an effective computation offload-
ing technique may significantly impact the performance. The
computation offloading incorporates various steps and analyses
to ensure performance gain. One of the major steps used in
computation offloading is application partitioning which distri-
butes code for local and remote execution. The application
partitioning may be categorized into static (application specific,
framework based and offline profile based) and dynamic as shown
in Table 3, and elaborated in this section.

5.1. Static partitioning

For offloading computation to a remote machine, a static
partitioning approach is adopted when application's code modules
are fixed to be executed on local or remote machines. The static
partitioning may be implemented through an application specific,
a framework based or an offline profile based strategy.

For a few partitioning strategies (Jo et al., 2014; Liu et al., 2014;
Kovachev et al., 2014; Park et al., 2014), the parts of an application
(such as AES encryption, image processing, multimedia services
and Javascript code) are pre-defined to be executed on local or
remote machines. These strategies set the portions of code
depending upon the application. Similarly, for offloading strategies
suggested in Lomotey (2013) and Toma and Chen (2013a), the
partitioning works for Matthews et al. (2011) related applications
and frame-based tasks, respectively, whereas in Eom et al. (2012),
Kovachev et al. (2012), various performance parameters are used
to fix application based partitioning. The approach given in Imai
and Varela (2011) uses a mathematical model for improving face
detection. For GPS services, the application specific partitioning
uses signal processing stages and navigation methods (Ramos et
al., 2011), whereas for mobile games, fixed partitioning is adopted
(Liu et al., 2010). For a surveillance system, a hierarchical parti-
tioning approach is given in Tsiatsis et al. (2005).

For some framework based strategies (Gangil et al., 2013; Xia
et al., 2014; Saarinen et al., 2012; Zhang et al., 2011; Silva et al.,
2008; Ni et al., 2005; Saarinen et al., 2012), the fixed partitioning
mechanism is usually driven by programmers. In Liu et al. (2005),
an operating system to support distributed execution of java
bytecode through static partitioning is described. The partitioning
requires programmer annotations to decide the portions of code to
be distributed. Similarly, the frameworks with fixed partitioning
for collaborative or coalition based execution (Nogueira and Pinho,
2005; Kurkovsky and Bhagyavati, 2004) are also proposed. Differ-
ent API functions to support offloading are suggested in Mtibaa
et al. (2013). The framework proposed in Verbelen et al. (2012)
requires the developer to annotate classes which must be off-
loaded. The offloading approach in Gordon et al. (2012) partitions
the application into user interface and computation based com-
ponents through the proposed framework.

The offline profile based static partitioning uses a set of
parameters and evaluates them before actually executing the
application. The application partitioning approach given in Niu
et al. (2014) uses branch-and-bound and min-cut based algorithms
together with the bandwidth parameter. Similarly, the genetic and
machine-learning based approaches are suggested in Balakrishnan
and Tham (2013), Folino and Pisani (2013), and Eom et al. (2013)
which take into account the resource status, network parameters
and data to be transferred. In Elgazzar et al. (2013), the operations
of a web service are profiled to generate a resource consumption
profile which is subsequently used for performing computation
offloading. For executing Javascript code, a profiler and a points-to
analysis are suggested for helping developers to decide the
portions of code to be offloaded (Wang et al., 2013). The approach
in Ahnn and Potkonjak (2013) maps application partitioning as a
minimization problem while taking into account performance
estimate and communication cost. Similarly, a dynamic program-
ming based algorithm (Toma and Chen, 2013b) uses the estimated
execution time for offloading tasks which satisfy a specific set of
constraints. Other approaches adopted in Gurun et al. (2008), Han
et al. (2008), Ou et al. (2007), and Li et al. (2002) also make use of
similar parameters and conditions for partitioning applications for
computation offloading.

5.2. Dynamic partitioning

Many offloading strategies are able to adapt partitioning of
code dynamically by taking into account several parameters
(Giurgiu et al., 2012; Abebe and Ryan, 2012; Gao et al., 2012).
These parameters are evaluated using profiling and performance
prediction based mechanisms which manifest the possible beha-
vior of an application. To profile execution of an application, the
code is first instrumented and then analyzed for performance
prediction.

In Chuang et al. (2013), a programming model with an event-
driven approach for providing elastic execution of applications is

Table 3
Comparison of partitioning approaches adopted for computation offloading.

Partitioning category References

Application specific static
partitioning

Jo et al. (2014), Liu et al. (2014), Kovachev et al. (2014), Park et al. (2014), Lomotey (2013), Toma and Chen (2013a), Eom et al. (2012),
Kovachev et al. (2012), Imai and Varela (2011), Ramos et al. (2011), Liu et al. (2010), Zhang et al. (2009), and Tsiatsis et al. (2005)

Framework/API based static
partitioning

Xia et al. (2014), Kurkovsky and Bhagyavati (2004), Gangil et al. (2013), Mtibaa et al. (2013), Verbelen et al. (2012), Gordon et al. (2012),
Saarinen et al. (2012), Zhang et al. (2011), Saarinen et al. (2012), Silva et al. (2008), Ni et al. (2005), Liu et al. (2005), and Nogueira and
Pinho (2005)

Offline profile based static
partitioning

Niu et al. (2014), Balakrishnan and Tham (2013), Elgazzar et al. (2013), Eom et al. (2013), Wang et al. (2013), Ahnn and Potkonjak (2013),
Folino and Pisani (2013), Toma and Chen (2013b), Gurun et al. (2008), Han et al. (2008), Ou et al. (2007), and Li et al. (2002)

Dynamic partitioning Chuang et al. (2013), Marin (2013), Yang et al. (2013), Giurgiu et al. (2012), Abebe and Ryan (2012), Zhang et al. (2012), Gao et al. (2012),
Han et al. (2006a,b), Cai et al. (2013), Chuang et al. (2013), Trifunovic et al. (2014), and Shiraz et al. (2014)
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suggested. Its dynamic migration mechanism distributes the execu-
tion among multiple nodes depending upon the workload require-
ments. A framework for dynamically adapting execution on a
collection of smartphones is suggested in Marin (2013). Similarly,
the authors in Yang et al. (2013) propose dynamic partitioning using
genetic algorithm for mobile data streams. The approach proposed
in Zhang et al. (2012) initially detects movable classes and then
offloads by profiling classes during execution. In Han et al. (2006b),
the partitioning is mapped to min-cut problem, whereas a few
components are replicated for minimizing component migration at
runtime. Other offloading frameworks and mechanisms (Cai et al.,
2013; Chuang et al., 2013; Trifunovic et al., 2014; Shiraz et al., 2014)
use online profiles while considering various parameters for per-
forming code partitioning dynamically.

6. Comparison of offloading frameworks

Table 4 describes a comparison of the automated offloading
frameworks in terms of the parameters of automation, optimiza-
tion problem solving, replication granularity, fine-grained offload-
ing and native method call support. For automation, the
frameworks CloneCloud, Spectra, Roam and J-Orchestra provide
offloading in a highly automated manner. This requires less
interaction of the programmer as compared to those having low
automated offloading support. Similarly, the frameworks Clone-
Cloud, AIDE, and J-Orchestra solve the optimization problem in a
highly asynchronous manner with regard to execution of the
application. The replication granularity refers to the main compo-
nent that is replicated or transferred for remote execution. The
fine-grained component support is provided in the CloneCloud and
MAUI frameworks. Moreover, a few frameworks including the
CloneCloud, framework in Yang et al. (2008), AIDE and J-Orchestra
also support native method calls.

A comparison of the working mechanism in terms of the
analysis performed, dynamic profiling, late binding and trusted
execution of the automated frameworks is given in Table 5 (Wen
et al., 2012). All the frameworks make use of a static analysis
which is performed before execution of the application. The
frameworks CloneCloud, MAUI, Roam and AIDE incorporate
dynamic profiling to obtain information during execution of the
application and perform adaptation accordingly. The late binding
for offloading refers to the offloading implemented at a later time
during execution of the application. It is performed by the
CloneCloud, MAUI, SociableSense (Yang et al., 2008), Roam and AIDE
frameworks. Currently, none of these frameworks ensures a
trusted execution to provide secure, reliable and authenticated
access for offloaded applications.

Table 6 (Rudenko et al., 1998) provides a comparison of the
offloading frameworks in terms of their applications, trade-off
parameters, optimization and dynamic adaptation strategies. The

CloneCloud, MAUI, DiET and J-Orchestra are useful for general
scientific applications, whereas the frameworks Roam and AIDE
are shown to be effective for image and graphics processing.
Similarly, the framework in Yang et al. (2008) and Spectra are
shown to work on voice and character recognition based applica-
tions. The SociableSense is specific for applications requiring
processing on social interaction in an organization. The trade-off
parameters are the elements considered while optimizing the
offloading decision. In general, most of the frameworks use the
execution time, energy consumption and communication over-
head as the main trade-off parameters. While optimizing the
decision problem, different heuristics based on the min-cut, kþ1
partitioning, and integer linear programming (ILP) are used in
most of the offloading frameworks. The frameworks also require
dynamic adaptation for offloading decisions during execution of
the application. The CloneCloud, MAUI and AIDE frameworks use
execution pattern for runtime adaptation. Similarly, the frame-
work in Yang et al. (2008) performs adaptation using the speedup
obtained through offloading. The Roam framework uses the target
device platform based runtime adaptation, whereas the DiET
framework requires user configuration for runtime adaptation.

7. Application domains benefiting from offloading

The computation offloading has proved to be beneficial for a
large number of applications lying in several domains. A domain-
wise categorization of research work is shown in Table 7. A large
part of the research work has targeted the applications lying in the
domains of mathematics and graphics/image processing. Likewise,
the games and multimedia based applications are also targeted
and their number continues to grow together with the evolution

Table 5
Comparison of the static analysis, dynamic profiling, late binding and trusted
execution based characteristics of the offloading frameworks.

Framework Static
analysis

Dynamic
profiling

Late binding
(offloading)

Trusted
execution

CloneCloud (Chun et al.,
2011)

Yes Yes Yes No

MAUI (Cuervo et al., 2010) Yes Yes Yes No
SociableSense (Rachuri et

al., 2011
Yes No Yes No

Spectra (Flinn et al., 2001) Yes No No No
Framework in (Yang et al.,

2008)
Yes No Yes No

Roam (Chu et al., 2004) Yes Yes Yes No
AIDE (Messer et al., 2002) Yes Yes Yes No
DiET (Rim et al., 2006) Yes No No No
J-Orchestra (Tilevich and

Smaragdakis, 2002)
Yes No No No

Table 4
Comparison of the automation, optimization problem solving, replication granularity, fine-grained and native method call support based characteristics of the offloading
frameworks.

Framework Automation Optimization problem solving Replication granularity Fine-grained Native method call

CloneCloud (Chun et al., 2011) High Highly asynchronous Partial threads Yes Yes
MAUI (Cuervo et al., 2010) Low Low asynchronous Low-level (fine-grained) Yes No
SociableSense (Rachuri et al., 2011) Low Asynchronous Module-level No No
Spectra (Flinn et al., 2001) High Asynchronous Task-level No No
Framework in Yang et al. (2008) Medium Asynchronous Components No Yes
Roam (Chu et al., 2004) High Asynchronous Component/Roamlet No No
AIDE (Messer et al., 2002) Medium Highly asynchronous Class No Yes
DiET (Rim et al., 2006) Medium Asynchronous Class methods No No
J-Orchestra (Tilevich and Smaragdakis, 2002) High Highly asynchronous Class methods No Yes
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of wireless technology. The applications related to Artificial Intel-
ligence and social behavior are also being offloaded as they involve
complex learning based computations. The applications with
database processing, file system and GPS processing have also
been implemented through offloading to improve their
performance.

8. Current challenges for effective computation offloading

Despite the long term evolution of the offloading techniques,
several issues are yet to be resolved. The most challenging issues
including partitioning, automated transparency & portability,
security, and application requirements are discussed below
together with their possible solutions.

8.1. Partitioning

The computation offloading requires the application code to be
partitioned into client and server parts for local and remote
execution, respectively. The partitioning takes into account several
parameters including costs of data transfer and computation time,
however the optimal partitioning is an NP-complete problem.
Consequently, different heuristics with fixed constraints are
employed in the partitioning strategies.

For an effective offloading implementation, the partitioning
problem needs to be solved in a quasi-automated manner requir-
ing directives from the programmer as well as automated dis-
tribution of modules. In this regard, the scheduling techniques for
heterogeneous systems (Sih and Lee, 1993; Khan, 2012;
Topcuouglu et al., 2002) may be incorporated to minimize the
total execution time.

8.2. Automated transparency & portability

The frameworks implemented for computation offloading yet
lack the automated transparency so that the surrounding environ-
ment is detected and the computation offloading takes place in a
seamless manner (Sanaei et al., 2012; Sanaei et al., 2014; Cui et al.,
2013; Chuang et al., 2013; Gordon et al., 2012). This is a complex
task as it requires an implementation of a standard protocol that
will perform lookup services and other functionalities depending
upon the environment while taking into account its constraints.
An implementation of the standard protocol for a diverse collec-
tion of devices and environments will render it portability as well.

8.3. Security

With computations being offloaded to remote machines/ser-
vers, the security of data and environment for the remote systems
needs to be ensured (Winkler, 2011; Sanaei et al., 2014; Khan et al.,
2014a,b; Kumar et al., 2013; Zhang et al., 2009). This requires
restraining the types of operations that may be offloaded for
remote execution. A limited set of permissible operations may be
provided by implementing a virtual machine and making the
remote component execute in the environment provided by the
virtual machine (Goldberg et al., 1996). Moreover, different author-
ization and authentication mechanisms may be incorporated in
order to ensure security of data on the cloud (Khalid et al., 2013;
Antonopoulos and Gillam, 2010).

8.4. Application requirements

The applications being executed on mobile devices are not only
growing in size but also in terms of complex operations. The
widely used multimedia applications including the VoIP, online

Table 6
Comparison of the applications, trade-off parameters, optimization and dynamic adaptation mechanisms of the offloading frameworks.

Framework Applications Trade-off parameters Optimization strategy Dynamic adaptation
strategy

CloneCloud (Chun et al., 2011) Scientific Execution speed, energy and data
transfer

Integer Linear Programming
(ILP)

Profile tree based

MAUI (Cuervo et al., 2010) Scientific Energy & execution speed with data
transfer

0-1 ILP Call graph based

SociableSense (Rachuri et al.,
2011)

Social Interaction Accuracy, energy, latency and data
traffic

Multi-criteria decision theory Learning based

Spectra (Flinn et al., 2001) Voice recognition Latency, battery life and fidelity Fidelity solver None
Framework in (Yang et al.,

2008)
Language translation &
character recognition

Response time, communication, CPU
and memory

ðkþ1Þ partitioning algorithm Speedup based

Roam (Chu et al., 2004) Games & graphics Capabilities of target devices and user
interface design

Component-based partitioning Target device capabilities
based mechanism

AIDE (Messer et al., 2002) Image and text processing Processor load, memory and
communication

Min-cut based heuristic Execution graph based

DiET (Rim et al., 2006) Mathematical applications User directives based User configuration based User configuration based
J-Orchestra (Tilevich and

Smaragdakis, 2002)
General applications Input/output, disk processing and GUI User directives based

parameters of I/O usage
None

Table 7
Domain-wise categorization of the research work related to computation offloading.

Multimedia Li et al. (2001), Wang and Li (2004a), and Ou and Yang (2006)
Games Li et al. (2001), Chu et al. (2004), Cuervo et al. (2010), and Wang and Dey (2010)
Graphics and image processing Xian et al. (2007), Chen et al. (2004), Gurun et al. (2004), Messer et al. (2002), Gu et al. (2003), Yang et al. (2008), Wang and Li (2004b),

Wang and Dey (2010), Balan et al. (2007), and Chun et al. (2011)
Mathematical computations Wang and Li (2004a), Chen et al. (2004), Chun and Maniatis (2009), Ou and Yang (2006), Rim et al. (2006), and Wang and Li (2004b)
Artificial Intelligence based

applications
Chen et al. (2004), Tilevich and Smaragdakis (2002), Yang et al. (2008), Nimmagadda et al. (2010), Cuervo et al. (2010), Kremer et al.
(2003), Wang and Li (2004b), Flinn et al. (2001), Balan et al. (2007), and Chun et al. (2011)

Health & social applications Matthews et al. (2011), Kundu et al. (2007), and Rachuri et al. (2011)
Database, file system or GPS

processing
Chen et al. (2004), Chun and Maniatis (2009), and Mtibaa et al. (2013)
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streaming, and video/audio chat require the mobile devices to
improve the energy requirements, graphics rendering and the
execution time. Moreover, these applications require real-time
processing. Consequently, it is not possible to offload all the
modules remotely. In this regard, the caching techniques and
implementation of a specialized hardware such as a Digital Signal
Processor (DSP) (Lin et al., 2004) or a System-on-Chip (SoC)
(Holzenspies et al., 2007) may be beneficial for an effective
offloading.

9. Conclusion

This paper presents a comprehensive survey of the research
work conducted on computation offloading which aims at perfor-
mance improvement of applications executing on the resource
constrained mobile devices. The limited resources of mobile
devices require the intensive computations to be offloaded in
order to mitigate the issues of slow execution and low energy.
Some of the offloading strategies work in a fixed static manner
while others are able to perform offloading in accordance with the
dynamic behavior of the application. We perform a comparative
analysis of these strategies as well as the automated frameworks
implemented to support computation offloading.

We also survey the evolution of mobile technologies and also
compare different partitioning mechanisms used for distributing
code between local and remote machines. The research work is
also categorized in terms of the application domains for which the
computation offloading is shown to be effective. Moreover, the
main issues related to computation offloading: partitioning, auto-
mated transparency & portability, security, and application
requirements are discussed, and their possible solutions are also
proposed.
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