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Abstract: This paper provides a review of an emerging field in the food processing sector, referring
to efficient and safe food supply chains, ’from farm to fork’, as enabled by Artificial Intelligence
(AI). The field is of great significance from economic, food safety and public health points of views.
The paper focuses on effective food production, food maintenance energy management and food
retail packaging labeling control, using recent advances in machine learning. Appropriate deep neural
architectures are adopted and used for this purpose, including Fully Convolutional Networks, Long
Short-Term Memories and Recurrent Neural Networks, Auto-Encoders and Attention mechanisms,
Latent Variable extraction and clustering, as well as Domain Adaptation. Three experimental
studies are presented, illustrating the ability of these AI methodologies to produce state-of-the-art
performance in the whole food supply chain. In particular, these concern: (i) predicting plant growth
and tomato yield in greenhouses, thus matching food production to market needs and reducing
food waste or food unavailability; (ii) optimizing energy consumption across large networks of food
retail refrigeration systems, through optimal selection of systems that can be shut-down and through
prediction of the respective food de-freezing times, during peaks of power demand load; (iii) optical
recognition and verification of food consumption expiry date in automatic inspection of retail
packaged food, thus ensuring safety of food and people’s health.

Keywords: deep learning; deep neural networks; LSTM models; attention; latent variables; domain
adaptation; yield prediction; growth prediction; greenhouses; energy optimization; refrigerator
systems; expiry date; verification; recognition; food packaging

1. Introduction

Food and drink processing is one of the largest manufacturing sectors worldwide,
including all processing steps ‘from farm to fork’ [1]. The economic value of the AI-
enabled precision farming market is estimated to grow and reach EUR 11.8 billion by 2025
globally [2]. There are significant challenges within these processing steps, regarding waste
reduction, food safety and reduced energy use [3]. Artificial Intelligence (AI) and Machine
Learning (ML) technologies offer a transformative solution and recent Deep Learning
(DL) approaches have innovated AI-enabled efficient yield and food production, food
conservation and supply, reducing food waste and improving food safety.

This paper presents, for the first time, recent progress in the whole pipeline of food
production and supply chain. It focuses on three main tasks of the ’from farm to fork’
pipeline: (a) accurate prediction of yield growth and production in greenhouses; (b) opti-
mization of power consumption in food retailing refrigeration systems; (c) quality control
in retail food packaging.

At first, accurately predicting yield and food production is of great significance for
reducing food waste and achieving smooth supply of food to supermarkets. Crop growers
nowadays prefer using greenhouses than field growing. By using greenhouses, growers can
extend the growing season and protect crops against changes of weather and temperature.
In addition, in greenhouses, environmental parameters, such as temperature, humidity,
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radiation, carbon dioxide, soil quality and fertilization, can be controlled, providing a safe
environment for crop growing [4,5].

Prediction of yield and food production are essential for helping growers control their
greenhouse environment and appropriately respond to market supply needs, while reduc-
ing operational costs [6,7]. Greenhouse farming operations, yield and production prediction
still rely heavily on human expertise. Automated yield and production prediction systems
can let growers effectively anticipate weekly fluctuations and avoid problems of both
over-demand and over-production arising if the yield cannot be accurately predicted [8,9],
constituting an important open research problem [10,11].

According to [12,13] there are two types of approaches, which are based either
on the use of existing knowledge, or on extracting correlations directly from data. The for-
mer type includes biophysical models for specific species and plants [14,15]. The latter type
is based on analysis of large amounts of data aggregated over farms, or greenhouses [16].
In this paper, we focus on recently developed deep learning models, which learn to analyze
data, such as humidity, CO2, radiation, outside and inside temperature, together with
yield measurements and other plant characteristics, so as to accurately predict the yield,
or these characteristics.

In the following phase of the pipeline, food enters the retailing phase, during which
it is stored in refrigeration systems of supermarkets. Food refrigeration accounts for a large
percentage of electricity demands in developed countries, e.g., it is over 14% of the UK’s
electricity demand, and mass refrigeration is responsible for a large percentage of carbon
emissions, e.g., around 12% in the UK. When energy consumption exceeds certain limits,
this can cause unmanageable spikes in energy usage, with unpredictable problems [17,18].
To reduce load, countries impose response times on large retail energy consumers, requiring
them to react urgently, or face high financial penalties. For large companies, with thousands
of refrigerators, meeting this requirement relies on staff reactiveness, a highly manualized,
resource intensive, non-synchronous procedure.

A procedure to cope with such cases is to turn off some of the refrigerators in such
cases for some period of time [19,20]. Using AI and machine learning, it is possible to
predict which refrigerators to select and for how long to turn them off, whilst maintaining
food quality and safety. In this paper we focus on a deep learning approach that has been
recently developed for coping with such situations.

In the third phase of the pipeline, after assuring a safe and efficient storage of food
in retailing refrigeration systems, the food is packaged and delivered to the shelves of
supermarkets, so that customers can buy and consume it. Serious problems are also
met in this phase as well, due to large amounts of food that remain unsold beyond their
expiration date. Up to 30% of food is wasted each year, and food poisoning (including
over 64,000 annual incidents in the UK from Campylobacter alone) is costly for national
healthcare systems and affected individuals [21].

Food manufacturing faces the risk of product recalls and emergency product with-
drawals caused by human error on packaging lines; if the expiry date is incorrectly listed
as too early, consumers may believe that the product has reached the end of its shelf life
and not consume, i.e., waste it. Conversely, if the expiry date exceeds the actual date, con-
sumers may use the product beyond its safe timeframe, risking illness or potential fatality.

Due to prevalence of inkjet printers in food industry, characterized by high degree of
quality variability, traditional Optical-Character-Recognition-based vision systems have
not been widely implemented, as they struggle with varied or distorted text. In this paper
we focus on state-of-the-art deep learning systems that can perform expiry date verifica-
tion and recognition on photos captured while packaged food passes along production
lines [22,23].

The current study is the first to focus on significant problems met within the whole
pipeline of food production and supply chain. It presents the use of state-of-the-art machine
and deep learning methods for producing an efficient and safe pipeline implementation.
It focuses on prediction and recognition tasks of great significance, illustrating the benefits
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achieved through the use of the machine and deep learning methods. It paves the way for
large adoption of AI technologies by growers, retailing organizations and policy makers.

Section 2 presents the methods developed and used to implement the above described
frameworks. Section 3 describes the application of the developed deep learning method-
ologies to real life environments and the achieved performance in all three phases of
the pipeline. Discussion of the results that were obtained and description of the future
directions are provided in Section 4.

2. Materials and Methods
2.1. Fully Convolutional Networks

Fully Convolutional Networks (FCN) [24] do not contain dense layers, like typical
Convolutional Neural Networks (CNN), but contain 1 × 1 convolutions that perform
the task of fully connected layers. They are used in the experimental Section for text
detection in images. Their architecture includes three parts: a feature extractor stem part,
a feature merging branch part and the output part.

The feature extractor stem part is a PVANet [25], including convolutional and pooling
layers. In our implementation, four feature maps are extracted from an input image through
the convolutional layers, enabling multi-scale detection of text regions of different sizes.
Moreover, each pooling layer down-samples a corresponding feature map by a factor of 2.

The extracted four feature maps, fi, i = 1, . . . , 4, are then fed in the feature-merging
branch part. In the i-th merging stage, the feature map fi−1 obtained in the former stage is
fed to an unpooling layer for size doubling and then concatenated with the feature map
fi into a new feature map. A convolutional 1 × 1 operator is then applied, followed by
a convolutional 3 × 3 operator that produces the merging stage output. Finally, a convolu-
tional 3 × 3 layer produces the merging output and feeds it to the output layer. Multiple
convolutional 1 × 1 operations are then used to produce the network outputs.

2.2. Long Short-Term Memories

Long Short-Term Memories (LSTM) are a variation of the Recurrent Neural Network
(RNN) architecture [26]. Networks composed of LSTM units have been able to solve
the gradient vanishing problem met in long-term time series analysis.

To achieve this, the LSTM structure contains three modules: the forget gate, the input
gate and the output gate. The forget and input gates control which part of the informa-
tion should be removed, or reserved to the network; the output gate uses the processed
information to generate the provided output. LSTM units also include a Cell State, which
allows the information to be saved for a long time.

2.3. Convolutional–Recurrent Neural Networks

Convolutional–Recurrent Neural Networks (CRNN) are lightweight networks, which
are used in the experimental section for text recognition. They include three parts, i.e.,
a feature extraction part, a bidirectional LSTM-RNN part and a transcription layer part.

The feature extraction part consists of a VGG network [27]. An input image is divided
into T different image patches; feature vectors x1, x2, . . . , xT are extracted from the different
patches through convolutional and pooling layers. These feature vectors are then fed to
a deep bidirectional Recurrent Neural Network (RNN) composed of recurrent layers with
LSTM units. The RNN part can capture contextual dependencies between text in consecu-
tive image patches. It is also able to operate on arbitrary lengths of text sequences.

The final layer in the CRNN is used for transcription, converting the text predictions
made by the bidirectional LSTM-RNN into a label sequence. This is achieved through max-
imization of a conditional probability given the bidirectional LSTM-RNN predictions [28].

2.4. Encoder–Decoder Model

In LSTM-based encoder–decoder models, the encoder part compresses the information
from the entire input sequence into a vector composed of the sequence of the LSTM
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hidden states. Consequently, the encoder summarizes the whole input sequence (x1, . . . , xt)
into the cell (C0, . . . , Ct−1) and memory (h1, . . . , ht−1) state vectors and passes them to
the decoder [29]. The latter uses this representation as initial state to reconstruct the time
series (St′ ). The architecture employs two LSTM networks called the encoder and decoder,
as shown in Figure 1.

Encoder Network

LSTM LSTM LSTM

C1

h1

x x x1 2 t

C2

h2

C0

C t - 1

h t - 1

Decoder Network

LSTM LSTM LSTM

C1

h1

S(init)

C2

h2

S 1

C t - 1

h t - 1

' '

' '

'

''

'

'

S t '

S 2 St-1

Figure 1. LSTM encoder–decoder architecture.

2.5. Attention Mechanisms

Attention mechanisms help to focus on feature segments of high significance [30].
An attention mechanism [31] models long-term dependencies by computing context vectors
as weighted sums of all provided information. Such dependencies can be computed across
the different internal LSTM layers, as well as over the LSTM output layers.

Output Predictions can be derived using the conditional probability distribution of
the input signal and of the previous samples of the output. These are computed in terms of
available information (state and input).

2.6. Performance Visualization

Two methodologies are examined in the paper for visualization of the performance
of the developed prediction models. These are based on either on class activation maps,
or latent variable extraction from trained deep models and adaptive clustering.

2.6.1. Class Activation Mapping

Deep neural networks are usually viewed as black boxes which do not provide means
to visualize, or explain, the decision making process. Class activation mapping (CAM) [32]
and Gradient-weighted CAM [33] are efficient ways to visualize the significance of various
parts of an input image for network training and decision making.

CAM-based methods provide such visualization by generating heat maps for each
input image, focusing on the areas that influence the network’s prediction. In practice, they
highlight the image pixels which are mainly used for classifying each image to a specific
category.

2.6.2. Latent Variable Adaptive Clustering

Extraction of latent variables from trained deep neural networks and generation of
concise representations through clustering has been recently used as a means for visualising
and explaining the network decision making process [34–36].
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Let us assume that for each input k, we extract M neuron outputs, as latent variables,
from the trained deep neural network, forming a vector v(k). In total, we get:

V =
{
(v(k), k = 1, . . . , N

}
(1)

where N is the number of available training data.
We generate a concise representation of the v vectors, that can be used as a backward

model, to trace the most representative inputs for the performed prediction. This can
be achieved using a clustering algorithm, e.g., k-means, which generates, say, L clusters
Q = {q1, . . . , qL} by minimizing the following criterion:

Q̂k-means = arg min
Q

L

∑
i=1

∑
v∈V

∣∣∣∣v− µi
∣∣∣∣2 (2)

where µi is the mean of v values included in cluster i.
Then, we compute each cluster center c(i), generating the set C, which constitutes

the targeted concise representation:

C =
{
(c(i), i = 1, . . . , L

}
(3)

This representation can be used to provide analysis of variability between distributions
and adapt information across different food datasets [37].

2.7. Domain Adaptation

Most of the deep learning models are developed through supervised learning over
large annotated datasets. However, labeling large datasets constitute a very expensive
and time-consuming procedure. Furthermore, in deep learning, it is generally assumed
that the training and test statistical characteristics, i.e., distributions, are similar. However,
this assumption is not valid in real life environments. This domain shift causes serious
problems in the network’s generalisation, requiring model adaptation; this is obtained
through Domain Adaptation methods [38].

Many domain adaptation methods have been proposed in the last few years. Three
types of approaches, based on Discrepancy, Adversarial and Reconstruction, constitute
the means for achieving domain adaptation [38]. The first type aims to align training
and test data distributions, minimizing their divergence. This type includes Correlation
Alignment (CORAL) [39], Maximum Mean Discrepancy (MMD) [40] and Kullback–Leibler
divergence [41] methods. Adversarial methods, based on Generative Adversarial Networks
(GANs) [42], aim to achieve the same goal by minimizing domain confusiond [43,44].
The third type of techniques aim to generate shared representations between training
and test data, while retaining each domain’s characteristics [45,46].

In the experimental Section we focus on the use of domain adaptation for ensuring
safety and waste reduction in the food supply chain. In particular, we target minimization
of the discrepancy among features and among class boundaries, as well as minimization of
the classification loss, so as to achieve good generalization of the model [22].

The model jointly adapts features combining CORAL and MMD criteria, aligning
the underlying distributions. MMD considers the source and target mean embeddings
in the Kernel Hilbert Space. The CORAL Loss minimizes the distance between the second
order statistics (covariances) of the source and target features.

The total feature discrepancy loss is computed as follows:

LossFD = LossMMD + LossCORAL (4)

In case we are considering domain adaptation from more than one source domain,
the respective models may classify wrongly target data that are close to class boundaries.
In such cases, we also minimize the class discrepancy loss among classifiers, LossCD [22],
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making their probabilistic outputs similar. Finally, the classification cross-entropy loss,
LossCL is additionally minimized during training.

LossTOTAL = LossFD + LossCD + LossCL (5)

3. Experimental Study

Figure 2 shows the described AI-enabled Food Supply Chain, including three pil-
lars, which span food production, food storage and maintenance and food distribution
and consumption:

- Food production in greenhouse environments, with a focus on predicting yield and op-
timizing crop growth and harvesting.

- Food storage and maintenance in retailing refrigerator systems, with a focus on
reducing energy consumption and CO2 production, whilst keeping food safe.

- Food distribution and consumption with a focus on quality control of retail packaging,
through visual inspection of the food expiry date, while aiming to reduce food waste
and avoid public health problems.

                  AI-enabled Food Supply Chain 

Food Production in 
Greenhouse Environments 
 
      Predict yield 
      Optimize crop growth 
and harvesting 

Food Storage and 
Maintenance in Retailing 
Refrigerator Systems  

 
      Reduce energy 
consumption and CO2 
production 
      Keep food safe 

Food Distribution and 
Consumption 
 
      Quality control of retail 
packaging 
      Control of food expiry 
date 
      Reduce food waste 
      Ensure public safety   

Figure 2. Food Supply Chain.

3.1. Food Production in Greenhouse Environments
3.1.1. Plant Growth Prediction

Machine learning methods are shown to be able to predict growth of Ficus plants
using data collected from four cultivation tables in a greenhouse compartment of the Or-
namental Plant Research Centre in Destelbergen, Belgium. Greenhouse microclimate was
continuously monitored and controlled, through window opening, air heating, assimilation
light and CO2 adding. In particular, ficus stem diameter was continuously monitored on
three plants and data were collected corresponding to its hourly variation rate, i.e., as
the difference between the current stem diameter and the stem diameter recorded one hour
earlier. The environmental data were also continuously recorded on an hourly basis.

The prediction problem concerns one-step, two-step and three-step forecasting of
the stem diameter [47,48]. In one-step forecasting, stem diameter measurements and en-
vironmental data collected, in a time window of the previous 15 h, are used to predict
the stem diameter value in the current hour. In two-step-ahead (6 h) forecasting, the above
data are used to predict the stem diameter six h ahead. Three-step-ahead (12 h) forecasting
makes a stem diameter prediction 12 h ahead.

Figure 3 presents an effective stem diameter prediction method, based on combination
of the Encoder–Decoder (ED) model described in Section 2.4, the LSTM model described
in Section 2.2 and the attention model (AM) described in Section 2.5 [49].
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Figure 3. Deep architecture (WT-ED-LSTM-AM) for stem diameter prediction.

At first (Step 1), a denoising filter is applied to the input data, composed of the former
stem diameter values and the respective environmental parameters. The filter is based on
the Wavelet Transform (WT) of the input data, removing the WT high frequency component,
and generating a smoothed version of the input data [50]. The ED model is then applied
(Step 2). The encoder is pre-trained to extract useful and representative embeddings from
the reconstructed time series data. A two-layer LSTM (128 and 32 neurons, respectively) is
used in the encoder shown in Figure 1. The decoder learns to generate the (reconstructed)
input signal from the embeddings, thus optimizing this feature extraction procedure. Then,
the LSTM network, with 128 neurons (Step 3), with an attention mechanism (Step 4), is
trained to model respective long-term dependencies, using the learned embedding as input
features. A single layer neural network (Step 5) provides the final one-step, or multi-step
ahead prediction provided by this WT-ED-LSTM-AM architecture.

In the accomplished experiments, the first 70% of data samples constituted the training
set, the next 10% of data samples were the validation set and the remaining 20% of data
samples formed the test set. Min–max normalization was applied to the input data, scaling
their values in the range [0, 1].

The experimental results illustrate the very good performance of the described method.
Table 1 shows that the method outperforms all standard machine learning techniques,
including a Support Vector Regressor (SVR), a Random Forest Regressor (RFR), a two-layer
LSTM and a Multilayer Perceptron (MLP) with Stochastic Gradient Descent; a learning
rate ls = 0.001 and a batch size of 32 were adopted. All models were trained for 100 epochs,
using the same training, as well as validation and test data sets. The Root Mean Squared
Error (RMSE) was used as performance evaluation criterion. To illustrate the contribution
of the WT and AM steps, Table 1 also illustrates that the achieved performance becomes
worse, if either of these two steps is not included in the prediction approach.
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Table 1. Performance comparison of the WT-ED-LSTM-AM method to standard machine learning
methods and the ablation study.

RMSE

Method One Step Prediction Two Step Prediction Three Step Prediction

SVR 0.65 0.70 0.82
RFR 0.74 0.66 0.72
MLP 0.0034 0.0045 0.0048

LSTM 0.0031 0.0033 0.0054
WT-ED-LSTM 0.0028 0.0033 0.0042
ED-LSTM-AM 0.0034 0.0030 0.0046

WT-ED-LSTM-AM 0.0026 0.0028 0.0029

Figure 4 shows the accuracy of Ficus growth one-step prediction by all methods for
about 600 data samples. It can be seen that the described model successfully performs one-
step ahead prediction, outperforming the other methods and providing accurate estimates
of almost all peak values in the original data.

Figure 4. Performance comparison in one-step prediction (described and standard ML methods).

3.1.2. Yield Prediction

Modeling the growth of tomato crops in greenhouse environments has been the topic
of some related research [51,52]. These models are physics-dependent and are based on
large numbers of related parameters. They are rather complex, with difficulty in estimating
initial parameter values and need calibration in every environment.

The Tompousse model [14] was developed taking into account the fruit weight and lin-
early relating it flowering rate. Another tomato yield model [15] represented weekly yield
fluctuations in terms of fruit size and harvest rate [53].

Machine learning models have been recently developed for tomato yield prediction [54].
Their training was conducted with data aggregated from Greenhouses in United Kingdom,
over a period of two years. The data contained environmental parameters and actual yield
values.

Environmental data were collected every hour, while yield values were collected once
per week. To make the data consistent in terms of time of occurrence, data augmentation
was accomplished, using interpolation, on the yield measurements. This resulted in yield
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values on a daily basis. Moreover, by averaging the environmental data, we generated
environemntal data on a daily basis as well.

The experimental study on these data illustrated the ability of the above-described ED-
LSTM-AM model (WT did not provide any significant improvement in this case) to provide
accurate prediction of tomato yield. Figure 5 shows that this model outperforms standard
ML methods, including SVR and RFR, in tomato yield prediction. The MSE in actual yield
prediction was 0.015 for SVR, 0.040 for RFR and only 0.002 for ED-LSTM-AM.

Figure 5. Performance comparison in tomato yield prediction (by ED-LSTM-AM and standard ML
methods).

3.2. Food Retailing Refrigeration Systems

Applying deep learning methods in distributed environments is still an open re-
search and development problem. Examples of current distributed frameworks include
TensorFlow-distribute, or IBM distributed DL. Sharing data in distributed environments,
while implementing, for example, the LSTM networks described in Section 2.2, is a critical
bottleneck, despite the prevalence of databases providing very mature and advanced func-
tionalities, such as MongoDB’s aggregate pipeline. There are different types of parallelism
in deep learning implementations [55], as listed below:

- Model parallelism (TensorFlow, Microsoft CNTK), where a single deep model is
trained using a group of hardware instances and a single data set.

- Data parallelism, where each hardware instance is trained across different data.
- Hybrid parallelism, where a group of hardware trains a single model, but multiple

groups can be trained simultaneously with independent data sets.
- Automatic selection, where different parts of the training/test process are tiled, with

different forms of parallelism between tiles.

In the food supply chain, machine learning methods can be effectively used in a hybrid
parallel framework for controlling massive amounts of food retailing refrigeration systems.
This was shown in a recent implementation [56], in which multiple LSTM models were
coupled with a MongoDB database [57] and were trained, using 110,000 real-life datasets—
from about 1000 refrigerators.

The generated Nemesyst system [58] has been capable of predicting which refrigera-
tors to select and how long to turn them off, whilst maintaining food quality and safety.
This was implemented in a Demand Side Response setting that modified power demand
load proportionally to available energy, in the National Grid of the United Kingdom [59,60].
The target of the research was to show how to optimise refrigeration systems with machine
learning at scale, whilst assuring that food temperature did not exceed certain thresholds.
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The Nemesyst system simultaneously wrangles, learns, and infers various models,
over different data sets, within a network of refrigerator systems. In such systems the ther-
mal inertia/mass of food acts as a store of cold energy. However, the thermal inertia
in a retail refrigeration case changes, if food is actively shopped by consumers and then
refilled, if the ambient temperature changes, if networks of stores possess multiple refriger-
ation systems, or if different types of food need specific control mechanisms [61,62].

Deep learning models, such as LSTMs, can model thousands of assets simultaneously,
whilst being retrained to decide which refrigerators to turnoff, within a large network of
refrigerator systems. This requires an algorithm that can predict the thermal inertia in indi-
vidual cases and therefore how long they can be shutdown (typically up to a maximum of
up to 30 min), ensuring food safety and contributing to decarbonisation.

As shown in Figure 6, a backend deep learning framework aggregates data from
a distributed global database layer and trains with them multiple deep models, such as
LSTMs. It then stores the trained models in the database layer. The latter interacts with each
local store and its refrigerator systems, which share local database instances and retrieve
the best deep network from the global database layer.

 
Figure 6. The Nemesyst system for AI-enabled power supply control of retailing refrigerators.

In the experimental study the target was to predict the time that each refrigerator’s
temperature needed to rise from the turn-off time until reaching a critical, for food safety,
temperature. This time was different in different cases, ranging from 8 ◦C for high temper-
ature refrigerators to −183 ◦C in low temperature freezers. The threshold for each fridge
was not a-priori known. To face this problem, a two-layer LSTM network was trained to
predict the defrost time point, since this point was the most appropriate for the task.

A number of 110,000 refrigerators was selected from the whole population and used
in the experimental study. Predicting how long the refrigerators could remain off, before
reaching this threshold, identified the best candidates so as to reduce the power consump-
tion and minimize the number of affected refrigerators and potentially affected food.
The 110,000 defrost examples were split such that 10,000 were used for final testing, 10,000
were selected each time for validation and the rest were used for training the system.

Figure 7 illustrates that an excellent prediction of the defrost time was achieved in four
different cases. The time for defrosting before reaching the temperature of 8 ◦C was
computed as the difference between the last “observed” and final “defrost” value. In cases
(a) and (b), prediction defined exactly the point of defrost; in cases (c) and (d), prediction
took place two minutes before defrost.
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Figure 7. Prediction of the defrost time in four different refrigerator cases (a–d): in each case
“Observed” (light blue) denotes training data; “defrost” (orange) is the ground truth; “prediction” (×)
is the prediction of the final ground truth (orange) value.

3.3. Quality Control in Retail Food Packaging

The requirement for food high quality and safety of food and the public is a very im-
portant issue throughout the whole food supply chain [63]. The food product information
printed on the food package is very important for food safety. Incorrectly labelled product
information on food packages, such as the expiry date, can cause food safety incidents, such
as food poisoning. Moreover, such faults will incur high reputational and financial cost to
food manufacturers, also causing large product recalls. As a consequence, verification of
the correctness of the expiry date printed on food packages is of great significance.

In the following, it is shown that, instead of relying on operators to check the date code,
an automated solution, taking photos of each date code, can verify the programmed date
code for that product run, allowing food processing businesses to introduce unmanned
operations and achieve very high inspection with full traceability, without compromising
product safety. The production line will stop if the date code is incorrect, ensuring that
the respective products are not released into the supply chain, protecting consumers,
business margins and their brand, while reducing labour costs and food waste.

The Food Packaging Image dataset used next consists of more than 30,000 images
classified in two categories (existing valid date and non-existing or non-valid date) from
six different locations in the Midlands in the United Kingdom. A total of 70% of the data
were used for training the model; 10% were used for validation and 20% formed the test
set. Representative images are shown in Figure 8, showing a complete date (a), partial
dates (b,c), an unreadable date (d) and no existing date (e).
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Figure 8. Representative examples of food packaging images: (a) complete date (day and month
visible); (b) partial date (no day visible); (c) partial date (no month visible); (d) unreadable; (e) uo date.

3.3.1. The FCN-CRNN Approach for Expiry Date Recognition

Optical character recognition (OCR) systems [64,65] can be applied to automatically
recognize expiry date characters based on food package images captured by RGB cameras.
However, existing OCR systems can not achieve high performance in real-world expiry date
recognition scenarios, which include high variability, different fonts/angles, complicated
designs with rich colours/textures, blurred characters poor lighting conditions in food
manufacturing/retailer sites. Deep neural networks have been recently used as a means to
tackle such problems [66,67].

In the following we present an approach composed of the FCN network described
in Section 2.1 and the CRNN network described in Section 2.3. Both networks are
lightweight and have achieved good performance in text detection and recognition ‘in-the-
wild’. Thus, they were fine-tuned and combined together to detect and recognize the expiry
date. Fine-tuning is performed through transfer learning [68], by adapting the model,
pre-trained for recognition of text, to recognition of the expiry date.

The FCN-RCNN architecture is shown in Figure 9. It includes the FCN part, which
is responsible for the detection of the Region-Of-Interest (ROI) of the expiry date. This
acts as a filter to identify the image patch including the ROI from a whole food package
photograph, so that the recognition task is performed on that specific small image patch,
instead of the whole image. The second part includes the CRNN network, which performs
date character recognition on the image patch obtained from the first network. Multiple
levels of features are extracted from equally divided regions in the expiry date ROI, so
as to recognize the characters within each region, while contextual relationships between
characters in consecutive regions are modelled by the recurrent layers of CRNN.

The accuracy of expiry date detection by the fine-tuned FCN model reaches 98.2%.
It is higher than the accuracy obtained with two other similarly fine-tuned popular deep
neural networks, i.e., CTPN [69] and Seglink [70], while providing much fewer false alarms
and missed detections, as shown in Table 2.

Table 2. Performance of the FCN detection sub-system.

Method Missing Detection (%) False Alarm (%) Accuracy (%)

FCN 1.67 0.28 98.20
CTPN [69] 2.79 16.57 92.20

Seglink [70] 5.71 12.53 93.73

Then the CRNN part of the method was fine-tuned using annotated (rectangular)
image patches extracted by the FCN part. As shown in Table 3, the achieved recognition
accuracy was 95.44%, much higher than that provided by the Tesseract OCR tool [71]
and higher than the performance of the TPS-ResNet-BiLSTM-Att network [72], which is
much more complex (containing six times more parameters than the CRNN model).
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Figure 9. Architecture of the FCN-CRNN system.

Table 3. Performance of the CRNN recognition sub-system.

Method Accuracy (%)

CRNN 95.44
TPS-ReSNet-BiLSTM-Att [72] 94.57

Tesseract OCR [71] 31.12

3.3.2. Latent Variable Based Expiry Date Verification

A high variability exists in the image characteristics captured in different environ-
ments. As a consequence, an FCN model trained with images from a dataset collected
in one location did not perform well when applied to images collected in another location.
A method to cope with this problem is by extracting latent variables from each trained FCN,
clustering them as described in Section 2.6.2 to produce respective cluster centroids and
using these centroids as an equivalent model for evaluating images from other locations
through nearest neighbour classification [37].

It has been shown that best results were achieved in this way, if latent variables
were extracted by the dense layer preceding the output network layer [35,36,73]. For this
reason, some dense layers were included on top of the FCN network, as shown in Figure 10.
In particular, an averaging pooling and two dense layers, each containing 2048 ReLU units
were added and the 2048 neuron outputs of the last dense layer were clustered using
the k-means algorithm.

Let us consider the case of two datasets obtained from different locations. Seven
clusters were generated per dataset [37], after applying the above procedure to each dataset.
The respective 14 centroids were then merged, following an algorithm based on [35,74],
which iteratively removed the lowest performing cluster, resulting in adaptation of some
of the remaining centroids, until the expiry date verification stopped improving.
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Figure 10. FCN part followed by dense layers—clustering the last layer neurons outputs.

Figure 11 shows the effect of the algorithm on the 14 original cluster centoids. Two of
them (black stars) were excluded; four centroids (red squares) in class 1 and two (green
circles) in class 2 were adapted and the rest of the CNN centroids remained unaffected.
It should be mentioned that this produced an improvement in the verification accuracy of
13.8% in total accuracy over the datasets of the two locations.

Figure 11. 3-D visualization of the adapted, constant and excluded cluster centroids; class 1 (2)
includes good (bad) quality images.

3.3.3. Domain Adaptation for Multi-Source Expiry Date Recognition

The problem of high variability across datasets collected in different environments,
which was tackled in the former subsection, as well as the general lack of labeled data for
the whole food supply chain, was further examined next, using the domain adaptation
approach described in Section 2.7.

Figure 12 shows the developed domain adaptation procedure. It included a feature
extraction and a classification part. The feature extraction part and its sub-networks were
trained to learn features that represented every source–target relation. The classification
part was trained to learn domain-specific attributes for every image in the target set. A Class
Activation Map was included, as described in Section 2.6.1, to provide visualization of
which parts of the input images most affected the provided predictions.

Experiments were conducted using a labeled single source dataset and an unlabeled
single target dataset for all six locations. The goal of this experiment was to establish
a baseline for images that would be classified as readable and acceptable according to
human standards. Further experiments were conducted using the multi-source domain
adaptation approach, in two settings, i.e., of two source and one target, or three source
and one target datasets.

For comparison purposes, more experiments were implemented, in which the two,
or three source datasets were combined in a single source dataset; this was then used for
domain adaptation to the target dataset. In the experiments, either the FCN—or the ResNet-
50 [75] pretrained on ImageNet [76]—was the backbone network, by adding a dense layer
and fine-tuning all convolutional and pooling layers.
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Figure 12. The Multi-source Domain Adaptation architecture.

Table 4 presents the average classification accuracy for all examined domain adap-
tation methods. As shown in the Table, combining two, or three sources provided better
results than single source methods. This can be justified by considering this case as data
enrichment. Moreover, the multi-source domain adaptation method significantly outper-
formed both other methods. The improvement of the average classification accuracy was
over 6%.

Table 4. Comparison of Performance of Domain Adaptation (DA) Methods.

Method Accuracy (%)

Single-Source DA 84.14
Two-Source Combined DA 85.05

Three-Source Combined DA 86.13
Multi(2)-Source DA 90.53
Multi(3)-Source DA 92.50

4. Discussion

The presented experimental studies illustrated that the use of AI and ML methodolo-
gies can provide the food supply chain with efficiency and safety, reducing food waste
and environment pollution; this is the main target of the data platforms required for food
systems [77,78]. Most of the presented work has taken advantage of the recent progress
in deep learning and deep neural networks.

4.1. Food Production in Greenhouses

In the first case study, DL systems were trained to predict growth and yield in time
series data collected in greenhouses, taking into account environmental data and histor-
ical growth, or yield data. It has been shown that RNN/LSTM models combined with
autoencoding, or attention mechanisms, were able to provide state-of-the-art performance
compared with existing methods for multi-step prediction of stem diameter-based growth
of plants, as well as of tomato yield weekly prediction. Similar approaches can be used
for prediction of yield of other categories, for example fruits, and in particular strawberry
yield and their harvesting using robots [79,80]. In addition, simultaneous maximization of
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yield and minimization of the consumed energy in greenhouses can be tackled through
dynamic multi-objective optimization [81,82].

Based on the presented analysis, we can foresee the following future developments,
relating market dynamics with food supply–demand balance.

It is crucial for greenhouse farmers to harvest their produce in perfect condition at
the right time and make them onto the food market to maximise profit while helping
stabilise the supply chain. Normally, farmers pick their produce while they are still
green and induce the ripening process afterwards by spraying the fruits or vegetables
with ethylene gas when they reach their destination. These post-harvest practices have
drawbacks; fruits harvested prematurely may result in poor taste and quality despite
appearing as fully ripened ones, particularly for ethylene-sensitive vegetables including
broccoli, cabbage, and lettuce. This is further compounded by high aesthetic standards
in today’s market—only the best-looking produce makes it on to supermarket shelves.
Fruit and vegetables of low quality cannot be sold, which creates waste and unnecessary
expense for farmers. On the other hand, natural ripening processes in greenhouses are
costly, due to extra heating and lighting at the end of the season.

Improvement of natural ripening processes can be achieved by optimising climate
parameters in greenhouses, so that crops are harvested at the best time to meet market
demand and maximise profit. To reach this aim, we will need to perform more research on:
modelling correlation of natural crop ripening with greenhouse climate parameters, such
as temperature, humidity, CO2 and soil environment parameters; using market dynamics
to inform ripening control; optimising climate control in ripening processes to maximise
profit and minimise carbon footprint simultaneously.

This research will include: using the deep learning models presented in the paper
to elucidate the relationship between crop ripening and greenhouse climate and soil
environment parameters; integrating market demand forecast into greenhouse climate
control during crop ripening process; using machine learning for dynamic multi-objective
optimization of greenhouse climate control during crop ripening processes to maximally
increase profit and lower CO2 emission.

Other multi-objective optimization models can be related to these developments. Such
a model is the linear programming model developed in [83] for designing a citrus three-
echelon supply chain network. This model minimizes waste, transportation and inventory
holding costs, while maximizing profit. Another model [84] considers a four-echelon
citrus supply chain, including gardeners, distribution centers, citrus storage and fruit
market. This is a mixed integer non-linear programming model, which minimizes total
cost and maximizes profit.

4.2. Food Storage and Maintenance in Refrigeration Systems

In the second case study, it has been shown that control of the energy consumed by
big food suppliers, e.g., large supermarket companies, is feasible, using deep learning
based prediction. A large scale study, for automatic control, i.e., temporary shutdown
of retailing refrigerator systems in peak energy demand hours, has been implemented,
based on prediction of the specific refrigerator defrost period in each considered location.
RNN/LSTM models were mainly used to perform the prediction task; GAN models were
also successfully used to perform data augmentation and prediction. Similar methods have
been used to predict anomalies, i.e., instances when the power demand load becomes
higher than the available power in a country [85].

Current targets related to food supply chain, worldwide, include [3]: cutting of green-
house gas emissions by at least 55% by 2030; development and use of energy-efficient
approaches; optimization of connectivity to energy; analysis of production data; efficient
management of resources, such as energy, water, soil, biodiversity. The presented ap-
proaches illustrate how AI and DL can be used to contribute towards these goals.

Achieving this goal requires setting up of a respective policy, which can be achieved
through a combined top-down and bottom-up procedure. On the one hand, states should
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encourage the use of AI-enabled energy control approaches by big players in the food
supply food market. On the other hand, smaller and larger food market players should
adopt such solutions, so as to maximize efficiency and safety of the food production
and supply chain. The outcome of this dual adoption of AI-enabled procedures will
be creation of a complete food production and supply pipeline that takes into account
health and environmental constraints, as well as the information and economic needs of
all involved stakeholders, including farmers, retailers and customers. In this framework,
design of a complete interactive interface system that can integrate all these needs, while
creating a good user experience, is of major importance.

The presented model can be combined with other types of models, such as the hub
location-vehicle scheduling model [86], which considers perishability of products for
distribution in a food supply chain and total CO2 emission of the hub, simultaneously.
The underlying multi-objective optimization takes into account total transportation costs,
freshness and quality of foods at the time of delivery and total carbon emissions of vehicles.
Another model that can be taken into account [87] refers to environmental sustainable
issues connected with agro-food supply chain from farmer to final distribution centers.
This model minimizes the total transportation cost and carbon emission tax in gathering
food grains from farmers to the hubs and later to the selected demand points (warehouses).

4.3. Food Distribution and Consumption

The third case study illustrated that automatic recognition of expiry date in retail food
packaging can also be successfully implemented through deep learning methodologies. It
was shown that FCN and CRNN models can be used to effectively recognize the expiry date
on real life food packaging. Verification of the expiry date, with visualization of the decision
making procedure can be achieved through latent variable extraction of the trained deep
neural architectures and a related clustering procedure. Moreover, domain adaptation of
the deep neural architectures can be performed so as to achieve expiry date verification
and recognition across different retail environments.

The impact of this task is also crucial for ensuring food safety and consumers’ health,
whilst reducing food waste and related financial loss. Supermarkets can be automatically in-
formed and perform respective early warning pushes, or notifications before the expiration
dates, combined with retail sales and other activities to reduce food waste.

The presented deep learning approaches may be applied to other significant tasks
in monitoring retail food packaging. In particular, they can provide verification and recog-
nition of the allergen labeling barcode, or other nutritional information. These can create
a further impact towards people’s safety, by automatically informing customers which aller-
gens are included in the food products they are thinking of buying in retail supermarkets.

All the above experiments used the state-of-the-art in deep learning methodologies.
In future research, the developments will focus on extending the described frameworks,
with a target to combine deep learning with AI knowledge representation and reasoning,
as well as multi-objective optimization technologies [88,89].

In this context, the methodologies that were presented in this paper for achieving
an efficient and safe food supply chain will be extended, so as to create trustworthy AI-
enabled food chain supply, that offer transparency and explainability to their users, i.e., food
producers and farmers, retail supermarket owners, customers and the general public.

In particular, the deep neural architectures, especially the approach deriving the back-
ward model of extracted cluster characteristics, described in Section 3.3.2, can be interweaved
with ontological representation [90] of this backward model, so as to provide explainable
cues of the decision making procedure by using query answering techniques [91,92].

Justification and explanation of the decision making procedure is of great significance
for creating trust of stakeholders in the developed AI-enabled predictions and suggestions.
For example, in the case of farmers, if the AI system predictions conflict with their expe-
riences, the system should be able to provide visualization and explanation of the input
characteristics on which its prediction was based. Moreover, it should be able to link this
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justification with former experiences of the specific farmer, or of other farmers in similar
contexts, so that the farmer continues to believe and use the system. In this framework,
the derived models should be able to adapt and contextualize across different environ-
ments; general-purpose methodologies developed for other classification and prediction
fields [93,94] can be used to achieve this capability.
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