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Abstract: Artificial Intelligence (AI) has emerged as a transformative technology with immense
potential in the field of medicine. By leveraging machine learning and deep learning, AI can assist
in diagnosis, treatment selection, and patient monitoring, enabling more accurate and efficient
healthcare delivery. The widespread implementation of AI in healthcare has the role to revolutionize
patients’ outcomes and transform the way healthcare is practiced, leading to improved accessibility,
affordability, and quality of care. This article explores the diverse applications and reviews the current
state of AI adoption in healthcare. It concludes by emphasizing the need for collaboration between
physicians and technology experts to harness the full potential of AI.
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1. Introduction

Artificial intelligence is increasingly being used as a virtual tool in many countries
around the world. With its ability to mimic human cognitive functions, AI has revolution-
ized industries, improved efficiency, and unlocked new possibilities. During the past few
years, governments have adopted a variety of smart applications that can use AI and its
subsets provide predictions and recommendations in various fields, such as healthcare,
finance, agriculture, education, social media, and data security.

Since the outbreak of COVID-19 in 2019, AI technologies have experienced accelerated
adoption and utilization across various domains within the healthcare sector. In response to
the pandemic, AI has emerged as a valuable tool and is being used for disease detection and
diagnosis, medical imaging and analysis, treatment planning and personalized medicine,
drug discovery and development, predictive analytics, and risk assessment. In 2018,
Loh E. [1] stated that AI has the potential to significantly transform physicians’ roles and
revolutionize the practice of medicine, and it is important for all doctors, in particular those
in positions of leadership within the health system, to anticipate the potential changes,
forecast their impact and make strategic plans for the medium to long term. In contrast, in
2021, Mistry C. et al. [2] assessed that the necessity for deploying advanced digital devices
has become a requirement to offer augmented customer satisfaction, permitting tracking,
checking the health status, and achieving better drug adherence.

The field of AI is continuously evolving and researchers are exploring various avenues
to create intelligent systems with different capabilities. The authors employed a visual
representation, in the form of Figure 1, to illustrate the diverse subtypes of AI. Table 1
provides an overview of the definitions of terms related to AI and their integration within
the healthcare sector.
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Table 1. Definitions of terms related to AI.

Term Definition

Artificial Intelligence (AI)

The first definition was been given in 1950 by Alan Turing, the founding father of
AI, as the science and engineering of making intelligent machines, especially
intelligent computer programs [3]. According to Salto-Tellez M. et al. [4], AI
represents a range of advanced machine technologies that can derive meaning and
understanding from extensive data inputs, in ways that mimic human capabilities.
In the present context of medical practice, a specific definition may be a system’s
ability to correctly interpret external data, to learn from such data, and to use those
learnings to achieve specific goals and tasks through flexible adaptation [5].

Machine Learning (ML)

ML, a subset of artificial intelligence, exhibits the experiential “learning”
associated with human intelligence, while also having the capacity to learn and
improve its analyses through the use of computational algorithms [6,7].
Alpaydin E. [8] defined machine learning as the field of programming computers
to optimize a performance criterion using example data or past experience.
ML-based tools are used in the healthcare system to provide various treatment
alternatives and individualized treatments and improve the overall efficiency of
hospitals and healthcare systems while lowering the cost of care [9].

Deep Learning (DL)

Deep Learning, a subset of Machine Learning, refers to a deep neural network,
which is a specific configuration where neurons are organized in multiple
successive layers that can independently learn representations of data and
progressively extract complex features, performing tasks such as computer vision
and natural language processing (NLP) [10]. In experimental settings across
multiple medical specialties, DL performs equivalently to healthcare professionals
for detecting diseases from medical imaging [11].
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Table 1. Cont.

Term Definition

Natural Language Processing (NLP)

Natural Language Processing is a theoretically-motivated range of computational
techniques for analyzing and representing naturally-occurring texts at one or more
levels of linguistic analysis for the purpose of achieving human-like language
processing for a range of tasks or applications [12]. NLP techniques have been
used to structure information in healthcare systems by extracting relevant
information from narrative texts so as to provide data for decision-making [13].

Robotics

The robot has been defined as “a reprogrammable multifunctional manipulator
designed to move material, parts, tools, or specialized devices through variable
programmed motions for the performance of a variety of tasks” by the Robot
Institute of America [14]. The term “robotics” refers to the study and use of robots.
Robotic assistance has been shown to improve the safety and performance of
intracorporeal suturing, which is heavily required in urological and gynecological
procedures [15].

Artificial Neural Network (ANN)

An Artificial Neural Network, a subset of Machine Learning, is a computational
model inspired by the biological neural networks in the human brain. These
systems are mainly used for pattern identification and processing and are able to
progressively improve their performance based on analytic results from previous
tasks [16–18]. Many areas have been integrating the use of ANNs to facilitate the
diagnosis, prognosis, and treatment of many diseases [19–21].

Convolutional Neural Network (CNN)

A Convolutional Neural Network is a Deep Learning algorithm specifically
designed for image and video processing, primarily used in medical image
analysis and diagnostics. CNNs have demonstrated superior performance as
compared with classical machine learning algorithms and in some cases achieved
comparable or better performance than clinical experts [22].

2. Role of Artificial Intelligence in Healthcare
2.1. Disease Detection and Diagnosis and Medical Imaging

The application of AI within the diagnostic process supporting medical specialists
could be of great value for the healthcare sector and the patients’ overall well-being [23].
The fundamental goal of the diagnosis of a disease lies in determining whether a patient is
affected by a disease or not [24]. The first step in the diagnostic process involves obtaining a
complete medical history and conducting a physical examination. For instance, a technique
can use sound analysis to recognize COVID-19 from different respiratory sounds, e.g.,
cough, breathing, and voice [25]. Additionally, for a precise diagnosis, AI algorithms can
be used for the analysis of medical scans and pathology images. Imaging applications
include the determination of ejection fraction from echocardiograms [26], the detection and
volumetric quantification of lung nodules from radiographs [27], and the detection and
quantification of breast densities via mammography [28]. Imaging applications in pathology
include an FDA-cleared system for whole-slide imaging (WSI) and their integration into a
laboratory offers many benefits over light microscopy [29].

2.2. Treatment Planning and Personalized Medicine

AI tools have the ability to analyze large amounts of data and detect patterns. There-
fore, they can make predictions for efficient and personalized treatment strategies. Person-
alized medicine, as an extension of medical sciences, uses practice and medical decisions to
deliver customized healthcare services to patients [30]. For example, CURATE.AI is an AI-
derived platform that maps the relationship between an intervention intensity (input-drug)
and a phenotypic result (output) for an individual, based exclusively on that individual’s
data, creating a profile, which serves as a map to predict the outcome for a specified input
and to recommend the intervention intensity that will provide the best result [31].
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2.3. Drug Discovery and Development

The use of AI has been increasing in the pharmaceutical industry, and as a result, it has
reduced the human workload as well as achieved targets in a short period of time [32]. AI
can recognize hit and lead compounds, and provide a quicker validation of the drug target
and optimization of the drug structure design [33,34]. In January 2023, Insilico Medicine
announced an encouraging topline readout of its phase 1 safety and pharmacokinetics
trial of the molecule INS018_055, designed by AI for idiopathic pulmonary fibrosis, a
progressive disease that causes scarring of the lungs [35].

2.4. Predictive Analytics and Risk Assessment

Disease risk assessment is the process of evaluating a person’s probability of develop-
ing certain diseases, based on risk factors such as genetic predispositions, environmental
exposures, and lifestyle choices. AI techniques have been adopted to address the various
steps involved in clinical genomic analysis—including variant calling, genome annota-
tion, variant classification, and phenotype-to-genotype correspondence—and perhaps
eventually they can also be applied to genotype-to-phenotype predictions [36]. Moreover,
Ramazzotti et al. accomplished a successful prognosis prediction for 27 out of 36 cancers
by employing AI to analyze various types of biological data such as RNA expression, point
mutations, DNA methylation, and omics data of copy number variation. The data used for
analysis was sourced from The Cancer Genome Atlas (TCGA) [37].

3. Literature Review
3.1. Methodology

We conducted a comprehensive review of current literature including original articles
that studied various clinical applications of AI in healthcare. We performed extensive
searches on Google Scholar, PubMed, and ScienceDirect databases to identify relevant
manuscripts. As keywords, we used “artificial intelligence”, “deep learning”, and “ma-
chine learning”, combined with “clinical applications”, and “healthcare”. We restricted
our search to papers published in English between 2013 and 2023 and found more than
200 relevant manuscripts. The inclusion criteria focused on studies that examined the
application of artificial intelligence in different medical specialties. We excluded reviews
and editorial comments.

3.2. Results

After a thorough review and assessment of the 223 articles, we identified and included
a subset of 52 papers that were directly relevant to our research, including four on cardiol-
ogy, three on dermatology, two on gastroenterology, three on neurology and neuroscience,
three on ophthalmology, three on psychiatry, three on forensics and toxicology, four on
radiology, 17 on pathology, two on urology, and four on obstetrics and gynecology, listed in
Table 2. These selected studies provided valuable insights into the use and impact of AI in
various medical specialties, forming the basis of our review.

Table 2. Scientific articles that analyze the use of artificial intelligence in medical specialties.

Medical Specialty Year of Study Author Application

Cardiology

2019 Attia Z.I. [38] Screening for cardiac contractile dysfunction
2019 Attia Z.I. [39] Detection of left ventricular systolic dysfunction
2018 Alsharqi M. [40] Echocardiography analysis
2017 Weng S.F. [41] Cardiovascular risk prediction

Dermatology
2020 Young A.T. [42] Diagnosis of skin lesions
2019 Dick V. [43] Diagnosis of melanoma
2017 Esteva A. [44] Classification of skin cancer
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Table 2. Cont.

Medical Specialty Year of Study Author Application

Gastroenterology 2021 Kröner P.T. [45] Detection of various lesions
2020 Martin D.R. [46] Detecting current Helicobacter pylori infection

Neurology and Neuroscience
2020 Pedersen M. [47] Diagnosis of neurological diseases
2017 Hazlett H.C. [48] Diagnosis of autism
2020 Ienca M. [49] Diagnosis of Alzheimer’s disease

Ophthalmology
2017 Rathi S. [50] Teleophthalmology for retinopathy and glaucoma
2016 Gulshan V. [51] Detection of diabetic retinopathy
2017 Long E. [52] Diagnosis of congenital cataracts

Psychiatry
2022 Pham K.T. [53] Classification of psychiatric disorders
2017 Vieira S. [54] Classification of schizophrenia patients
2018 Loh E. [1] Prediction of suicide attempts

Forensics and Toxicology
2022 Wankhade T.D. [55] Detection of various samples
2021 Thurzo A. [56] Identification of a cadaver
2020 Chary M.A. [57] Identification of drug use patterns

Radiology

2018 Hosny A. [58] Recognition of complex radiographic patterns
2016 Chen H. [59] Detection in ultrasonography
2017 Ghafoorian M. [60] Segmentation in magnetic resonance imaging (MRI)
2017 Wang H. [61] Classification of mediastinal lymph node metastasis

Surgery

2020 Zhou X.Y. [62] Advances in surgery
2018 Hu Y. [63] Robotic sewing and knot tying
2019 Hu Y. [64] Suturing robot for transanal endoscopic microsurgery
2016 Shademan A. [65] Robotic soft tissue surgery

Pathology

2021 Cui M. [66] Digitizing histopathology
2019 Niazi M.K.K. [67] Whole-slide imaging
2017 FDA [68] IntelliSite Pathology Solution
2019 FDA [69] Summary Aperio AT2 DX system
2017 Araújo T. [70] Classification of breast cancer
2017 Tumeh P.C. [71] Identification of the immune cell populations

2019 Bera K. [72] Quantitative evaluation of histological and
morphological patterns

2018 Mezheyeuski A. [73] Classification of lung cancer patients

2020 Balázs A. [74] Detection of metastasis and micrometastasis

2019 Shaban M. [75] Prediction of disease-free survival in oral squamous
cell carcinoma

2019 Hekler A. [76] Classification of histopathological melanoma images

2014 Dong F. [77] Distinction between benign and malignant
intraductal proliferations of the breast

2015 Veta M. [78] Mitosis detection in breast cancer
2013 Cireşan D.C. [79] Mitosis detection in breast cancer
2018 Couture H.D. [80] Prediction of breast cancer grade
2018 Sahiner B. [81] Application to Ki67 staining
2019 Hossain M.S. [82] Automatic quantification of HER2 gene amplification

Urology 2021 Kott O. [83] Diagnosis of prostate cancer and Gleason grading
2020 Baessler B. [84] Detection of metastatic testicular germ cell tumors

Obstetrics and Gynecology

2015 Idowu I. [85] Detection of true labor and diagnosis of
premature labor

2013 Manna C. [86] Identification of most viable oocytes and embryos
2019 Zhang L. [87] Diagnosis of ovarian tumor
2020 Hart G. [88] Early detection of endometrial cancer

3.2.1. AI in Cardiology

As Attia Z.I. et al. (2019) and Alsharqi M. et al. (2018) declared, using machine learning
and deep learning, AI has been deployed to interpret echocardiograms, to automatically
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identify heart rhythms from an electrocardiogram (ECG), to uniquely identify an individual
using the ECG as a biometric signal, and to detect the presence of heart disease such as left
ventricular dysfunction from the surface ECG [38–40]. In a study conducted in China by
Weng S.F. et al. between 2005 and 2015, using routine clinical data of over 350,000 patients,
machine learning significantly improved the accuracy of cardiovascular risk prediction,
correctly predicting 355 (an additional 7.6%) more patients who developed cardiovascular
disease compared with the established algorithm [41].

3.2.2. AI in Dermatology

According to Young AT. et al. (2020), automated AI diagnosis of skin lesions is ready to
be tested in clinical environments and has the potential to provide diagnostic support and
expanded access to care [42]. A meta-analysis of 70 studies found the accuracy of computer-
aided diagnosis of melanoma to be comparable to that of human experts [43]. In 2017,
Esteva et al. supported the view that a convolutional neural network (CNN), the leading DL
algorithm for image analysis, trained on 129,450 images, achieved performance comparable
to dermatologists on two binary classification tasks, carcinomas versus seborrheic keratoses
and melanomas versus nevi, for both dermoscopic and non-dermoscopic images [44].

3.2.3. AI in Gastroenterology

Kröner PT. et al. (2021) stated that the clinical applications of AI systems in gastroen-
terology and hepatology include the identification of premalignant or malignant lesions
(e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus,
pancreatic malignancies), detection of lesions (e.g., polyp identification and classification,
small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), develop-
ment of objective scoring systems for risk stratification, predicting disease prognosis or
treatment response (e.g., determining survival in patients post-resection of hepatocellu-
lar carcinoma), determining which patients with inflammatory bowel disease (IBD) will
benefit from biologic therapy, or evaluation of metrics such as bowel preparation score or
quality of endoscopic examination [45]. A study conducted by Martin D.R. et al. (2020)
using histopathologic images of gastric biopsies as an input had a diagnostic accuracy of
98.9–99.1% for detecting current Helicobacter pylori infection vs. 79.0–79.4% mean accuracy
of endoscopists for detecting currently infected H. pylori in two studies [46].

3.2.4. AI in Neurology and Neuroscience

According to Pedersen M. (2020), AI has the potential to create a paradigm shift in the
diagnosis, treatment, prediction, and economics of neurological disease [47]. Hazlett HC. et al.
(2017) stated that a deep learning algorithm used magnetic resonance imaging (MRI) of
the brain of individuals 6 to 12 months old to predict the diagnosis of autism in individual
high-risk children at 24 months, with a positive predictive value of 81% [48]. Moreover,
Ienca M. and Ignatiadis K. (2020) emphasized that the use of pattern recognition and
feature extraction algorithms, for example, can significantly contribute to diagnosing brain
diseases, such as brain tumors or Alzheimer’s disease, earlier, more accurately, and at more
treatable stages compared to conventional predictive models [49].

3.2.5. AI in Ophthalmology

Rathi S. et al. (2017) declared that teleophthalmology has been well established to
aid in the detection of retinopathy of prematurity (ROP), diabetic retinopathy screening,
and is being explored for glaucoma screening and other fields of ophthalmology [50].
Furthermore, Gulshan V. et al. (2016) demonstrated the clinical utility of a deep machine-
learning algorithm that evaluated retinal fundus photographs from adults that detected
referable diabetic retinopathy with high sensitivity and specificity [51]. Long E. et al. (2017)
showed that an AI agent, using deep learning and neural networks, accurately diagnosed
and provided treatment decisions for congenital cataracts in a multihospital clinical trial,
performing just as well as individual ophthalmologists [52].
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3.2.6. AI in Psychiatry

The emerging literature has shown that AI is proving to be useful in psychological
medicine and psychiatry. According to Pham KT. et al. (2022), within the last two decades,
AI began to incorporate neuroimaging studies of psychiatric patients with deep learning
models to classify patients with psychiatric disorders [53]. Vieira S. et al. (2017) were able
to classify schizophrenia patients and controls with an accuracy of 85.5% by extracting func-
tional connectivity patterns from resting-state functional MRIs of schizophrenia patients
and healthy controls [54]. Researchers at the Vanderbilt University Medical Centre created
machine-learning algorithms that achieved 80–90% accuracy when predicting whether
someone will attempt suicide within the next 2 years, and 92% accuracy in predicting
whether someone will attempt suicide within the next week [1].

3.2.7. AI in Forensics and Toxicology

Forensic medicine and toxicology are important branches of the investigation of crimes.
In 2022, Wankhade TD. et al. stated that various procedures of forensic medicine such
as analysis of toxins, collection of the various samples of medicolegal importance from
body cavities, detection of pathological changes in various organs of the body, detection
of various stains on the body, detection of a weapon used in crime, time since death
calculations, etc. are the areas where AI will play a key role in framing the various opinions
of medicolegal importance [55]. For example, according to Thurzo A. et al. (2021), three-
dimensional convolutional neural networks (3D CNN) of artificial intelligence can be
used in biological age determination, sex determination, automatized 3D cephalometric
landmark annotation, soft-tissue face prediction from the skull and in reverse, and facial
growth vectors prediction [56].

In toxicology, deep learning might automatically identify high-level drug use patterns
by combining data from social media, poison control logs, published reports, and national
surveys [57].

3.2.8. AI in Radiology

According to Hosny A. et al. (2018), AI methods automatically recognize complex
patterns in imaging data and provide quantitative, rather than qualitative, assessments
of radiographic characteristics [58]. Chen, H et al. (2016) maintained that studies have
also shown that deep learning technologies are on par with radiologists’ performance for
both detection [59] and segmentation [60] tasks in ultrasonography and MRI, respectively.
Additionally, Wang, H. et al. (2017) declared that for the classification tasks of lymph
node metastasis in PET–CT (positron emission tomography-computed tomography), deep
learning had higher sensitivities but lower specificities than radiologists [61].

3.2.9. AI in Surgery

According to Zhou, XY. et al. (2020), advances in surgery have revolutionized the man-
agement of both acute and chronic diseases, prolonging life and extending the boundary of
patient survival [62]. Moreover, current robots can already automatically perform some
simple surgical tasks, such as suturing and knot tying [63,64]. For example, in 2016, a smart
surgical robot stitched up a pig’s small intestines completely on its own and was able to
outperform human surgeons who were given the same task [65].

3.2.10. AI in Pathology

In the modern healthcare system, AI and Digital Pathology (DP) have the potential
to challenge traditional practice and provide precision for pathology diagnostics. Cui M.,
and Zhang D.Y. (2021) defined DP as the process of digitizing histopathology, immuno-
histochemistry, or cytology slides using whole-slide scanners as well as the interpretation,
management, and analysis of these images using computational approaches [66]. Accord-
ing to Niazi M. K. K. et al. (2019), whole-slide imaging (WSI) allows entire slides to be
imaged and permanently stored at high resolution, a process that provides a vast amount
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of information, which can be shared for clinical use or telepathology [67]. Two scanners, the
Philips IntelliSite Pathology Solution (PIPS) and Leica Aperio AT2 DX, are approved by the
Food and Drug Administration (FDA) to review and interpret digital surgical pathology
slides prepared from biopsied tissue [68,69].

The use of digital image analysis in pathology can identify and quantify specific
cell types quickly and accurately and can quantitatively evaluate histological features,
morphological patterns, and biologically relevant regions of interest [72–74]. As Balázs et al.
(2020) declared, recent groundbreaking results have demonstrated that applications of
machine learning methods in pathology significantly improve Ki67 scoring in breast cancer,
Gleason grading in prostate cancer, and tumor-infiltrating lymphocyte (TIL) scoring in
melanoma [74]. Shaban et al. (2019) trained a novel CNN system to quantify TILs from
WSIs of oral squamous cell carcinomas and achieved an accuracy of 96% [75]. Furthermore,
Hekler A. et al. conducted a study in 2019 which concluded that a CNN was able to
outperform 11 histopathologists in the classification of histopathological melanoma images
and thus shows promise to assist human melanoma diagnoses [76]. Table 3 summarize the
applications of AI systems in pathology.

Table 3. Examples of AI systems applications in pathology.

Examples of AI Systems Applications in Pathology

1. Differentiate between benign and malignant tumors

2. Grading of dysplasia and in situ lesions [70]

3. Metastasis and micrometastasis detection [74]

4. Relationships between different immune cell populations [70,71]

5. IHC/ISH scoring of multiple biomarkers and topography of the immune response [72]

6. Mitosis detection [78,79]

In 2014, Dong et al. designed a computational pathology method to identify and
quantify nuclear features from diagnostic tumor regions of interest (ROIs) of intraductal
proliferative lesions of the breast, with high accuracy for distinguishing between benign
breast ductal hyperplasia and malignant ductal carcinoma in situ [77]. Moreover, Coutre
et al. (2018) used image analysis with DL to detect breast cancer histologic subtypes [80].
In addition, AI algorithms have been developed to provide quantitative measurements of
immunohistochemically stained Ki-67 [81], ER [80], PR, and Her-2/neu images [82].

3.2.11. AI in Urology

AI applications in urology include: utilizing radiomic imaging or ultrasonic echo data
to improve or automate cancer detection or outcome prediction, utilizing digitized tissue
specimen images to automate detection of cancer on pathology slides, and combining
patient clinical data, biomarkers, or gene expression to assist disease diagnosis or outcome
prediction [89]. For example, Kott et al. tested an AI-based system for detecting prostate
cancer which yielded 91.5% accuracy in classifying slides as either benign or malignant, and
85.4% accuracy in finer classifications of benign vs. Gleason 3 vs. 4 vs. 5 [83]. In another
study, Baessler et al. applied ML-based CT radiomics to determine whether the lymph
nodes dissected in patients with metastatic or advanced non-seminomatous testicular germ
cell tumor were benign or malignant, with 88% sensitivity, and 72% specificity [84].

3.2.12. AI in Obstetrics and Gynecology
AI in Obstetrics

The fields of prenatal diagnosis, labor, and high-risk pregnancy are areas of significant
importance in medicine, and they can be associated with medicolegal issues. Studies show
that AI tools can be used to reduce these issues and to improve patients’ outcomes (both
mothers’ and newborns’). In a study conducted by Idowu et al. [85], electrohysterography
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signals were employed, and three distinct machine learning algorithms were utilized to
assist in the accurate detection of true labor, and the reliable diagnosis of premature labor.
In another study, Manna et al. [86] proposed a method that combines AI and ANNs to
extract texture descriptors from oocyte or embryo images. This approach enables AI to
effectively identify the most viable oocytes and embryos, increasing the likelihood of
successful pregnancies.

AI in Gynecology

Numerous research investigations focusing on cervical cancer and cervical intraepithe-
lial neoplasia (CIN) have documented the application of AI. The primary areas where AI has
been employed include the assessment of colposcopy, MR imaging (MRI), CT scans, cytol-
ogy, and data related to human papillomavirus (HPV) [90]. Additionally, Zhang et al. [87]
demonstrated in their research that using deep learning on color ultrasound tests as imag-
ing assessments resulted in an impressive accuracy of 0.99 in predicting the definitive
diagnosis of ovarian tumors. Moreover, Hart G. et al. emphasized that the application
of machine learning shows immense potential in aiding the early detection of endome-
trial cancer. This approach achieves high-accuracy predictions by primarily relying on
personal health information even before the onset of the disease, eliminating the necessity
for invasive or costly procedures such as endometrial biopsy [88].

4. Discussion and Challenges

The literature review underscores the remarkable potential of AI in different medical
specialties, to revolutionize screening and diagnostic procedures, and therefore, improving
patient care. AI can improve diagnostic accuracy while limiting errors and impact patient
safety such as assisting with prescription delivery [91–93]. Nevertheless, there are some
challenges that need to be considered as AI usage increases in healthcare, such as ethical,
social and technical challenges. For example, AI processes may lack transparency, making
accountability problematic, or may be biased, leading to unfair, discriminatory behavior or
mistaken decisions [94]. Moreover, AI algorithms are unable to perform a holistic approach
to clinical scenarios and are not fully able to take into consideration the psychological
and social aspects of human nature, which are often considered by a skilled healthcare
professional [95]. Addressing those challenges requires collaboration between healthcare
professionals, researchers, policymakers and technology developers to ensure that AI tools
are implemented responsibly, ethically and safely in the healthcare sector.

5. Conclusions

Artificial intelligence systems powered by machine learning and deep learning are
rapidly implemented in medicine. Moreover, combining AI with actual knowledge in
various medical specialties could result in dramatic changes, such as advanced diagnostics,
correct risk and prognosis evaluation, and even treatment suggestions. Thus far, AI is
proving to be effective and the research will continue to improve, as more applications
are discovered and explored. The integration of digital pathology based on AI systems in
our current practice will help enhance patient care. In conclusion, AI’s role in medicine
will continue to expand. In collaboration with experts in technology and ethics, we can
revolutionize health care, making it more precise and we can pave the way for a healthier
future with the right implementations of AI.

Author Contributions: Methodology, data curation, writing—original draft preparation, D.G.P.;
writing—review and editing, C.L.M., A.I.N., M.N., A.F. and A.I.P.; supervision, conceptualization
and funding, I.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the “Dunărea de Jos” University of Galati, VAT 27232142, and
The APC was paid by the “Dunărea de Jos” University of Galati, VAT 27232142.

Institutional Review Board Statement: Not applicable.



J. Pers. Med. 2023, 13, 1214 10 of 13

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Loh, E. Medicine and the rise of the robots: A qualitative review of recent advances of artificial intelligence in health. BMJ Lead.

2018, 2, 59–63. [CrossRef]
2. Mistry, C.; Thakker, U.; Gupta, R.; Obaidat, M.S.; Tanwar, S.; Kumar, N.; Rodrigues, J.J.P.C. MedBlock: An AI-Enabled and

Blockchain-Driven Medical Healthcare System for COVID-19. In Proceedings of the IEEE International Conference Communica-
tion, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6.

3. Turing, A.M. I. Computing machinery and intelligence. Mind 1950, 236, 433–460. [CrossRef]
4. Salto-Tellez, M.; Maxwell, P.; Hamilton, P. Artificial intelligence-the third revolution in pathology. Histopathology 2019, 74, 372–376.

[CrossRef] [PubMed]
5. Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications

of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [CrossRef]
6. Bini, S.A. Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how

will they impact health care? J. Arthroplast. 2018, 33, 2358–2361. [CrossRef]
7. Naylor, C.D. On the prospects for a (deep) learning health care system. JAMA 2018, 320, 1099–1100. [CrossRef]
8. Alpaydin, E. Introduction to Machine Learning, 3rd ed.; The MIT Press: Cambridge, MA, USA, 2014; p. 3.
9. Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Rab, S. Significance of machine learning in healthcare: Features, pillars and

applications. Int. J. Intell. Netw. 2022, 3, 58–73. [CrossRef]
10. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
11. Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al.

A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A
systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [CrossRef]

12. Liddy, E.D. Natural Language Processing. In Encyclopedia of Library and Information Science, 2nd ed.; Marcel Decker, Inc.: New
York, NY, USA, 2001.

13. Iroju, O.G.; Olaleke, J.O. A Systematic Review of Natural Language Processing in Healthcare. Int. J. Inf. Technol. Comput. Sci.
2015, 7, 44–50. [CrossRef]

14. Bann, S.; Khan, M.; Hernandez, J.; Munz, Y.; Moorthy, K.; Datta, V.; Rockall, T.; Darzi, A. Robotics in Surgery. J. Am. Coll. Surg.
2003, 196, 784–795. [CrossRef]

15. Hussain, A.; Malik, A.; Halim, M.U.; Ali, A.M. The use of robotics in surgery: A review. Int. J. Clin. Pract. 2014, 68, 1376–1382.
[CrossRef]

16. Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [CrossRef]
17. Papik, K.; Molnár, B.; Schaefer, R.; Dombóvári, Z.; Tulassay, Z.; Féher, J. Application of neural networks in medicine—A review.

Med. Sci. Monit. 1998, 4, 538–546.
18. Abraham, T.H. Integrating mind and brain: Warren S. McCulloch, cerebral localization, and experimental epistemology. Endeav.

2003, 27, 32–36. [CrossRef]
19. Itchhaporia, D.; Snow, P.B.; Almassy, R.J.; Oetgen, W.J. Artificial neural networks: Current status in cardiovascular medicine. J.

Am. Coll. Cardiol. 1996, 28, 515–521. [CrossRef]
20. Baxt, W.G. Application of artificial neural networks to clinical medicine. Lancet 1995, 346, 1135–1138. [CrossRef]
21. Lisboa, P.J.; Taktak, A.F. The use of artificial neural networks in decision support in cancer: A systematic review. Neural Netw.

2006, 19, 408–415. [CrossRef]
22. Chassagnon, G.; Vakalopolou, M.; Paragios, N.; Revel, M.-P. Deep learning: Definition and perspectives for thoracic imaging. Eur.

Radiol. 2020, 30, 2021–2030. [CrossRef]
23. Mirbabaie, M.; Stieglitz, S.; Frick, N.R.J. Artificial intelligence in disease diagnostics: A critical review and classification on the

current state of research guiding future direction. Health Technol. 2021, 11, 693–731. [CrossRef]
24. Ransohoff, D.F.; Feinstein, A.R. Problems of Spectrum and Bias in Evaluating the Efficacy of Diagnostic Tests. N. Engl. J. Med.

1978, 299, 926–930. [CrossRef] [PubMed]
25. Lella, K.K.; Pja, A. A literature review on COVID-19 disease diagnosis from respiratory sound data. AIMS Bioeng. 2021, 8, 140–153.

[CrossRef]
26. Asch, F.M.; Abraham, T.; Jankowski, M.; Cleve, J.; Adams, M.; Romano, N.; Polivert, N.; Hong, H.; Lang, R. Accuracy and

reproducibility of a novel artificial intelligence deep learning-based algorithm for automated calculation of ejection fraction in
echocardiography. J. Am. Coll. Cardiol. 2019, 73 (Suppl. S1), 1447. [CrossRef]

27. Retson, T.A.; Besser, A.H.; Sall, S.; Golden, D.; Hsiao, A. Machine Learning and Deep Neural Networks in Thoracic and
Cardiovascular Imaging. J. Thorac. Imaging 2019, 34, 192–201. [CrossRef] [PubMed]

28. Le, E.P.V.; Wang, Y.; Huang, Y.; Hickman, S.; Gilbert, F.J. Artificial intelligence in breast imaging. Clin. Radiol. 2019, 74, 357–366.
[CrossRef]

https://doi.org/10.1136/leader-2018-000071
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1111/his.13760
https://www.ncbi.nlm.nih.gov/pubmed/30270453
https://doi.org/10.1016/j.bushor.2018.08.004
https://doi.org/10.1016/j.arth.2018.02.067
https://doi.org/10.1001/jama.2018.11103
https://doi.org/10.1016/j.ijin.2022.05.002
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/S2589-7500(19)30123-2
https://doi.org/10.5815/ijitcs.2015.08.07
https://doi.org/10.1016/S1072-7515(02)01750-7
https://doi.org/10.1111/ijcp.12492
https://doi.org/10.1109/2.485891
https://doi.org/10.1016/S0160-9327(03)00017-6
https://doi.org/10.1016/S0735-1097(96)00174-X
https://doi.org/10.1016/S0140-6736(95)91804-3
https://doi.org/10.1016/j.neunet.2005.10.007
https://doi.org/10.1007/s00330-019-06564-3
https://doi.org/10.1007/s12553-021-00555-5
https://doi.org/10.1056/NEJM197810262991705
https://www.ncbi.nlm.nih.gov/pubmed/692598
https://doi.org/10.3934/bioeng.2021013
https://doi.org/10.1016/S0735-1097(19)32053-4
https://doi.org/10.1097/RTI.0000000000000385
https://www.ncbi.nlm.nih.gov/pubmed/31009397
https://doi.org/10.1016/j.crad.2019.02.006


J. Pers. Med. 2023, 13, 1214 11 of 13

29. Evans, A.J.; Bauer, T.W.; Bui, M.M.; Cornish, T.C.; Duncan, H.; Glassy, E.F.; Hipp, J.; McGee, R.S.; Murphy, D.; Myers, C.; et al. US
Food and Drug Administration approval of whole slide imaging for primary diagnosis: A key milestone is reached and new
questions are raised. Arch. Pathol. Lab. Med. 2018, 142, 1383–1387. [CrossRef]

30. Awwalu, J.; Garba, A.G.; Ghazvini, A.; Atuah, R. Artificial intelligence in personalized medicine application of AI algorithms in
solving personalized medicine problems. Int. J. Comput. Theory Eng. 2015, 7, 439–443. [CrossRef]

31. Blasiak, A.; Khong, J.; Kee, T. CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence. Slas Technol. 2020, 25,
95–105. [CrossRef]

32. Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development.
Drug Discov. Today 2021, 26, 80–93. [CrossRef]

33. Mak, K.K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today 2019,
24, 773–780. [CrossRef]

34. Sellwood, M.A. Artificial intelligence in drug discovery. Fut. Sci. 2018, 10, 2025–2028. [CrossRef]
35. Arnold, C. Inside the nascent industry of AI-designed drugs. Nat. Med. 2023, 29, 1292–1295. [CrossRef]
36. Dias, R.; Torkamani, A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019, 11, 70. [CrossRef]
37. Ramazzotti, D.; Lal, A.; Wang, B.; Batzoglou, S.; Sidow, A. Multi-omic tumor data reveal diversity of molecular mechanisms that

correlate with survival. Nat. Commun. 2018, 9, 4453. [CrossRef]
38. Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.;

Noseworthy, P.A.; Munger, T.M.; et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled
electrocardiogram. Nat. Med. 2019, 25, 70–74. [CrossRef]

39. Attia, Z.I.; Kapa, S.; Yao, X.; Lopez-Jimenez, F.; Mohan, T.L.; Pellikka, P.A.; Carter, R.E.; Shah, N.D.; Friedman, P.A.;
Noseworthy, P.A. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular
systolic dysfunction. J. Cardiovasc. Electrophysiol. 2019, 30, 668–674. [CrossRef]

40. Alsharqi, M.; Woodward, W.J.; Mumith, J.A.; Markham, D.C.; Upton, R.; Leeson, P. Artificial intelligence and echocardiography.
Echo Res. Pract. 2018, 5, R115–R125. [CrossRef]

41. Weng, S.F.; Reps, J.; Kai, J.; Garibaldi, J.M.; Qureshi, N. Can machine learning improve cardiovascular risk prediction using
routine clinical data? PLoS ONE 2017, 12, e0174944. [CrossRef]

42. Young, A.T.; Xiong, M.; Pfau, J.; Keiser, M.J.; Wei, M.L. Artificial Intelligence in Dermatology: A Primer. J. Investig. Dermatol. 2020,
140, 1504–1512. [CrossRef]

43. Dick, V.; Sinz, C.; Mittlböck, M.; Kittler, H.; Tschandl, P. Accuracy of Computer-Aided Diagnosis of Melanoma: A Meta-analysis.
JAMA Dermatol. 2019, 155, 1291–1299. [CrossRef]

44. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer
with deep neural networks. Nature 2017, 542, 115–118. [CrossRef] [PubMed]

45. Kröner, P.T.; Engels, M.M.; Glicksberg, B.S.; Johnson, K.W.; Mzaik, O.; van Hooft, J.E.; Wallace, M.B.; El-Serag, H.B.;
Krittanawong, C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J. Gastroenterol. 2021, 27, 6794–6824.
[CrossRef]

46. Martin, D.R.; Hanson, J.A.; Gullapalli, R.R.; Schultz, F.A.; Sethi, A.; Clark, D.P. A Deep Learning Convolutional Neural Network
Can Recognize Common Patterns of Injury in Gastric Pathology. Arch. Pathol. Lab. Med. 2020, 144, 370–378. [CrossRef] [PubMed]

47. Pedersen, M.; Verspoor, K.; Jenkinson, M.; Law, M.; Abbott, D.F.; Jackson, G.D. Artificial intelligence for clinical decision support
in neurology. Brain Commun. 2020, 2, fcaa096. [CrossRef]

48. Hazlett, H.C.; Gu, H.; Munsell, B.C.; Kim, S.H.; Styner, M.; Wolff, J.J.; Elison, J.T.; Swanson, M.R.; Zhu, H.; Botteron, K.N.; et al.
Early brain development in infants at high risk for autism spectrum disorder. Nature 2017, 542, 348–351. [CrossRef] [PubMed]

49. Ienca, M.; Ignatiadis, K. Artificial Intelligence in Clinical Neuroscience: Methodological and Ethical Challenges. AJOB Neurosci.
2020, 11, 77–87. [CrossRef]

50. Rathi, S.; Tsui, E.; Mehta, N.; Zahid, S.; Schuman, J.S. The Current State of Teleophthalmology in the United States. Ophthalmology
2017, 124, 1729–1734. [CrossRef]

51. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.;
Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs. JAMA 2016, 316, 2402–2410. [CrossRef]

52. Long, E.; Lin, H.; Liu, Z.; Wu, X.; Wang, L.; Jiang, J.; An, Y.; Lin, Z.; Li, X.; Chen, J.; et al. An artificial intelligence platform for the
multihospital collaborative management of congenital cataracts. Nat. Biomed. Eng. 2017, 1, 0024. [CrossRef]

53. Pham, K.T.; Nabizadeh, A.; Selek, S. Artificial Intelligence and Chatbots in Psychiatry. Psychiatr. Q. 2022, 93, 249–253. [CrossRef]
54. Vieira, S.; Pinaya, W.H.L.; Mechelli, A. Using Deep Learning to Investigate the Neuroimaging Correlates of Psychiatric and

Neurological Disorders: Methods and Applications. Neurosci. Biobehav. Rev. 2017, 74, 58–75. [CrossRef]
55. Wankhade, T.D.; Ingale, S.W.; Mohite, P.M.; Bankar, N.J. Artificial Intelligence in Forensic Medicine and Toxicology: The Future of

Forensic Medicine. Cureus 2022, 14, e28376. [CrossRef]
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