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Abstract: An effective maximum power point tracking (MPPT) technique plays a crucial role in
improving the efficiency and performance of grid-connected renewable energy sources (RESs). This
paper uses the African Vulture Optimization Algorithm (AVOA), a metaheuristic technique inspired
by nature, to tune the proportional–integral (PI)-based MPPT controllers for hybrid RESs of solar
photovoltaic (PV) and wind systems, as well as the PI controllers in a storage system that are used
to smooth the output fluctuations of those RESs in a hybrid system. The performance of the AVOA
is compared with that of the widely used the particle swarm optimization (PSO) technique, which
is commonly acknowledged as the foundation of swarm intelligence. As a result, this technique
is introduced in this study to draw a comparison. It is observed that the proposed algorithm
outperformed the PSO algorithm in terms of the tracking speed, robustness, and best convergence
to the minimum value. A MATLAB/Simulink model was built, and optimization and simulation
for the proposed system were carried out to verify the introduced algorithms. In conclusion, the
optimization and simulation results showed that the AVOA is a promising method for solving a
variety of engineering problems.

Keywords: maximum power point tracking; PI controllers; hybrid system; African Vulture Optimiza-
tion Algorithm (AVOA); renewable-energy sources

1. Introduction

The world today is confronted with a slew of challenging energy issues, which have
become worse in recent years because of rapidly expanding energy demands. Global energy
demand is expected to rise by 44% between 2006 and 2030, according to the International
Energy Agency [1]. Traditionally, fossil-fuel reserves have not been a viable alternative for
future usage, as they are unable to meet the world’s expanding needs and contribute to
environmental pollution, global warming, climate change, and ozone-layer destruction.
As a result, clean energy generated by renewable-energy sources (RESs) is becoming
increasingly significant in the generation of power.

Due to these key aspects, RESs appear to be a viable choice for green energy production.
RESs are indeed clean, safe, and sustainable. Solar and wind energy, among the various
types of RESs, have become the most essential because they are the most widely used and
dispersed around the world and can meet all of humanity’s needs [2]. A microgrid is a
self-sufficient energy micro-system that can run in both a parallel mode with distribution
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systems and an island mode. Furthermore, it can be connected to various power-generation
systems including RESs. A microgrid has proven to improve power quality, reduce power
losses, and reduce emissions [3]. Moreover, a microgrid’s islanding capability during faults
or disturbances in power-system networks would improve grid and customer reliability.
In [4], a PV-fed DC microgrid is described for a fault detection and localization, while
analyzing different faults such as line-to-line and line-to-ground in different parts of
the microgrid.

Solar energy is generated when sunlight is converted to electricity using semiconductor
materials. In the PV system, the maximum power point (MPP) of a solar cell’s non-linear
power voltage (P–V) characteristic is unique, and it fluctuates in response to the ambient
temperature and solar irradiation. As a result, an MPP tracker is necessary to ensure that the
MPP remains operational regardless of the weather conditions. In the previous two decades,
a significant amount of the literature has been documenting the various types of MPPT
algorithms utilized in optimizing the energy of PV arrays, including traditional techniques
such as perturb and observe [5], hill-climbing [6] and incremental conductance [7], fractional
open-circuit voltage [8], and fractional short-circuit current [9]. However, due to partial
shading, these may just be stuck in one of the local maxima and fail to track the MPP.
The MPP has been tracked using intelligent methods such as the fuzzy logic controller [7],
artificial neural network [10], and genetic algorithm [11]. These methods, however, need
substantial training and experience in a challenging setting.

Recently, considerable research has revealed a strong desire in bioinspired MPPTs,
which have outperformed intelligent methods such as the PSO [12], artificial-bee colony [13],
grey-wolf-optimization technique [14], firefly algorithm [15], salp-swarm optimization [16],
ant-colony optimization [17], and cuckoo-search algorithm [18] in various environmental
conditions. Moreover, several research works have incorporated these methods into hybrid
ones to improve their performance and eliminate their drawbacks, specifically, by integrat-
ing the optimization ability of various searching mechanisms into an incorporated form
of at least two methods, to recover the limitations of one method via the performance of
another [19].

Moreover, in the literature, several algorithms for tracking the maximum power
in wind systems have been presented, including using a radial-basis function via the
neural network control strategy [20], grasshopper-optimization algorithm [21], power-
capture optimization [22], perturb-and-observe-based higher-order sliding-mode con-
troller [23], Archimedes optimization algorithm [24], mechanical-senseless method [25],
neuro-adaptive generalized global sliding-mode controller [26], artificial intelligence-based
adaptive perturb-and-observe controller [27], and MPPT based on integrated generator–
rectifier systems [28].

Depending on the operating status of the PV or wind systems, the MPPT approaches
generate reference signal (positive or negative). The predicted reference signal identifies
the systems’ trajectory. Most of these approaches are reliable and accurate in a steady state,
but they suffer when the load or environmental conditions varies quickly. Due to solar
radiation and wind speed having an intermittent nature, the output power of PV and wind
systems fluctuates. Before sending power to the grid, those power fluctuations must be
smoothed down. As a result, a variety of strategies have been used to smooth the output
power of RESs systems, such as using storage devices. The integration of energy-storage
devices into RESs has a significant impact on the output-power-smoothing issue. In general,
battery-storage devices are effectively used to smooth the output power of RESs [29].

Generally, a power electronic-converter interface between the source and load is
incorporated in wind and solar systems. This converter setup allows these systems to
use the maximum power available, regardless of the environmental conditions. The error
between the output PV/wind system’s voltage and the MPPT algorithm’s reference voltage
is used to control the converter’s electronic switches, which are minimized by using lots
of controllers such as slide-mode control [30], fuzzy logic [31], feedback linearization [32],
a proportional–integral-derivative (PID) controller [33], conventional proportional plus
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integral (PI) [34], etc. Nonetheless, using certain controllers in the industry is limited due to
practice and sophisticated computations. Therefore, due to the PI controllers’ resilience and
wide-range stability margins, these controllers are still the most widely employed in the
industry. These controllers, however, are sensitive to adjustments in elements and system
nonlinearities. As a result, optimal tuning of these controllers is the best-suited approach
for regulating the hybrid system with grid-connected renewable-power generation.

Several optimization algorithms were proposed for tuning the PI controllers in many
engineering applications, such as the genetic algorithm [35], grey-wolf optimizer [36],
whale-optimization algorithm [37] and intelligent-based fuzzy methods such as the fuzzy
logic controller [38], fuzzy-genetic controller [39], swarm-optimization- and pattern-search-
based fuzzy controller [40], and differential-evolution-based fuzzy controller [41], which
are applied to tune the PI controllers gain used in several power applications. Moreover,
metaheuristic techniques such as the cuckoo-search algorithm [42], PSO [43], and bees
algorithm [44] are viable options for fine-tuning the settings of PI controllers. One of the
recently developed metaheuristic algorithms is the AVOA. This algorithm has been applied
to solve various engineering problems such as optimization of parameter identification for
solid-oxide fuel cells [45] and proton exchange membrane (PEM) fuel-cell stacks [46], and
the optimal design of a hybrid RES [47]. It has more inclusive exploration and exploitation
mechanisms. The usage of a random approach enhances the exploration and exploitation
abilities of both mechanisms. This approach can ensure that the AVOA will not only
skip a local optimum and have quick convergence but also guarantee that it is not too
divergent [48].

In this paper, the incremental-conductance method is applied, which is one of the
maximum power point tracking algorithms that is extensively used because it has high
tracking correctness and high productivity in rapidly changing atmospheric conditions.
This algorithm, combined with PI controllers, is used to obtain the MPPT in PV and wind
systems. In addition, the AVOA is proposed for tuning the gains of the PI controllers
of the converters’ electronic switches, the Generation Side Converters (GSCs), in the PV,
wind, and storage systems of the whole hybrid system. The GSC is properly regulated by
the incremental-conductance-based PI controller, to efficiently control the MPP of the PV
and wind systems. In addition, tuning the PI controllers in the storage system produces
the firing pulses of the GSC for optimal charge and discharge, to smooth fluctuations
in the output of renewable systems, because of the irregular nature of wind speed and
solar irradiance. The tuning of PI controllers using the AVOA is compared with the PSO
method. The PSO method is a bio-inspired technique that takes advantage of the communal
intelligence of identical individuals to maximize the efficiency of the search operation. This
technique is regarded as the foundation of swarm intelligence [49]. Thus, this technique is
presented to gain a comparison in this paper. The key contributions of this paper are listed
in the following points:

• Applying the incremental-conductance method combined with the PI controllers for
the MPP tracking of PV and wind systems.

• Introducing a novel algorithm called the African Vultures Optimization Algorithm for
tuning the PI controllers in the hybrid system.

• Comparing the results of the application of the AVOA with the PSO method.
• Implementing a storage system to smooth the fluctuations in the output of renewable

systems, i.e., wind and PV systems, because of the irregular nature of wind speed and
solar irradiance.

The structure of the article is as follows: The components of hybrid RESs in detail are
pointed out in Section 2. The methodology, which includes the incremental conductance
and African Vulture Optimization Algorithms, is provided in Section 3. Section 4 presents
and discusses the optimization and simulation results. Finally, in Section 5, the conclusions
of the study are introduced.
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2. Hybrid DC Microgrid System

The hybrid system involves AC, PV, wind, and storage systems connected with differ-
ent DC loads, of 10 kW, 30 kW, 40 kW, and 50 kW, was proposed. The parameters of the
hybrid system are illustrated in Appendix A (Tables A1–A6). In this system, the incremental
conductance method combined with the PI controllers for tracking the MPP of PV and
wind systems was implemented. In addition, the AVOA was introduced for tuning the PI
controllers that were proposed in the system.

2.1. AC System

In this study, the AC system of 100 kW consists of three voltage source, a transformer,
and a universal bridge that works as voltage-source converter (VSC), which is connected
to the DC microgrid as depicted in Figure 1. The VSC controller consists of voltage and
current regulators that are connected to a pulse-width modulation (PWM) controller that is
responsible for producing the firing pulses to the VSC.
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Figure 1. The on-grid AC system with voltage-source converter.

2.2. PV System

The proposed layout of a 20 kW on-grid PV system is shown in Figure 2. A PV array
with many PV modules connected in parallel and in a series makes up this system. The
terminal of the PV array is linked to a boost converter, which regulates the array’s terminal
voltage and transmits the maximum power to a DC link connected to a DC microgrid
with DC loads. Figure 3 depicts a one-diode model of the PV cell. Equation (1) is used
to calculate the PV cell’s output current [50]. The output voltage and current of the PV
array can be calculated according to the number of modules in a series and in parallel
in the array. Irradiance (shown in Figure 4) and temperature curves (shown in Figure 5)
are the PV array’s inputs, which were taken from a weather-monitoring station at King
Saud University, Riyadh, Saudi Arabia. In addition, Figure 6 shows the PV array’s P–V
characteristic curve.

The output current of a PV cell can be calculated using Equation (1) as follows:

I = IL − I0

[
exp

(
q(VD + IRS

ηkT

)
− 1
]
− V + IRS

RSH
(1)

Here, IL denotes the photocurrent, I0 represents the reverse saturation current, VD
is the diode’s voltage, η is the semiconductor constant, q is the magnitude of the electric
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charge, T represents the absolute temperature in kelvin, k is Boltzmann’s constant, and V is
the PV cell’s output voltage.

2.3. Wind System

In this system, a variable-speed, variable-pitch wind turbine is under investigation,
which is paired with a two-mass drive train that drives a three-phase wound-rotor syn-
chronous generator, as shown in Figure 7. The wind system is proposed to supply the loads
with 10 kW. The energy produced by the generator is converted to DC energy, using a recti-
fier device. The incremental conductance-based PI-controller approach uses the rectifier’s
terminal voltage and current as inputs to regulate the boost converter’s terminal voltage
and deliver the maximum power to the DC link, which is connected to a DC microgrid
with DC loads. The wind speed [51] was obtained from the state of Arizona, USA, since it
has a similar climate as Saudi Arabia, which was taken as an input to the wind system that
is displayed in Figure 8.
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Figure 8. Wind speed.

2.4. Storage System

The on-grid storage system with a capacity of 800 Ah with a nominal 120 V and
50% state of charge (SOC) is connected to a DC microgrid in the hybrid system to smooth
fluctuations in the output of PV and wind systems because of the irregular nature of
the wind speed and solar irradiance, as shown in Figure 9. In the storage system, a bi-
directional buck-boost converter is used to either charge the battery or discharge its energy
to the system, according to the energy fluctuations of the PV and wind systems.
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3. Methodology

To track the maximum power of solar and wind systems, the incremental conductance
algorithm is used. Furthermore, the African Vulture Optimization Algorithm is utilized to
identify the optimal values of PI-controller gains in PV, wind, and storage systems, and the
results are compared to the PSO method. The MPPT-objective function can be expressed
using Equation (2).

Max P = V × I (2)
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Here, I denotes the output current drawn from a PV cell or a wind system’s output
rectifier, and V is the corresponding output voltage. The integral of time multiplied absolute
error (ITAE) criteria, which is provided by Equation (3) [52], was employed as an objective
function for PI controller’s optimization.

Min ITAE =
∫ t

0
t |e(t)|dt (3)

where, e(t) is the error, which is the difference between the PV/wind system’s output
voltage and the MPPT method’s corresponding reference voltage, or the difference between
the battery’s output current and the reference charging/discharging current.

3.1. Incremental-Conductance Algorithm

The incremental conductance algorithm was designed using a P–V characteristic curve
observation. This algorithm was developed in 1993 to address some of the shortcomings of
the perturb-and-observe technique [53]. Under rapidly changing weather conditions, the
incremental-conductance algorithm tries to improve tracking time and yield more energy.
The slope of the P–V characteristic curve of the PV array at the MPP in this algorithm is
zero [54]. As a result, ∆P

∆V = 0 with P = VI. Similarly, the same principle of this algorithm
is applied to the wind system. Consequently, the logic behind the rate of change of current
in proportion to the corresponding change in voltage is as follows:

∆I
∆V = − I

V i f P = MPP
∆I
∆V > − I

V i f P < MPP
∆I
∆V < − I

V i f P > MPP
(4)

and the equation of the incremental conductance method is expressed using Equation (5),
as follows:

∆P
∆V

=
∆(VI)

∆V
= I

∆V
∆V

+ V
∆I
∆V

= I + V
∆I
∆V

(5)

In the incremental-conductance algorithm, the MPP can be tracked by comparing the
instantaneous conductance ( I

V ) with the incremental conductance ( ∆I
∆V ). This algorithm

decreases or increases the reference value until it achieves the condition ∆I
∆V = −I

V . This
method is repeated until the MPP is achieved, after which the PV’s operation point is re-
established at the MPP. Figure 10 shows the incremental conductance algorithm’s flowchart
and processes for calculating the PV array’s MPP.

3.2. African Vulture Optimization Algorithm

The AVOA, a new nature-inspired metaheuristic algorithm, was introduced by B. Ab-
dollahzadeh, et al. [55]. Figure 11 depicts the flowchart and stages for the proposed AVOA.
This algorithm was designed by modeling and simulating the living habits and foraging
behavior of African vultures using the following criteria:

1. The African vulture population has N vultures, and each vulture’s position space is
specified in d dimensions.

2. The population of vultures is separated into three groups. The vultures’ quality
position is determined by the feasible solution’s fitness value; the best solution is
recognized as the best and first vulture, the second solution is recognized as the
second-best vulture, and the other vultures are assigned to the third group.

3. In the population, the three groups are created so that the most important natural role
of vultures could be formulated. As a result, various vulture species play distinct roles.

4. Also, the fitness value of the possible solution can reflect the benefits and drawbacks
of vultures. Therefore, the weakest and most hungry vultures correlate to the worst
vultures. The strongest and most numerous vultures, on the other hand, correlate to
the best vulture at the time. Generally, all vultures in the AVOA aim to be near the
best vultures while avoiding the worst.
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In the foraging stage, the AVOA method can be separated into five stages based on
the above-mentioned four criteria to simulate the behavior of different vultures.

a. Phase 1: Population Grouping

In this phase, following the formation of the initial population, the fitness of all
solutions is determined, and the best solution is recognized as the best and first
vulture, the second solution is also recognized as the second-best vulture using
Equation (6), and the other vultures are assigned to the third group, according to the
second criteria.

R(i) =
{

BestVulture1 i f pi = L1
BestVulture2 i f pi = L2

(6)
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Here, BestVulture1 represents the best vulture, BestVulture2 denotes the second-best
one, L1 and L2 are two random values in the range of [0,1] and their total is 1. Equation (7)
is used to determine pi, which was accomplished using the roulette-wheel technique.

pi =
Fi

∑n
i=1 Fi

(7)
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Here, the fitness of the first and second two groups of vultures is represented by Fi,
and n is the total number of both groups of vultures.

b. Phase 2: The Rate of Starvation of Vultures

If the group of vultures is not starving, they have adequate energy to seek food across
larger distances, but if they are starving, they lack the energy to maintain their long-distance
flight. As a result, the hungry vultures will have aggressive behavior. The exploration and
exploitation stages of vultures may, thus, be constructed based on this behavior. The Fi, a
hunger level, of the ith vulture at the tth iteration is computed using Equation (8), which is
employed as an indicator of the vultures shift from exploration to exploitation.

Fi = (2× randi + 1)× z×
(

1− iterationi
maxiterations

)
+ t (8)

where, Fi indicates that the vultures have had their fill, randi is a variable with a random
value between 0 and 1, and z is a random value in the range of [−1,1] that changes each
iteration, and t is calculated by Equation (9).

t = h× (sinw
(

π

2
× iterationi

maxiterations

)
+ cosw

(
π

2
× iterationi

maxiterations

)
− 1) (9)

where, the chance of the vulture performing the exploitation stage is determined by the
parameter w, which is specified in advance. Moreover, the current iteration number is
denoted as iterationi, maxiterations is the total iterations, and h is a random value between
−2 and 2.

Fi will gradually decrease as the number of iterations increases, according to Equation (8).
The vultures enter the exploration stage and search for a new food in various locations when
the value of |Fi| is larger than 1. Otherwise, vultures go into the exploitation stage, looking
for better food in the immediate vicinity.

c. Phase 3: Exploration Stage

The vultures have high visual ability in the natural environment, allowing them to
locate food and spot dead creatures quickly. Vultures, however, might have a hard time
locating food since they spend a long time examining their surroundings before flying large
distances in quest of food. Vultures in the AVOA can inspect various random locations
using two distinct strategies, and a parameter named P1 in the range of [0,1] is utilized to
choose either strategy.

To choose one of the strategies during the exploration phase, a random number randp1

between 0 and 1 is used. Equation (10) is utilized if the value of randp1 ≤ P1 parameter.
Otherwise, Equation (11) is utilized.

P(i + 1) = R(i)− D(i)× Fi (10)

P(i + 1) = R(i)− Fi + rand2 × ((ub− lb)× rand3 + lb) (11)

Here, R(i) is one of the best vultures chosen in the current iteration using Equation (6),
Fi is the current iteration’s rate of vulture satiation calculated using Equation (8), rand2
is a random number between 0 and 1, and lb and ub are the variables’ lower and upper
bounds, respectively. To increase variety and search for different search space areas, rand3
is utilized to provide a high random coefficient at the search environment scale.

Equation (12) calculates D(i), which represents the distance between the vulture and
the current optimum one.

D(i) = |X× R(i)− P(i)| (12)

Here, P(i) represents the position of the ith vulture, and X is a random value between
0 and 2.

d. Phase 4: Exploitation (First Stage)
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At this stage, the AVOA’s efficiency stage is explored. The AVOA starts the first stage
of exploitation, if |Fi| value is smaller than 1. The parameter P2 in the range of [0,1] is
utilized to decide which strategy is chosen. At the start of this phase, randp2 , a random
number between 0 and 1 is produced. The siege-fight strategy is applied slowly if this
randp2 is larger than or equal to the parameter P2. Otherwise, the rotational flying technique
is used. Equation (13) illustrates this procedure.

P(i + 1) =
{

D(i)× (Fi + rand4)− d(t) i f P2 ≥ randp2

R(i)− (S1 + S2) i f P2 < randp2

(13)

where, rand4 is a random number between 0 and 1, and d(t) is the distance between the
vulture and one of the two groups’ best vultures, as computed by Equation (14).

d(i) = R(i)− P(i) (14)

S1 and S2 are calculated using Equations (15) and (16), respectively, as follows:

S1 = R(i)×
(

rand5 × P(i)
2π

)
× cos(P(i)) (15)

S2 = R(i)×
(

rand6 × P(i)
2π

)
× sin(P(i)) (16)

where, rand5 and rand6 are random numbers between 0 and 1, respectively.

e. Phase 5: Exploitation (Second Stage)

This stage of the algorithm is implemented if |Fi| is smaller than 0.5. At the start
of this phase, the rand3 is generated in the range of [0,1]. So, if the parameter P3 is larger
than or equal to rand3, the strategy is to attract a variety of vultures to the source of food,
resulting in competitive behavior. Therefore, the vulture’s position can be updated using
Equation (17).

P(i + 1) =
A1 + A2

2
(17)

Equations (18) and (19) are used to calculate A1 and A2, respectively.

A1 = BestVulture1(i)−
BestVulture1(i)× P(i)

BestVulture1(i)− (P(i))2 × Fi (18)

A2 = BestVulture1(i)−
BestVulture2(i)× P(i)

BestVulture2(i)− (P(i))2 × Fi (19)

Likewise, when the AVOA is in its second stage, the vultures would flock to the best
vulture to scavenge the remaining food. Therefore, the vultures’ position can be updated
using Equation (20).

P(i + 1) = R(i)− |d(t)| × Fi × Levy(d) (20)

Here, d represents the problem dimensions.
The AVOA’s effectiveness was increased by employing Lévy flight (LF) patterns, which

were derived using Equation (21).

LF(x) = 0.001× u× σ

|v|
1
ρ

(21)

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ(1 + β2)× β× 2×

(
β−1

2

)


1
ρ

(22)
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where, v and u are random numbers between 0 and 1, respectively, and β is a constant
number of 1.5.

4. Results and Discussion

MATLAB/Simulink [56] is utilized to perform the optimization and simulation of
the proposed hybrid system. Moreover, check its performance when using incremental-
conductance-based PI controllers for the MPPT for PV and wind systems as well as tuning
the PI controllers using the AVOA and PSO methods. Table 1 illustrates the parameters of
these two methods.

Table 1. Parameters of the proposed methods.

Parameter
Method

AVOA PSO

No. of particles/populations 30 30
No. of iterations 100 100

Dimension (No. of variables) 2 2
Control parameters p1, p2, p3 0.6, 0.4, 0.6 —

α 0.8 —
β 0.2 —
γ 2.5 —

Inertia weight (w) — 0.9~0.4
Cognitive factor (c1) — 1.5

Social factor (c2) — 1.5

4.1. Optimization Results

The introduced AVOA and PSO methods are employed to determine the optimal
values of PI controller gains (Kp and Ki), which are the proportional and integral gains) by

minimizing the objective function in Equation (3), in which e(t) =
(

Vpv −VMPPTre f

)
for

the PV system before it was coupled to the hybrid system. The Kppv and Kipv values are
125.069 and 12.214, respectively, using the AVOA. The values of Kppv and Kipv in the case of
using the PSO method are 152.447 and 13.435, respectively, as shown in Figure 12. Figure 13
illustrates the convergence curves of the ITAE minimization by using the AVOA and PSO
method, where the AVOA algorithm takes 9.69 h to converge and achieves a lower ITAE
value (0.60574) than the PSO approach, which takes 9.77 h.
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Moreover, before the wind system was linked to the hybrid system, the AVOA and
PSO methods were used to determine the optimal gains of the PI controller in this system by
minimizing the objective function in Equation (3), in which e(t) =

(
Vwindrecti f ied

−VMPPTre f

)
.

Using the AVOA method, the Kpwind and Kiwind values are 2.472 and 70.16, respectively, as
shown in Figure 14. The values of Kpwind and Kiwind using the PSO method are 97.169 and
30.469, respectively. Figure 15 shows that the optimal value of ITAE using the AVOA
method is 5.8536, which is substantially better and more accurate than the 9.2697 when
using the PSO method. In addition, the AVOA method converges in 6.27 h, which is quicker
than the PSO method’s 6.37 h.
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In the storage system, the AVOA and PSO methods were also applied for tuning
the PI controller’s optimal gains, by minimizing the objective function in Equation (3) in
which e(t) =

(
(Ibat − Ichargere f

)
+
(

Ibat − Idischargere f

)
), before this system was linked to the

hybrid system. When employing the AVOA method, the Kp1bat , Ki1bat , Kp2bat , Ki2bat values
are 200, 0.107, 200, and 148.15, respectively, as shown in Figure 16. Whereas the obtained
values of the Kp1bat , Ki1bat , Kp2bat , and Ki2bat using the PSO method are 125.314, 1, 117.2,
and 57.435, respectively. Figure 17 shows that the optimal value of ITAE using the AVOA
method is 0.51989, which is better and more accurate than the value obtained using the
PSO method, which is 0.52132. In addition, the AVOA method takes 5.04 h to converge,
whereas the PSO method takes 5.12 h.
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4.2. Simulation Results

The hybrid system’s performance was evaluated in this part after optimal tuning of
the PI controllers using the AVOA and PSO methods. To prevent the output voltage of
the wind system from fluctuating and making the DC bus voltage 500 V, the reference
voltage of the VSC was raised to 503.5 V in the AC system, as illustrated in Figure 18. In
this AC system, it was required to supply the DC load by 100 kW. Figure 19 depicts the
system’s total power plus losses, which are roughly 4.0355 kW using the AVOA method
and 4.0435 kW using the PSO technique.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 26 
 

system’s total power plus losses, which are roughly 4.0355 kW using the AVOA method 
and 4.0435 kW using the PSO technique. 

 
Figure 18. Output DC voltage of the AC system. 

 
Figure 19. Power generated from the AC system. 

Second, in the PV system, the incremental conductance based on a PI controller, 
where the reference voltage is generated, is utilized to track the MPP. The error between 
the PV array’s voltage and this reference voltage is minimized using a PI controller that is 
tuned using the AVOA and PSO methods. The PV array’s voltage as well as this reference 
voltage, by those methods, are shown in Figure 20. The output or boosted voltage of this 
system is 500 V, as shown in Figure 21, which also represents the hybrid system’s DC bus 
voltage. The PV system was modeled to supply the DC load with 20 kW. Figure 22 shows 

Figure 18. Output DC voltage of the AC system.



Sustainability 2022, 14, 8172 18 of 26

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 26 
 

system’s total power plus losses, which are roughly 4.0355 kW using the AVOA method 
and 4.0435 kW using the PSO technique. 

 
Figure 18. Output DC voltage of the AC system. 

 
Figure 19. Power generated from the AC system. 

Second, in the PV system, the incremental conductance based on a PI controller, 
where the reference voltage is generated, is utilized to track the MPP. The error between 
the PV array’s voltage and this reference voltage is minimized using a PI controller that is 
tuned using the AVOA and PSO methods. The PV array’s voltage as well as this reference 
voltage, by those methods, are shown in Figure 20. The output or boosted voltage of this 
system is 500 V, as shown in Figure 21, which also represents the hybrid system’s DC bus 
voltage. The PV system was modeled to supply the DC load with 20 kW. Figure 22 shows 

Figure 19. Power generated from the AC system.

Second, in the PV system, the incremental conductance based on a PI controller, where
the reference voltage is generated, is utilized to track the MPP. The error between the PV
array’s voltage and this reference voltage is minimized using a PI controller that is tuned
using the AVOA and PSO methods. The PV array’s voltage as well as this reference voltage,
by those methods, are shown in Figure 20. The output or boosted voltage of this system is
500 V, as shown in Figure 21, which also represents the hybrid system’s DC bus voltage.
The PV system was modeled to supply the DC load with 20 kW. Figure 22 shows the
power generated from the PV system in which the MPP was, moving according to the
input irradiance, tracked using the incremental conductance based on a PI controller that
produces the firing pulses to the boost converter.
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Third, in the wind system, the speed of the synchronous generator is almost at unity,
using both the AVOA and PSO methods, as shown in Figure 23, despite the fluctuations
in the wind speed, as shown in Figure 8. In the same manner of the PV system, the
incremental-conductance method based on the PI controller is applied to follow the MPP
in which the reference voltage is generated, except that the incremental conductance’s
inputs are the rectified voltage and current. The error between the rectified and reference
voltages was also minimized using the tuned PI controller. The rectified voltage as well
as this reference voltage obtained by the AVOA and PSO methods are shown in Figure 24.
The wind system was also modeled to supply the DC load with 10 kW. Figure 25 shows
the power generated from the wind system in which the MPP was tracked using the
incremental conductance based on the PI controller, which produced the firing pulses to
the boost converter in the system.
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Fourth, in the storage system, a bi-directional buck-boost converter is employed to
charge and discharge the battery in response to fluctuations in the output of PV and wind
systems. These systems are designed to provide 30 kW of DC power. Nevertheless, due
to the irregular nature of wind speed and solar irradiance, this much power cannot be
fully supplied or both systems would supply more power than what is required, so the
buck-boost converter is utilized to control the power generated by the renewable-energy
systems as well as the power supplied by this storage system, to provide the DC load
with power of 30 kW, as shown in Figure 26. Moreover, the total DC load delivered by the
proposed hybrid system is 130 kW, as illustrated in Figure 27.
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5. Conclusions

In this work, a novel optimization algorithm (the AVOA) is utilized to tune the PI
controllers to improve the performance of a 130-kW grid-connected hybrid system. The
main purpose of this work is to achieve the MPP of renewable-energy (PV and wind)
systems. Moreover, the optimal tuning of the PI controllers to reduce the error between the
generated voltage by such systems and the reference voltage was obtained by the MPPT
controllers. The AVOA is employed to the fitness function, which is composed of the
integral of the system variables’ time multiplied by the absolute error. The optimization
results have demonstrated the superiority and high performance of the proposed AVOA
method. Moreover, the simulation of the hybrid system shows competitive results, as
compared to the PSO technique. Furthermore, the obtained results of this system have
given an improvement of more than 3% in reducing the power supplied from the storage
system, which indicates that the extracted power from RESs using the AVOA method is
better than the PSO method. In addition to its prior success in other industrial-optimization
fields, the AVOA algorithm can be concluded to be a competitive metaheuristic approach
to tuning numerous PI controllers in a grid-connected renewable-energy system. Though
some challenges were faced in the optimization of the PI controllers in the proposed
hybrid system as a whole, which posed a big issue. As a result, the optimization for these
controllers was done for each system, i.e., the PV, wind, and storage systems individually.
Moreover, the modeling of the bi-directional buck-boost converter is another difficulty,
since it is needed for charging and discharging the storage battery, according to the output
fluctuations of PV and wind systems. Therefore, it is recommended for further work to be
done on the optimization at a workstation computer with higher specifications. In addition,
it is recommended to investigate this system as the penetration level of RESs increases as a
trend for further work.
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Appendix A

The data of the hybrid renewable-energy system under study are listed in the follow-
ing tables.

Table A1. Data of AC system.

AC-Generator Ratings

Line-to-line voltage 25 kV
Frequency 60 Hz
Base power 50 MVA
Base voltage 25 kV

X/R ratio 7

Transformer ratings

Nominal power 111.11 kVA
Primary voltage 25 kV

Secondary voltage 380 V
Frequency 60 Hz

Universal Bridge (IGBT) ratings

Snubber-resistance Rs 100 kΩ
Snubber-capacitance Cs inf

Ron, Lon 1 mΩ, 0 H
Forward voltage (Vf) 0 V

Table A2. Data of PV module.

Parameter Rating

Module type Tata Power Systems
TP240MBZ

Maximum power (Pm ) 238.95 W
Number of cells 60

Open-circuit voltage (Voc) 36.5 V
Max-power voltage (Vmp) 29.5 V
Short-circuit current (Isc) 8.78 A
Max-power current (Imp) 8.1 A

Series resistance (Rs ) 0.32793 Ω
Shunt resistance (Rsh ) 113.1517 Ω

Voltage-temp. coefficient −0.33 (%V/◦C)
Current-temp. coefficient 0.063804 (%/◦C)

Table A3. Data of DC–DC boost converter.

Parameter Rating

Input DC Voltage 253.7 V
Output DC Voltage 500 V

Switching frequency 5 kHz
L 1.6 mH

Cpv 1.6 mF
Cout 12 mF
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Table A4. Data of wind system.

Wind Turbine

Nominal mechanical-output power 10 (kW)
Wind speed at nominal speed 11 (m/s)

2-Mass Drive Train

Wind-turbine inertia constant H 4.32 (s)
Shaft-spring constant 0.3 (p.u.)

Shaft mutual damping 1.5 (p.u.)
Turbine initial speed 1 (p.u.)
Initial output torque 1 (p.u.)

Synchronous generator ratings

Power 11.11 kVA
Frequency 60 Hz

Line to line voltage 220 V
Reactances [Xd, Xd′, Xd”, Xq, Xq”] in p.u. [1.305, 0.296, 0.252, 0.474, 0.243]
Time constants [Td′, Td”, Tq”] in seconds [4.49, 0.0681, 0.0513]

Inertia constant H(s), friction factor F(p.u.), and
pairs of poles [0.62, 0.01, 4]

Rectifier (Diodes)

Snubber-resistance Rs 0.15 Ω
Snubber-capacitance Cs 0.55 µF

Ron, Lon 1 µΩ, 0 H
Forward voltage (Vf) 0 V

Table A5. Data of storage system.

Parameter Rating

Type Lithium-Ion
Nominal voltage 120 V
Rated capacity 800 Ah

Initial state of charge 50 %

Buck-boost-converter ratings

Cin 1.6 mF
Cout 12 mF

L 0.3 mH

Diodes of buck-boost converter

Internal resistance (Ron) 1 mΩ
Snubber resistance (Rs) 100 kΩ

Snubber capacitance (Cs) Inf

Table A6. Data of electric loads.

Parameter Rating

DC-bus voltage 500 V
Load1(R1) 5 Ω
Load2(R2) 6.25 Ω
Load3(R3) 8.33 Ω
Load4(R4) 25 Ω
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