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Abstract: In 2017, the Lancet Commission on Dementia Prevention, Intervention, and Care included
air pollution in its list of potential risk factors for dementia; in 2018, the Lancet Commission on
Pollution concluded that the evidence for a causal relationship between fine particulate matter (PM)
and dementia is encouraging. However, few interventions exist to delay or prevent the onset of
dementia. Air quality data are becoming increasingly available, and the science underlying the
associated health effects is also evolving rapidly. Recent interest in this area has led to the publication
of population-based cohort studies, but these studies have used different approaches to identify
cases of dementia. The purpose of this article is to review recent evidence describing the association
between exposure to air pollution and dementia with special emphasis on fine particulate matter
of 2.5 microns or less. We also summarize here the proposed detailed mechanisms by which air
pollutants reach the brain and activate the innate immune response. In addition, the article also
provides a short overview of existing limitations in the treatment of dementia.
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1. Introduction

Dementia, and the cognitive impairment that precedes it, is a common multifactorial
disease with no singular cause, and its likelihood of occurrence increases with age. The
globally aging population means that the absolute numbers of those living with dementia
continue to increase with an estimated new case every three seconds [1].

There are currently more than 57 million people worldwide living with dementia, and
it is one of the biggest global public health and social care challenges that people face now
and will continue to face in the future [2]. By 2050, it is estimated that this number will
rise to 131.5 million. Dementia also has a huge economic impact. It is estimated that the
total global cost of dementia will reach USD 2 trillion by 2030 [1]. The fact that dementia
is being diagnosed at an increasingly young age seems alarming. According to a new
report by the Blue Cross Blue Shield Association (BCBSA), the number of commercially
insured Americans between the ages of 30 and 64 diagnosed with early-onset dementia or
Alzheimer’s disease (AD) jumped 200% from 2013 to 2017, from 4.2 to 12.6 per 10,000 [3].

There are several types of dementia, the most common of which is AD, a progressive
neurodegenerative disorder that accounts for 60% to 80% of all dementia cases [4]. The
key processes underlying AD include the accumulation of amyloid beta peptides into
plaques, the formation of neurofibrillary tangles containing the tau protein, and neuronal
degeneration. Other types of dementia include vascular dementia, dementia with Lewy
bodies, dementia in Parkinson’s disease (PD), frontotemporal dementia (FTD), dementia in
Huntington’s disease, and dementia in Creutzfeldt–Jakob disease [5]. Although each of
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these types is different, there are some standard features including the loss of basic brain
features and capabilities. All types of dementia cause significantly impaired intellectual
functioning. People with dementia lose their ability to solve problems, have an impaired
ability to think abstractly and to plan and maintain emotional control, and may experience
personality changes and behavioral problems such as agitation, delusions, and halluci-
nations. Over time, patients develop a severe phase, become totally dependent on their
caregivers, and eventually die. Advances in understanding the role of the immune system,
inflammation, and synapse degradation in dementia neuropathology are contributing to
broad approaches to drug discovery and bringing hope for a clinical breakthrough in the
causal treatment of neurodegenerative disease.

There are a huge number of potential risk factors for the development of dementia,
including modifiable risk factors such as lifestyle, occupation, diabetes, physical inactivity,
smoking, and obesity with a special place for genetic background (i.e., APOE4 gene variant,
APP, and PSEN1/2 gene mutations) [6–13]. There are also plausible links between exposure
to certain air pollutants and dementia.

2. Current and Future Pharmacological Treatment Options for Dementia

Developing treatments for dementia is a challenge. The main drugs available for
symptomatic treatment have only minimal and transient efficacy (Figure 1). None of
them have been shown to slow the progression of the disease, and all carry the risk of
life-threatening side effects and numerous interactions with other drugs [14–17]. The
cholinesterase inhibitors donepezil, galantamine, and rivastigmine can cause side effects,
including sometimes severe vomiting; cardiac symptoms, such as arrhythmia and conduc-
tion disturbances; bradycardia; collapse; and syncope. In addition, donepezil can cause
compulsive sexual behavior [18,19]. Memantine, an NMDA glutamate receptor antagonist,
can cause neuropsychiatric symptoms such as hallucinations and confusion, sometimes
leading to violent behavior, seizures, psychotic disorders, and heart failure or bradyarrhyth-
mia [20]. Nevertheless, until recently, AD treatment research has focused almost exclusively
on amyloid plaques. A new category, aducanumab, which is an anti-amyloid-beta (Aβ)
monoclonal antibody, received accelerated approval from the FDA in June 2021, a decision
that marks the first approval of a new drug for AD since 2003. Aducanumab appears to
have limited evidence for clinical benefit, pending the results of an ongoing Phase 4 trial.
The newly registered drug is ineffective in treating individuals with advanced disease and
seems to work better as a preventative treatment for people with mild cognitive impairment
or mild stages of dementia (Figure 1). It is supposed to remove Aβ plaques that accumulate
in the brain, although removing the plaques does not appear to dramatically slow the
progression of the disease [21–24].

Lecanemab is the second Aβ monoclonal antibody approved in January 2023 by
the FDA under the accelerated approval pathway for the treatment of mild cognitive
impairment or mild stages of dementia.

Thus, current Aβ antibody-based immunotherapies have an inherent risk of causing
more harm than good due to the inflammatory side effects of amyloid-related imaging
abnormalities (ARIA) and have numerous limitations, including the high cost of treatment.
Aβ monoclonal antibodies may carry the risk of causing amyloid-related edema (ARIA-
E) or hemosiderin deposition-related microhemorrhage (ARIA-H), which are known to
occur with antibodies. ARIA most often manifests as temporary swelling and may be
accompanied by small spots of bleeding in or on the brain, although serious and life-
threatening events are rare [25]. Patients may experience symptoms such as headache,
confusion, dizziness, vision changes, nausea, and seizures. Remarkably, in clinical trials,
aducanumab was associated with encephalitis and bleeding in one-third of those who
received the FDA-approved dose. Two patients in the treatment arm of the lecanemab
clinical trials died from the side effect of strokes leading to brain hemorrhages [26]. In
addition, warnings about lecanemab include a risk of infusion-related reactions, with flu-
like symptoms, nausea, vomiting, and changes in blood pressure [27]. There remains an
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unmet need for other safe disease-modifying therapies for AD due to all the controversy
surrounding the approval of aducanumab and the significant risks and limitations for both
antibodies.
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Figure 1. Current drugs approved for the treatment of cognitive impairment and AD-related dementia
(registration and indication for oral and i.v. therapy). Abbreviations: AD—Alzheimer’s disease;
i.v.—intravenous administration; Aβ—amyloid beta; NMDA—N-methyl-D-aspartate receptor; FDA—
Food and Drug Administration (USA); EMA—European Medicines Agency (EMA); NMPA—National
Medical Products Administration (China). * Continued approval will be based on further trials
confirming a clinical benefit over currently available therapy.

Given that the dysbiosis of the gut microbiota and the abnormal increase in intestinal
flora metabolites can cause inflammation, the first marine-derived oligosaccharide to
recondition the gut microbiota, oligomannate (GV-971), was approved in China in 2020
for mild-to-moderate AD (Figure 1). This oral drug reduces amyloid protein deposition
and tau hyperphosphorylation via the peripheral and central modulation of dysbiosis-
related inflammation, reducing the contribution of altered peripheral immunity to AD
pathogenesis. GV-971 was also found to be safe and well tolerated without side effects
typical of Aβ monoclonal antibodies [28,29]. Marketing applications in selected countries
are planned. A multicenter global Phase III clinical trial (GREEN MEMORY) with sites
in the USA, Europe, and Asia was conducted to support the global regulatory filing of
oligomannate. Recently, GV-971 was given the green light from the FDA and has entered
Phase III, with an expected registration date in other countries in 2025.

Gene therapy using neurotrophins called nerve growth factor (NGF) and brain-derived
neurotrophic factor (BDNF), which support the survival of existing neurons and promote
the growth and differentiation of new neurons and synapses, may be the future method for
treating AD. Animal trials from 2001–2012 using AAV2 and NGF have provided promising
features in this regard [30]. The main drawback of such neurotrophins is their limited
crossing of the blood–brain barrier; thus, researchers have resorted to gene therapy, in
which a modified adeno-associated virus (AAV2) more efficiently delivers and distributes
the protein gene to key structures in dementia (entorhinal cortex and hippocampus). Based
on the ongoing first-in-human Phase I clinical trial with AAV2-BDNF, this gene therapy
represents an advancement over previous studies with NGF completed in 2010 [31]; thus,
it appears to be a more potent growth factor than NGF for the neuronal circuits that are
affected in AD the earliest [32]. It should be noted that BDNF injections must be precisely
controlled to avoid side effects as freely circulating BDNF can cause seizures. The estimated
completion date of the study is scheduled for the end of 2027.
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Another ongoing Phase 2 study aims to evaluate the safety and toxicity of AAV
gene transfer vector expressing the cDNA coding for human APOE2 (AAVrh.10hAPOE2)
(LX1001) for the treatment of patients who are APOE4 homozygotes with mild cognitive
impairment due to AD, and mild dementia [33]. Direct intrathecal administration of LX1001
to the CNS of these AD patients will lead to the conversion of APOE protein isoforms in the
CSF of APOE4 homozygotes from APOE4 to APOE2-APOE4. The estimated completion
date of the study is expected soon at the end of 2024.

It should be noted that there are currently no therapies that can effectively act on tau,
so a gene-silencing drug is urgently needed to slow down—and perhaps even reverse—
the course of Alzheimer’s disease and other diseases caused by tau accumulation. A
significant step forward in this field is an ongoing world-first Phase I clinical trial published
in Nature Medicine—with results from 46 patients—testing the safety of a drug called
BIIB080 (/IONIS-MAPTRx), which is an antisense oligonucleotide (used to stop RNA
producing the protein), to “silence” the gene encoding the tau protein, known as the tau
microtubule-associated protein (MAPT) gene [34,35]. This prevents the gene from being
translated into a protein in a dose–response and reversible manner. It also lowers the
production of this protein and alters the course of the disease. The study looked at three
doses of the drug, administered by intrathecal injection (injection into the nervous system
via the spinal canal), compared to placebo. No serious adverse events occurred in patients
who received the drug. The study found a greater than 50% reduction in CNS levels of
total tau and tau phosphorus after 24 weeks in the two treatment groups that received the
highest dose of the drug. There is a need for further studies evaluating the drug in older
and larger groups of subjects and in more diverse populations. The estimated completion
date of the study is scheduled for the end of 2026.

In summary, drug development for AD faces challenges due to an incomplete un-
derstanding of the disease’s pathological mechanisms. Focusing solely on amyloids was
simply a case of tunnel vision. Combination therapies targeting multiple pathological alter-
ations would likely be more effective than single-target anti-amyloid therapies currently
approved on the market.

3. The Non-Pharmacological Treatment Options for Dementia

Given that the medications still have strong limitations, non-pharmacological interven-
tions (i.e., reassurance, increased activities, etc.) are commonly proposed, which are mainly
aimed at improving patients’ cognitive function and learning to cope with psychological
and behavioral symptoms of dementia such as depression, delusions, aggression, and oth-
ers [36]. These activities can, in turn, significantly improve the quality of life and well-being
of people living with dementia, including their families [37]. Based on suggestions made
by Cammusuli et al. [37], these interventions can be divided into the following groups:
(i) holistic techniques, (ii) primary psychotherapy, (iii) cognitive methods, and (iv) alterna-
tive methods. Holistic approaches have continuously been shown to benefit both dementia
patients and their caregivers. Similarly, the aforementioned cognitive training, cognitive
stimulation, and combinations of these interventions have been suggested to positively
affect cognitive function in patients with dementia [38–40]. Aerobic and resistance exercises
are great examples of activities that have beneficial effects on cognition [41]. However,
some studies have shown it to be moderate and limited to a specific activity (e.g., dance, Tai
Chi, cycling, and stretching), while others have found no significant differences between
experimental and control groups [42–44].

Therefore, while both pharmacological and non-pharmacological treatments remain a
challenge, it is better to prevent dementia than to treat the already existing disease. Before
embarking on preventive strategies, however, it is important to consider the knowledge of
factors that can either induce or increase the risk of dementia development.
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4. Environmental Risk Factors for Dementia

The world is undergoing constant change, which is mainly observed in global climate
change as a response to several elements, such as solar radiation and an increase in solar
input to the earth, the burning of fossil fuels, electromagnetic fields, and others. As
a result of human activity and the rapid development of industry and transportation,
several pollutants are generated, including those that pollute the aquatic ecosystem, which,
paradoxically, can threaten human health and life in the long term. Indeed, all these factors,
referred to as environmental factors, have been found to play a major role in the risk of
dementia development and progression [45].

For instance, the presence of various toxic heavy metals and other chemical elements
can be detected during water quality analysis. These include aluminum, cobalt, iron, lead,
iron, zinc, and copper. Each of these has been linked to the risk of dementia. Iron, for
example, is known as an essential component for the efficient delivery of oxygen to every
cell in the human body. However, excessive amounts of it can cause several undesirable
pathways, including ferroptosis, defined as iron-dependent cell death driven by lipid per-
oxidation [46]. This process is now widely described as a risk factor for dementia associated
with AD [46–48]. Moreover, the effect of iron-induced ferroptosis on the onset of cognitive
impairment has been confirmed in various animal models [49–51]. In contrast, only one
case–control study by Emard and colleagues on the role of cobalt in dementia has been
suggested [52]. Importantly, this was true not only when cobalt is present in the environ-
ment but also when it is implanted in the body (such as in the case of a hip implant) [52,53].
Emard also revealed that several people living in areas with high concentrations of lead
suffered from AD [52]. Most papers describe aluminum exposure as the major risk factor
for dementia, however, studies show no association or conflicting results [54,55]. This
discrepancy in results is related to the different forms of aluminum studied. Aluminum
from drinking water accounts for only about 5% of total intake; thus, there is little work
on this source of the element. In contrast, information on the role of aluminum present
in cosmetics and personal care products is more extensive [56]. Nevertheless, the role of
aluminum in the development of dementia is indisputable, especially given the work pub-
lished in 2008 by Rondeau et al. [57]. Aluminum was shown to double the risk of dementia
and triple the risk of AD in water drinkers, especially at a concentration above 0.1 mg/day.
Another recently published study confirmed such a relationship as the aluminum residue
was found in post-mortem brain samples of patients diagnosed with familial AD [58].
In addition, dialysis dementia, also known as dialysis encephalopathy syndrome (DES),
has been characterized in patients with renal failure undergoing hemodialysis who used
aluminum-containing tap water for dialysis fluids [59,60].

Air Pollutants

Air pollution is contamination that sometimes results from natural processes in the
world (e.g., biological processes, volcanic eruptions, and the chemical weathering of rocks
or forest fires), but it can also be the result of direct human activity (e.g., chemicals, re-
fining, metallurgy, or the chemical conversion of fuels). Currently, air pollution is the
largest environmental risk factor for multiple complex mental and physical diseases with
serious economic consequences in the form of increased medical costs and reduced pro-
ductivity. According to World Health Organization (WHO) estimates, air pollution causes
4.3 million deaths annually [61]. Notably, outdoor exposure to PM with an aerodynamic
diameter <2.5 µm (PM2.5) is the fifth leading risk factor for mortality worldwide [62]. Ma-
jor factors that have been linked to the disease include ozone (O3); components of tobacco
smoke (i.e., benzene, toluene, and formaldehyde); the PM present in motor vehicle exhaust
fumes, which contains various compositions of black carbon, SO4

2−, NH4
+, and NO3

− and
metallic components (K, Ca, Zn, Fe, Al, and Mg), as well as nitrogen dioxide (NO2) and
other oxides of nitrogen, carbon monoxide (CO), sulfur dioxide (SO2), or polycyclic aro-
matic hydrocarbons (PAH), such as phenanthrene, benzo (a)pyrene, benzo (b)fluoranthene,
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benzo (a)anthracene, fluorene, fluoranthene, pyrene, chrysene, benzo (k)fluoranthene,
dibenzo (a,h)anthracene, indene (1,2,3-cd)pyrene, and benzo (ghi)perylene [63–67].

In 2017, the Lancet Commission on Dementia Prevention, Intervention, and Care
included air pollution in its list of potential risk factors for dementia [68]; in 2018, the
Lancet Commission on Pollution concluded that the evidence for a causal relationship
between fine particulate matter and dementia is encouraging [69]. Currently, the most
widespread human air pollution is PM, which is produced by so-called low emissions
(i.e., any exhaust fumes entering the air at low altitudes). Particulate matter is a mixture
of molecules for which harmful effects depend on the size of the particles [70]. In fact,
three classes of PM can be distinguished: a particle with a diameter less than 10 µm (PM10),
a particle with a diameter of less than 2.5 µm (PM2.5), and ultrafine particles (UFPs) with a
diameter less than 0.1 µm (PM0.1) [70–72]. These are extremely fine particles: 2.5 µm, for
example, is about one-thirtieth of the diameter of a human hair. It is known that the size
and the fineness (dispersion) state of a particle have a key effect on its absorption mainly
by the respiratory and gastrointestinal systems (Figure 2). While large particles settle in
the nasopharynx and larynx, from where they can be easily removed, smaller particles,
especially those below 5 µm, penetrate deeper into the body and accumulate in the lung
bronchi; hence, they have easy access to the blood and have observed toxic effects [73]
(Figure 2). However, the most health-damaging particles are even smaller. Given the above,
PM0.1 is known to be responsible for inflammatory reactions in the airways, which can
exacerbate the course of asthma or COPD (chronic pulmonary obstructive disease) [74]. In
the case of PM, cytotoxicity is associated with increased levels of oxidative stress and the
(neuro)inflammatory process [75–77]; however, each fraction may be characterized by its
ability to induce its specific toxic effect [78,79].
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Figure 2. Size-dependent regional deposition of inhaled particulate matters. The deposition sites
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regions of the respiratory tract. Created with BioRender.com (accessed on 3 February 2023).

The World Health Organization has estimated that more than four million deaths per
year can be attributed to particles smaller than 2.5 µm in diameter [80]. The WHO offers
guidelines (Air Quality Guidelines—AQG) for reducing the health effects of air pollution.
Although the WHO AQGs state that annual average concentrations should not exceed
10 µg/m, almost 3

4 of European countries still exceed the annual concentrations set by the
WHO AQGs for PM2.5 pollution [81,82]. Boldo et al. found that in 23 European cities life

https://biorender.com/
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expectancy at age 30 would increase from one month to more than two years if long-term
exposure to PM2.5 levels were reduced to 15 µg/m [83].

5. Insights from Experimental and Clinical Studies
5.1. Animal Studies

With regard to dementia, recently, Herr and colleagues reported that PM, particularly
UFPs, increased tau phosphorylation in the hippocampus and enhanced microglial activity
in a genetic 3xTgAD mouse model [84]. Tau phosphorylation has also been observed in
other studies describing toxicity induced by higher PM2.5 [85–87]. Interestingly, neuronal
loss, a common pathological phenomenon of neurodegeneration, has been observed in
brain areas both in adult animals exposed to PM2.5 and in offspring after prenatal exposure
during pregnancy [88].

5.2. Clinical Studies

A prospective birth cohort study involving children found that black carbon was
one of the PM components associated with cognitive decline, including memory impair-
ment [89]. Consistently with these studies, Calderón-Garcidueñas [90] and other research
groups [91,92] report that children who are chronically exposed to outdoor air pollution
are characterized by early hallmarks of AD such as a significant increase in tau [92,93].

This seems significant considering the current Chinese diagnosis of the world’s
youngest person with probable AD (age 19), who was found to have no genetic muta-
tions [94]. Age currently remains the largest risk factor for AD, but this study aims to
encourage more attention to exogenous, environmental risk factors for dementia of young
onset.

Long-term PM exposure can also affect neurodevelopmental outcomes in children.
However, it should be noted that most of the studies have been conducted in areas with a
low level of PM. To the best of our knowledge, the NeuroSmog study will be the first to
assess whether long-term outdoor exposure to PM affects brain structure, function, and
connectivity in both healthy children (aged between 10 and 13 years) and those diagnosed
with attention deficit hyperactivity disorder (ADHD) [95]. The study covers an area
including 18 cities in Poland with the highest concentration of air pollution [95]. The
planned use of an fMRI can provide detailed information on the functioning of neural
systems with a particular focus on cognitive flexibility [96]. The authors hypothesized that
children diagnosed with ADHD would be more vulnerable to increased exposure to air
pollution. There is emerging evidence that greater exposure to air pollution is associated
with an increased risk of dementia. Kioumourtzoglou et al. [97] found that exposure to
PM2.5 increases the hospitalization of patients with AD. Similar findings were reported
by Carey et al. [98] and in a newly published paper by Shi and colleagues [99], who
provided information on the existing correlation between increased PM2.5 concentrations
and higher levels of dementia. A large-scale cohort study that followed older adults for
10 years found that the risk of developing dementia associated with AD increases by
nearly 140% as PM2.5 concentrations increase by 4.34 µg/m3 [100]. In contrast, Abolhasani
et al. [101] found, based on 12 studies, that the risk of dementia increases by 3% for every
1 µg/m3 increase in PM2.5 concentrations. Similarly, three other cohort studies (NHS,
WHIMS, and the Whitehall II longitudinal study) found a higher risk of cognitive decline
associated with higher PM2.5 exposure [102–104]. In the NHS study, the rate of cognitive
decline was significant in women with the highest level of PM2.5 exposure compared to
the lowest level [104]. In one similar study, Cacciottolo et al. additionally noted a dose-
dependent relationship between the apolipoprotein E4 (APOE4) allele and PM2.5, such
that the smallest decline in cognitive function was in those with the lowest exposure and
without an APOE4 allele [101]. Cleary et al. [105] also reported a dose–response relationship
for the interaction between the presence of APOE4 and PM2.5 and and cognitive decline.
Interestingly, Chen et al. [106] noted that the location of residence (near the road) appears
to be another causal factor of cognitive decline. Based on their analysis, they analyzed
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the following parameters: a place of residence’s distance from the roadway, the level of
both PM2.5 and NO2, and the risk of PD-related dementia. They found that living closer to
a roadway was associated with an increased risk of PD-related dementia for all distance
categories (1–100 m and 101–200 m) except for the distance of 201–300 m. In another
population-based cohort study, the Betula Study, Oudin et al. [107] found an association
between higher PM2.5 levels from traffic exhaust and incidence of dementia. Overall,
these results showed a potential link to dementia and revealed PM as an agent with high
toxicological potential in all age groups. It should be stated that there is no clear consensus
as to what period of exposure is most informative for assessing the neurological effects of
air pollution.

The results for nitric oxides, particularly NO and NO2, are inconclusive, and their
involvement in dementia is not as proven as for PMs. For instance, one study found that
NO is positively involved in learning and memory, while its inhibitors (i.e., L-arginine
methyl analogs) have been linked to cognitive impairment in older adults [108,109]. On the
other hand, some authors have suggested that elevated NO levels may result in abnormal
protein modification and, thus, may be involved in the pathogenesis of some neurodegen-
erative diseases, including AD. Similarly, endothelial NO deficiency also leads to vascular
endothelial dysfunction and cerebral hypoperfusion, which, in turn, may result in greater
β-amyloid-induced damage [110–113]. Amyloids are self-aggregating proteins that can
induce cellular dysfunction in patients at risk for neurodegenerative disorders. Neverthe-
less, a population-based retrospective cohort study of 1720 Taiwanese individuals exposed
to various levels of NO2 between 1998 and 2010, found that increased NO2 exposure was
associated with a higher risk of dementia in both sexes [114]. Moreover, a similar risk
was widely observed in younger patients living in highly urbanized residential areas. In
another cohort study, the authors reported that a higher risk of dementia was associated
with a combination of air pollutants, such as NO2 and PM2.5 [115]. Abolhasani et al., in
a systematic review and meta-analysis, suggested a nonsignificant association between
dementia and nitrogen oxides, including NO2. This was mainly explained by the lack of
a significant number of studies [101]. An interesting study was conducted by Wang and
colleagues, who showed that improving air quality reduces the risk of dementia in older
women [116,117].

Carbon monoxide is another important risk factor drawing attention. This poisonous
gas, although non-irritating, is mainly found in car exhaust, but it is also in fumes produced
by grills, heaters, or even fireplaces. Its main toxic effect is cerebral hypoxia and ischemia, as
well as neurological defects, including dementia, parkinsonism, etc., which were observed
in 10–30% of intoxicated patients [118–121]. In examining the potential link between
dementia and CO, it has been suggested that the risk factor for dementia increases with
age and the severity of intoxication [114,122]. Some studies have also reported a strong
association between CO and dementia with additional noise exposure [123]. In fact, CO
and noise co-intoxication were found to magnify the risk level. This was demonstrated
by an increase in oxidative stress and ROS production. Another study showed a link
between CO and dementia as CO was found to have the ability to induce APOE e4 (a
genetic risk factor for dementia) in carriers of the gene with increased morbidity compared
to non-carriers [124].

6. Mechanisms Leading to Dementia after Exposure to Air Pollution

The fine PM and UFPs of air pollution described above are particularly hazardous
to health. Due to their small size, they can reach and deposit in both the respiratory
tract, the lungs (Figure 2) and the gastrointestinal tract. From there, they can enter the
blood vessels [125]. Munzel and colleagues [126] showed that PM2.5 can damage vascular
endothelial cells and lead to vascular dysfunction. Interestingly, UFPs can enter the brain
directly through the olfactory nerve; thus, the human nose may be a port for the entry of
air pollutants into the brain [127–129] (Figure 3). The penetration of even a few particles
into the brain parenchyma triggers several defensive phenomena, including the induction
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and activation of microglia and then astroglia cells, and leads to the development of
inflammation (Figure 3). Microglia are reprogrammed to a heightened proinflammatory
state (priming) to produce more cytokine and become deleterious. The toxic activation
of microglia might lead to aberrant synapse elimination in older age, which is part of the
pathway to dementia [130]. The over- and under-expression of pro- and anti-inflammatory
cytokines alter the homeostasis of the central nervous system (CNS) and may contribute to
progressive neuronal dysfunction [131]. Two recent studies in mice and rats showed that
astrocyte function and mitochondrial activity in the cortex were severely impaired by PM,
with greater effects observed with the exposure to smaller particle sizes [132,133].
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Figure 3. Environmental exposures to air pollutants in the etiology and pathogenesis of dementia.
Sources of air pollution (fine and ultrafine particles—UFPM) include particles smaller than 2.5 µm
in diameter, for which annual average concentrations should not exceed 10 µg/m. Air pollution is
a common environmental factor that affects the brain through multiple pathways (i.e., through the
olfactory tract and blood vessels via the respiratory system). Particles affect the brain by accelerating
(priming) microglia and astroglia and, thus, initiating neuroinflammation, production of reactive
oxygen species (ROS), deposition of amyloid beta (Aβ) peptides, and tau phosphorylation. Aβ causes
synaptic impairment, neuronal death, and progressive neurodegeneration, ultimately leading to Ad-
related dementia and cognitive impairment. Created with BioRender.com (accessed on 12 May 2023).

Recently, a clear link has been shown between the presence of UFPs and damage to
the neurovascular unit in various brain structures [134,135]. The neurovascular unit is
a complex morphological and functional structure that includes neuronal (neurons and
interneurons), vascular (endothelial cells and pericytes) and glial cells (astrocytes), the
basal lamina, and components of the extracellular matrix. It is the smallest functional
unit of the brain responsible for the integrity of the BBB and the regulation of cerebral
blood flow, thus ensuring proper brain function [136]. Damage within the neurovascular
unit is known to lead to inflammation and neurodegeneration. Additionally, the vascular
effects and red blood cell damage caused by UFPs can lead to neuronal degeneration and
the development of dementia by causing brain inflammation or thrombosis, among other
conditions [137,138]. Remarkably, a robust link between PM2.5 and vascular dysfunction
has been noted [128]. Particles of this size can cause damage to endothelial cells in the brain;
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thus, such pathways may promote various types of dementia [137]. Direct cellular damage
caused by air pollutants is high as they induce oxidative stress in the cell and damage
mitochondria (Figure 3). The latter increases the intensity and overload of autophagy
and mitophagy processes. This can lead to fragmentation and the inability to remove
damaged mitochondria, as well as the degeneration of synapses and whole neurons [139]
(Figure 3). However, the main mechanism of cell damage by fine PM and UFPs is based
on the induction of free radicals, which destroy cellular structures and lead to the devel-
opment of neuroinflammation and protein aggregation [140] (Figure 3). Air pollutants
also induce abnormal neovascularization and the excessive autophagy of nerve cells [140].
Different types of proteins can bind to the surface of UFP, which can help air pollutants
enter the body’s cells and interact with cell organelles [141]. Inside the cell, the particle
matter can damage cellular proteins, interfere with protein folding and assembly processes
leading to the formation of abnormal protein deposits [142], and damage the endoplas-
mic reticulum necessary for protein production [143]. An additional problem is magnetic
particles, which become highly concentrated in the cell’s endosomes. They exhibit strong
magnetic interactions and are sensitive to external magnetic fields, which can lead to the
strong heating of the particles [144]. Many data show a strong link between exposure to air
pollution and the development of cardiovascular diseases and events such as myocardial
infarctions, transient ischemic attacks, and strokes [145–151]. All these pathologies, if the
patient survives, can lead to the induction or worsening of dementia.

Air pollution can also affect the gut microbiome [152]. A normal gut microbial flora
has a beneficial effect on digestive processes and immune function and is important for the
proper functioning of the entire body, including the brain [137,153–155]. Fine and ultrafine
particles damage not only the gut microbiome but also the neurons that make up the enteric
nervous system, and through the vague nerves causing toxic effects on the CNS [156,157].

Air pollution particles may also cause local damage to body organs, leading to inflam-
mation and oxidative stress [156,157]. Such local and, especially, systemic inflammation
and oxidative stress can, in turn, lead to the progression of neurodegenerative diseases and
dementia [125] (Figure 3).

Selected air pollutants and their potential effects on dementia onset are summarized
in Table 1.

Table 1. Major air pollutants and the type of their effects on the development and progress of
dementia.

Air Pollutant Effect References

PM10 • The relationship between PM10 and dementia is less clear,
and the number of primary studies is more limited.

PM2.5

• ↑ Tau hyperphosphorylation in the hippocampus and
amyloid-β (Aβ) plaques;·

• Oxidative stress (shown as cytotoxicity and an abnormal
proliferation in astrocytes) and microglia-dominated
neuroinflammation (e.g., ↑ the serum and CSF
neurofilament light (NEFL) polypeptide);

• Modification of endothelial cell miRNA;
• ↑ Blood pressure leading to vascular dementia;
• Modification of the gut–brain axis;
• Increased DNA methylation and, thus, MtDNA damage;
• ↓White matter volume in the frontal lobe, temporal lobe,

and corpus callosum;
• White matter atrophy.

[75–77,137,158–167]
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Table 1. Cont.

Air Pollutant Effect References

UFPs (e.g., PM0.1)

• ↑ Tau hyperphosphorylation in the hippocampus and
amyloid-β (Aβ) plaques;

• Microglia modification (ameboid vs. ramified);
• Contribute to Alzheimer’s disease development by

translocation to the cortex regions, where Alzheimer’s
disease is initiated (cross the BBB);

• Oxidative stress (which leads to increased permeability of
the BBB);

• Neuronal inflammation (↑ excitatory neurotransmitters and
proinflammatory cytokines) and degeneration as well as
oligodendrocyte dysfunction;

• Ventriculomegaly.

[84,118,125,131,158,159,168,169]

Ozone

• The relationship between ozone and dementia is unclear.
Several papers have demonstrated that O3 exposure per se
may not cause AD, but it can synergize with genetic risk
factors to accelerate the pathophysiology of AD.
Nonetheless, some effects were noted, and these include the
following:

• Oxidative stress (e.g., lipid peroxidation in the hippocampus
and cortex in vivo);

• Vascular dementia;
• Cellular destruction, swelling, inflammation, and

mitochondrial changes;
• ↑ Protein serum amyloid beta.

[170–173]

Nitrogen dioxide • Beta-amyloid aggregation and plaque formation;
• Neuronal damage.

[174,175]

Polycyclic aromatic
hydrocarbons (PAH)

Since PAHs are associated with particulate matter of an
aerodynamic diameter ≤2.5 µm (PM2.5), it is not obvious
whether PAHs solely can be associated with the development
and/or progression of dementia. However, a body of evidence
confirmed such a relationship, and this includes the following:

• Oxidative stress and inflammation;

[175,176]

The effects summarized for PMs, including UFPMs, were not categorized based on PM’s composition (such
as sulfate, nitrate, ammonium, organic carbon, elemental carbon, and heavy metals), surface properties, and
concentration. ↑ = increase; ↓ decrease.

7. Limitations

The review presented here does not provide the full context of air pollution and
dementia due to the numerous limitations of the included studies listed below. First,
for the current study, this is not a systematic review, due to methodological diversity
in the assessment of air pollution exposure in the included articles, which made the
data too inconsistent to be combined into a single metanalysis. The evidence from the
toxicological studies in animal and cellular models is limited and inconclusive. While there
are a growing number of neuroimaging studies on the effects of air pollution exposure
on dementia in the brain, they remain elusive. Moreover, data on measures linking air
pollution exposure to other forms of dementia, i.e., vascular and frontotemporal dementia,
are too limited. In fact, there is only one study devoted to dementia associated with
Parkinson’s disease [106]. Therefore, dementia related to Alzheimer’s disease was the
focus of this review. In addition, the measure of cognitive decline used in the study’s
methodology does not in itself necessarily indicate an ongoing degenerative process and
dementia. In addition, some studies considered multiple pollutants at the same time;
thus, this does not allow for a direct causal relationship between dementia risk and air
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pollution. Finally, the data are mainly from population-based cohort studies of low quality
and reliability, and the risk of moderate bias means that the results obtained in this way
should be interpreted with caution. There is a need for more high-quality data with a larger
number of study groups.

8. Conclusions and Future Directions

The causality of dementia is multifactorial, but air pollution may be a modifiable key
factor in increasing individual risk by accelerating age-related changes observed in the brain.
The impact on the CNS is chronic, beginning in childhood, and the pathology can take time
(years) to accumulate. Intensive global efforts to improve air quality, in the form of long-
term policies to reduce air pollution, have been successful in many regions, but half of the
world’s population is still exposed daily to particulate pollution above the recommended
standards. Given the global scale of dementia, and an aging population, only the increased
control of fine particulate emissions and the implementation of innovative public health
initiatives can minimize this risk and prevent dementia from reaching epidemic status in
the future.

There is an urgent need to characterize the link between the chronic exposure to
air pollutants and the risk of developing dementia and its implications for public health
worldwide. In addition, understanding the precise mechanisms by which PM affects the
body’s organs will allow for the better treatment of patients who develop symptoms related
to its exposure. More neuroimaging and molecular data are needed to determine the
cellular event that triggers the pathological brain response.
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56. Sanajou, S.; Şahin, G.; Baydar, T. Aluminium in cosmetics and personal care products. J. Appl. Toxicol. 2021, 41, 1704–1718.
[CrossRef]

57. Rondeau, V.; Jacqmin-Gadda, H.; Commenges, D.; Helmer, C.; Dartigues, J.-F. Aluminum and silica in drinking water and the risk
of Alzheimer’s disease or cognitive decline: Findings from 15-year follow-up of the PAQUID cohort. Am. J. Epidemiol. 2008, 169,
489–496. [CrossRef]

58. Mold, M.J.; O’Farrell, A.; Morris, B.; Exley, C. Aluminum and Tau in neurofibrillary tangles in familial Alzheimer’s disease. J.
Alzheimers Dis. Rep. 2021, 5, 283–294. [CrossRef]

59. Rob, P.M.; Niederstadt, C.; Reusche, E. Dementia in patients undergoing long-term dialysis: Aetiology, differential diagnoses,
epidemiology and management. CNS Drugs 2001, 15, 691–699. [CrossRef]

60. Schreeder, M.T.; Favero, M.S.; Hughes, J.R.; Petersen, N.J.; Bennett, P.H.; Maynard, J.E. Dialysis encephalopathy and aluminium
exposure: An epidemiologic analysis. J. Chronic Dis. 1983, 36, 581–593. [CrossRef]

https://clinicaltrials.gov/ct2/show/NCT05399888
https://doi.org/10.1016/j.eurger.2016.01.002
https://doi.org/10.1016/j.arr.2019.100965
https://doi.org/10.1016/j.jamda.2018.09.017
https://doi.org/10.1002/14651858.CD005562.pub2
https://doi.org/10.1159/000369160
https://doi.org/10.1001/jamainternmed.2013.189
https://doi.org/10.3233/JAD-170014
https://doi.org/10.1136/bjsports-2015-095699
https://doi.org/10.3390/ijms22168726
https://doi.org/10.3389/fcell.2021.704298
https://doi.org/10.1007/s13311-020-00954-y
https://doi.org/10.1016/j.freeradbiomed.2018.09.033
https://doi.org/10.1001/jamaneurol.2016.4406
https://doi.org/10.1007/s12035-018-1403-3
https://www.ncbi.nlm.nih.gov/pubmed/30406908
https://doi.org/10.3389/fnins.2019.00811
https://www.ncbi.nlm.nih.gov/pubmed/31447633
https://doi.org/10.1007/BF01257128
https://doi.org/10.1186/s12888-016-1174-1
https://www.ncbi.nlm.nih.gov/pubmed/28114963
https://doi.org/10.1001/archneur.55.5.737
https://doi.org/10.3233/JAD-2010-101494
https://doi.org/10.1002/jat.4228
https://doi.org/10.1093/aje/kwn348
https://doi.org/10.3233/ADR-210011
https://doi.org/10.2165/00023210-200115090-00003
https://doi.org/10.1016/0021-9681(83)90146-7


Biomedicines 2023, 11, 1477 15 of 19

61. World Health Organization. Preventing Disease through Health Environments: A Global Assessment of the Burden of Disease from
Environmental Risks; Prüss-Üstün, A., Wolf, J., Corvalán, C., Bos, R., Neira, M., Eds.; World Health Organization: Paris, France,
2016. Available online: https://www.who.int/publications/i/item/9789241565196 (accessed on 23 December 2021).

62. Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona,
R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data
from the Global Burden of diseases study 2015. Lancet 2017, 389, 1907–1918. [CrossRef]

63. Nitrogen Dioxide (NO2) Pollution. Available online: https://www.epa.gov/no2-pollution (accessed on 4 January 2023).
64. Låg, M.; Øvrevik, J.; Refsnes, M.; Holme, J.A. Potential role of polycyclic aromatic hydrocarbons in air pollution-induced

non-malignant respiratory diseases. Respir. Res. 2020, 21, 299. [CrossRef]
65. Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on

human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [CrossRef]
66. Cakmak, S.; Dales, R.; Kauri, L.M.; Mahmud, M.; Van Ryswyk, K.; Vanos, J.; Liu, L.; Kumarathasa, P.; Thomson, E.; Vincent, R.;

et al. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environ. Pollut. 2014,
189, 208–214. [CrossRef]

67. Kunt, F.; Ayturan, Z.C.; Yumun, F.; Karagonen, I.; Semerci, M.; Akgun, M. Modeling and assessment of PM10 and atmospheric
metal pollution in Kayseri Province, Turkey. Atmosphere 2023, 14, 356. [CrossRef]

68. Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-
Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [CrossRef]

69. Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Balde, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.;
et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [CrossRef]

70. Choi, H.; Kim, S.H. Air pollution and dementia. Dement. Neurocogn. Disord. 2019, 18, 109–112. [CrossRef]
71. de Jesus, A.L.; Rahmn, M.M.; Mazaheri, M.; Thompson, H.; Knibbs, L.D.; Jeong, C.; Evans, G.; Nei, W.; Ding, A.; Qiao, L.; et al.

Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int. 2019, 129,
118–135. [CrossRef]

72. Kwon, H.S.; Ryu, M.H.; Carlsten, C. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp.
Mol. Med. 2020, 52, 318–328. [CrossRef] [PubMed]

73. Jurowski, K.; Madej, K.; Piekoszewski, W. An Outline of Food Toxicology; Krakowska Wyzsza Szkola Promocji Zdrowia: Krakow,
Poland, 2016; ISBN 978-83-65545-03-9.

74. Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [CrossRef] [PubMed]
75. Cole, T.B.; Coburn, J.; Dao, K.; Roque, P.; Chang, Y.C.; Kalia, V.; Guilarte, T.R.; Dziedzic, J.; Costa, L.G. Sex and genetic differences

in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain. Toxicology 2016, 374, 1–9.
[CrossRef] [PubMed]

76. Hajipour, S.; Farbood, Y.; Gharib-Naseri, M.K.; Goudarzi, G.; Rashno, M.; Maleki, H.; Bakhtiari, N.; Nesari, A.; Khoshnam, S.E.;
Dianat, M.; et al. Exposure to ambient dusty particulate matter impairs spatial memory and hippocampal LTP by increasing brain
inflammation and oxidative stress in rats. Life Sci. 2020, 242, 117210. [CrossRef]

77. Lee, S.H.; Chen, Y.H.; Chien, C.C.; Yan, Y.H.; Chen, H.C.; Chuang, H.C.; Hsieh, H.I.; Cho, K.H.; Kuo, L.W.; Chou, C.C.; et al. Three
month inhalation exposure to low-level PM2.5 induced brain toxicity in an Alzheimer’s disease mouse model. PLoS ONE 2021,
16, e0254587. [CrossRef]

78. Ferin, J.; Oberdörster, G.; Penney, D.P. Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 1992,
6, 535–542. [CrossRef]

79. Lodovici, M.; Bigagli, E. Oxidative stress and air pollution exposure. J. Toxicol. 2011, 2011, 487074. [CrossRef]
80. State of Global Air 2020; Special Report; Health Effects Institute: Boston, MA, USA, 2020. Available online: https://www.

stateofglobalair.org/ (accessed on 4 January 2023).
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