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Abstract: Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic
(Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine
sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is
hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur
species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the
thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer,
antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against car-
diovascular diseases. In this context, the present review describes allicin as an antioxidant, and
neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and
neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by
downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular
levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective
actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation
by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways.
As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied
to manage the Alzheimer’s disease, helps to maintain the balance of neurotransmitters in case of
autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of
acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation,
apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2).
Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering
from neurological diseases can be ameliorates by allicin administration.
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1. Introduction

Allium sativum (garlic), a member of the Alliaceae family, is an essential component
of human food since ancient times [1]. It is a rich source of vitamins, minerals, sulfur
compounds, essential oils, phenols, and free amino acids [2]. Initial studies on the biochem-
ical composition of garlic indicated the presence of my sulphur containing compounds
especially, the polysulphides. Several bioactive compounds from garlic, including allicin,
allyl sulphides, alliin, ajoenes, and 1,2-vinyldithiin have therapeutic effects as antioxidants,
anti-inflammatory, cardioprotective, antimicrobial, anticancer, and immunomodulatory
agents [3–6]. Allicin a sulphur containing bioactive compound, responsible for the typ-
ical fragrance of garlic was discovered in 1944, its chemical structure and mechanism
of action against bacterial proliferation was studied [7]. Allicin is synthesized from a
non-proteinaceous amino acid known as S-allyl-L-cysteine sulfoxide (alliin) that is hydrol-
ysed by the enzyme alliinase [8]. Being a reactive sulphur species (RSS), allicin acts as an
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oxidizing agent in the cells and oxidizes thiols in the cysteine residues of proteins and
glutathione [9].

Allicin has a wide spectrum of therapeutic applications. It has been used as an antimi-
crobial agent against many microorganisms such as Staphylococcus aureus, Helicobacter pylori,
Candida albicans, and Bacillus spp. [9–11]. Allicin has inhibitory action against the activity of
several enzymes by interaction the cysteine residues [9]. It is a health promoting compound
that can reduce triglycerides and low-density cholesterol in the human body [12]. Allicin is
an oxidant but at low concentrations and physiological conditions in the human body it
promotes the production of antioxidant enzymes and inhibits the oxidation of low-density
plasma lipids. It also inhibits the production of cholesterol in the human body and sub-
sequently reducing the chances of blockage of arteries by plaque formation [13]. A low
concentration of allicin (0.4 mM) can inhibit the platelet aggregation up to 90%, the impact
is significantly higher than of similar concentration of aspirin. These properties suggest
allicin as an efficient therapeutic agent against CVDs (cardiovascular diseases) [14]. Allicin
decomposes rapidly and undergoes a series of reactions with glutathione resulting in the
production of hydrogen sulphide (H2S). H2S is a gaseous signalling molecule involved in
the regulation of blood pressure. It also regulates the relaxation of smooth muscles, dilation
of arteries and lowering of blood pressure [15,16]. The downregulation of angiotensin
II type 1 receptor and the NF-E2-related factor-2 (Nrf2)—inhibitor Keap1 has shown to
facilitate the antihypertensive, antioxidant, and cardioprotective, activity of allicin [17].

The anticancer activity of allicin involves a number of cellular mechanisms. It can
change the redox status of cells resulting in the cell death [18]. By modulation of p53
pathway, allicin can promote cell cycle arrest and apoptosis in breast cancer cells [19]. With
an inhibitory effect on ‘pain mediating molecules’ such as endothelin, IL-8 (interleukin 8),
TNF α (tumour necrosis factor α), allicin can reduce the oral cancer pain [20]. Telomerase
is an enzyme responsible for the addition of guanine-rich repeats to maintain the length
of telomeres. The activity of enzyme is retained in stem cells and gametes. However, the
telomerase activity is abolished after 50–70 cell divisions in the somatic human cells ham-
pering any further cellular proliferations [21]. Allicin inhibits the activity of telomerase in a
dose dependent manner subsequently inhibiting the proliferation in the cancer cells [22].
Preclinical studies have shown that allicin has positive impact on the healing of wound
under diabetic conditions and streptozotocin-induced nephropathy in Wistar rats [23,24].
It has also shown the ability to alleviate hepatic toxicity induced by lead (Pb) and acry-
lamide [25,26]. Allicin has been reported to recover the spermatogenesis and sperm quality
after diabetic induced damage, it has also shown beneficial effects on the reproductive
system of male Wistar rats [27,28]. Diabetes mellitus is a complex metabolic disorder caused
primarily due to the disturbed insulin release or insulin sensitivity [29]. Garlic is among the
recommended neutraceuticals available on the market. Studies have shown a significant
increase in the blood insulin levels after treatment with allicin [30] (Figure 1).

In the nutshell, allicin is one of the most widely consumed neutraceuticals with
multifaceted medicinal properties. It has an amazing potential in human health care and
disease cure areas. In this context we aimed to evaluate the recent developments in the
application of allicin as antioxidant and neuroprotective that helps to improve the patients
with cognitive impairments.
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2. Biosynthesis, Properties and Action Mechanism of Allicin

Allicin is produced from S-allyl-L-cysteine sulfoxide (alliin)—a non-protein amino acid.
The radiolabelling experiments have revealed that cysteine combines with glutamic acid to
produce γ-glutamylcysteine, the later combines with glycine to prepare glutathione [31].
An odour producing substance known as alliin, or S-allyl-L-cysteine sulfoxide (ACSO)
is one of the critically important constituents of the garlic bulb. Several contradictory
pathways for the biosynthesis of alliin have been proposed and it has been a topic of
debate [8,18,32]. Glutathione interacts with di-2-propenyl disulfide (DADS), the later
undergoes a nucleophilic substitution reaction at α-carbon to produce allyl perthiol and
S-allylglutathione (SAG). SAG is a potent antioxidant that has been evaluated to ameliorate
the liver toxicity caused by carbon tetrachloride (CCl4) [33]. After losing glutamate and
glycine, S-allylcysteine (SAC) is produced from S-allylglutathione, the reaction is catalysed
by cysteinylglycinase and γ-glutamyl transpeptidase [34]. SAC is an antioxidant, anti-
inflammatory compound that acts as a scavenger of ROS [35]. It is further converted to
alliin [36], the latter has many important physiological properties. It helps to lower the
hyperglycaemic conditions and improves the glutathione and catalase biosynthesis [37,38].
The alliin content varies according to the garlic varieties, in the dried garlic powder up to
1% alliin is found [4].

Application of alliin helps to promote glucose metabolism and insulin sensitivity [39,40].
Its applications have shown positive effects on the blood lipid profile and prevented heart
attack [41]. Allicin (diallylthiosulfinate) is produced from alliin under the influence of
enzyme alliinase (Figure 2).

Allicin is not found in the intact garlic bulb, both the enzyme and alliin are found
in different parts of garlic bulb. The reaction takes place when the garlic bulb is crushed.
Enzyme and alliin make an enzyme-substrate complex in the presence of water. The dehy-
dration is supported by pyridoxyl phosphate (PLP), the reaction results in the production of
pyruvate, allyl sulfenic acid, and ammonia. The precursor alliin is found in four stereoiso-
mers in nature, only one form ((+)-S-allyl-L-cysteine-sulfoxide) is found in the garlic. The
process of allicin production is associated with the defence mechanism of garlic plant. After
invasions to the garlic clove cells, enzyme and alliin are released and allicin is produced
immediately to destroy the invader. At room temperature, allyl sulfenic acid is condensed
in to allicin, optimum temperature for the activity of alliinase is 33 ◦C, it operates best at
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pH 6.5, the enzyme is sensitive to acids [42,43] (Figure 3), enteric-coated formulations of
garlic supplements are therefore recommended [44].
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Allicin, one of the 30 sulphur containing compounds of garlic volatile and short-lived
substance. Its concentration in the human plasma, urine and stool samples cannot be
determined accurately due to instability. It has molecular weight of 162.28 g/mol and water
solubility up to 2.40 × 104 mg/L [45]. It can readily cross the cellular membranes due to
its hydrophobic nature and reacts with thiols [46,47]. For the general metabolic reactions,
it is obligatory to maintain the cellular pH, ionic concentration and redox potential. The
concept of redox potential comes from thermodynamics, it decides the possibility, direction
and equilibrium point of a cellular reaction [48,49]. Under the normal conditions, the
healthy cells have a negative redox potential. As for example in case of Saccharomyces
cerevisiae the redox potential is from −220 mV to −320 mV [50,51]. Redox potential in the
cells is regulated by the ratio of NADPH/NADP+ (coenzyme pool), ratio of GSH/GSSG
(reduced glutathione/oxidized glutathione), and thioredoxins [52]. Allicin has oxidizing
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properties, oxidizes thiols in the cysteine residues found in the structure of proteins and in
glutathione (Figure 4).
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Oxidation of proteins may result in the loss/gain of protein function due to the
alterations in structures, changes in cellular physiology, and more oxidized glutathione
leads to higher cellular redox potential [8]. Excessive generation of ROS is one of the
basic factors responsible for insulin resistance resulting in diabetes and related metabolic
disorders [53,54]. Allicin is found to inhibit the generation of ROS and subsequent insulin
resistance [55,56]. ROS production is also promoted by hyperglycaemia that leads to
myocardial apoptosis [57]. The mechanism of apoptosis is regulated by the balance between
pro-survival and pro-apoptotic factors. One of the pro-survival factor Bcl2 mainly decides
the fate of cells. According to recent findings, allicin can significantly reduce the expression
level of Bcl12 in diabetic rats resulting in the reversal of myocardial apoptosis [58].

3. Allicin as an Antioxidant

Natural products are considered as better therapeutic agents against oxidative stress
due to their minimum adverse effects [59]. Allicin has been reported as an antioxidant
natural product. The antioxidant properties of allicin can be described on the basis of
its ability to inhibit superoxide, nitric oxide (NO) and hydroxyl radicals [60,61]. ROS are
highly unstable molecules that create oxidative stress when accumulated in the cells and
cause tissue damage [62]. There are enzymic reactions that promote cellular oxidative
stress, as for example, nicotinamide adenine dinucleotide phosphate oxidases (NOXs) are
a series of complex enzymes considered as one of the major sources to produce reactive
oxygen species resulting in inflammation and oxidative stress [63–65]. Each enzyme of
NOX series is composed of six transmembrane domains and have conserved sites for the
binding with FAD and NADPH (except NOX5). There are also haem-binding sites in the
third and fifth transmembrane domains associated with electron transporter using NADPH
from cytoplasm as the electron donor. The transported electrons are accepted by oxygen in
the extracellular environment (Figure 5).

ROS species generated by NOX based system mainly include H2O2/NO [66], NOX2
and NOX4 contribute maximum ROS, and the expression level of these enzymes was
significantly reduced by the treatment with allicin [67]. In the presence of redox-active ions
such as Fe2+, the hydroxyl radical (•OH) can be produced by H2O2. Several other types
of oxidants can also be produced by the action of peroxidases, as for example, generation
of HOCl (hypochlorous acid) in the neutrophils by the action of myeloperoxidase (MPO).
The nature of oxidants also depends on the type of cellular scavenger enzymes such
as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) [68].
In addition to have a suppressive role in the ROS production by the inhibition of NOX
enzyme systems, allicin also promotes the detoxifying enzymes [69,70]. According to
another report, allicin has protective effect against H2O2 induced apoptosis in the human
umbilical vein endothelial cells (HUVECs) [71,72]. Allicin can modify the levels of phase
II detoxification enzymes such as heme oxygenase 1, (HO-1) thioredoxin reductase 1 and
glutamate L-cysteine ligase (Glcl) [73,74]. SAMG (S-allylmercaptoglutathione) and SAMC
(S-allylmercaptocysteine) are the products of allicin with GSH and cysteine respectively.
SAMG is considered a powerful antioxidant derivative of allicin [75]. In the human eyes, the
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RFEs (retinal pigmented epithelial cells) make a layer of epithelial cells with high metabolic
activity and ROS rensitivity [76]. On exposure to ROS, the damaged RPEs contribute to
the pathogenesis of irreversible blindness, known as age-related macular degeneration
(AMD) [77]. Excessive ROS production especially H2O2, or imbalanced homeostasis of
ROS have been reported as the main risk factors of AMD [78,79]. According to the reports
allicin plays an important role in the regulation of H2O2 and protects RPEs damage [80].
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Cardiac hypertrophy is the main cardiovascular concern worldwide [81]. It can lead
to cardiac arrest, cardiac dysfunction, and sudden cardiac death [82]. Autophagy is the
second type of programmed cell death responsible to get rid of aged-exhausted proteins
and cellular organelles [83]. However, under certain circumstances such as in cancerous
conditions, autophagy can involve in cellular remodelling [84,85]. Autophagy also plays an
important role in the onset of cardiac diseases such as cardiac hypertrophy. According many
recent reports, suppression of ROS, inflammation and autophagy can attenuate cardiac
hypertrophy [86,87]. Allicin has been reported for its critical role in the hyperlipidaemia,
cardiac failure and myocardial infarction [88]. It has also been reported to attenuate cardiac
hypertrophy via regulation of ROS-dependent signalling pathways, and Nrf2 antioxidant
signalling pathways, and activating PI3K/Akt/mTOR and MAPK/ERK/mTOR pathways
(Figure 6) [89].
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4. Allicin as a Neuroprotective Agent to Fight against Neurological Diseases

In the recent times, allicin has been extensively investigated as a neuroprotective
agent [8,18,90,91]. Pathophysiology of several neuropsychological, neurological diseases,
neurodegenerative diseases, and neurological damages such as spinal cord injury, trau-
matic brain injury, stroke, and neurotoxicity are accompanied by neuroinflammation [92,93].
Neurons are cells with high metabolic rates and essentially require abundant and efficiently
working mitochondria. Therefore, the mitochondrial dysfunction is mostly associated
with the pathogenesis of neurological conditions [94–98]. The causes for the neurolog-
ical diseases also include deleterious mitochondrial DNA [99], accumulated misfolded
proteins [100], problems in the calcium influx [101], flaws in the mitochondrial oxidative
phosphorylation systems (OXPHOS) [102], elevated levels of ROS [103], and apoptosis of
neuron cells [104]. After the cellular death, released DNA, proteins and cellular debris
promote microglia, initiate inflammation and damage the tissue [95]. Hence, mitochondria
play a critical role in the onset of neuroinflammation and its subsequent pathological
events [105,106]. Microglia are the macrophages responsible for response to tissue damage
and repair in the brain [107]. The activation of microglial cells participates in neuroinflam-
mation and neurodegenerative diseases [108]. The activated microglia migrate, proliferate,
releasing pro-inflammatory cytokines such as interleukin 1 beta (IL-1β) [109], tumor necro-
sis factor alpha (TNF-α) [110]. Some neurotoxic substances are also released leading to the
death or dysfunction of neurons [111].

Several signalling pathways leading to neuroinflammation have been described [93].
The toll like receptors (TLRs) are important components of immune system that recognize
foreign ligands and induce inflammation by the activation of corresponding signaling
molecules [112,113]. A range of TLRs are expressed by microglia for their activation and
initiation of neuroinflammation [114]. The binding of cytoplasmic domain of TLR with
Myeloid Differentiating factor 88 (MyD88) leads in the activation of NF-κB (nuclear factor-
kappa B), TLR4/MyD88/NF-κB signalling pathway promotes inflammation [115–118].
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Inflammation causes DNA damage by the induction of oxidative stress, produces ROS
in the microglia and promote aging process [119,120]. ROS can trigger the expression of
many proinflammatory genes and further promote inflammation [121,122]. The reactions
catalysed by two isoforms of cyclooxygenases, (COX1) and (COX-II) are also associated with
neuroinflammation. Both of the isozymes catalyse dioxygenation of arachidonic acid and
produce prostaglandin G2 (PGG2) which is further converted into prostaglandin H2 (PGH2)
by the action of a peroxidase. A neuroinflammatory mediator PGE2is produced from
PGH2 [123,124]. COX II has more prominent role in the induction of neuroinflammation
and COX I is generally considered as the house keeping enzyme [125].

The signalling molecules of PI3K/AKT pathways are induced by the activation of mi-
croglia that initiate neuroinflammation [126,127]. Mammalian target of rapamycin (mTOR)
is a typical serine/threonine kinase, a typical member of PI3K related family of kinases.
Phosphorylation/activation of mTOR by the activation of p13K and AKt regulates the
activity of NF-κB and results in neuroinflammation [128,129]. Activation of microglia also
induces the activation of mitogen-activated protein kinase (MAPK) family kinases such as
p38 MAPK and stress-activated protein kinases/Jun amino-terminal kinases (SAPK/JNK).
P38 MAPK activates the production of proinflammatory cytokines and SAPK/JNK promote
the expression of several genes associated with inflammation [130].

Activation of microglia and pathways leading towards neuroinflammatory process
have been described by several studies. Activation of microglia by the ligand binding at
TLRs leads to the activation of the MAPK pathway. By downstream activation of P38 and/or
JNK it activates NF-kB which regulates the production of proinflammatory cytokines. Al-
licin inhibits/suppresses P38 and JNK pathways and attenuates the production of pro-
inflammatory molecules resulting in the anti-inflammatory response [131]. TLRs initiate
another pathway known as TLR4/MyD88/NF-κB signal transduction pathway [132,133],
which also leads to NF-kB induced production of proinflammatory molecules. Allicin has
the ability to inhibit the TLR4/MyD88/NF-κB pathway consequently reducing the pro-
duction of pro-inflammatory cytokines and inactivating the inflammatory machinery [134].
NADPH oxidases are membrane associated enzymes (with mode of action already de-
scribed Figure 5). The activity of NOX results in the overproduction of ROS [131,135]. ROS
can promote the production of proinflammatory molecules by activating NF-kB either
directly or indirectly via P13K/AKt/mTOR/NF-kB pathway. Application of allicin has
found to reduce the expression level of ROS generating enzymes (NOXs) decreasing the
ROS in the cells [67]. In this way, allicin protects against neuroinflammation by interacting
at various molecular and signalling transduction levels (Figure 7).

Alzheimer’s disease (AD) is a neurodegenerative condition, typically characterized
in old-aged people. It is the most common cause of dementia, memory loss, depression
and language impairments [136]. The main causes of AD include accumulation of amy-
loid β (Aβ) in the form of plaques [137], or deposition of Tau protein in the neurological
tissues [138]. Declined levels of neurotransmitter acetylcholine (Ach) by the action of acetyl-
cholinesterase (AChE) and butyrylcholinesterase (BuChE) also result in the onset of AD.
The disease symptoms are mostly treated by the inhibition of these two enzymes [139–142].
Allicin has shown an inhibitory effect on the activity of AChE/BuChE enzymes. Appli-
cation of allicin slows down the death of neurons and reduced the impaired cognitive
functions in AD [143–145]. The level of Tau protein was reduced significantly by the use of
allicin [146].

Acute traumatic spinal cord injury (SCI) characterized by the ischemia, bleeding,
oxidative stress, neuronal inflammation, nerve degeneration and apoptosis [147–150]. In
general, the activation of erythroid 2-related factor 2 (Nrf2)/antioxidant response element
(ARE) pathway is most important mechanism against oxidative stress [151–153]. Preclinical
studies on rabbits have shown protective effects of allicin against spinal cord reperfusion
injury [154]. Allicin has been reported to protect SCI induced neuron damage by regulating
inflammation and apoptosis and promoting the expression levels of Nrf2. No effect of
allicin was observed in the Nrf2 knockout animals indicating that the effect of allicin
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involves Nrf2/ARE pathway [155]. In case of traumic spinal cord injury (TSCI), allicin
can reduce the ROS levels and enhance NADPH levels by regulation of HSP70, Akt and
iNOS pathways [156,157]. Toxic effects of acrylamide (ACR) on the peripheral and central
nervous system is well established [158,159]. The combined therapy with allicin and
melatonin has shown recovery of ACR damaged neurons by regulating DNA damage,
increasing the levels of neurotransmitters [160].
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Cognitive functions include multiple mental abilities such as remembering, decision
making, thinking, problem solving, learning, reasoning, and attention towards surrounding
activities. Impaired cognitive functions are often result of neurodegenerative conditions
such as AD, and Parkinson’s disease (PD) [161–164]. Some other neuropathological condi-
tions can also be represented by cognitive impairment such as autism spectrum disorder
(ASD) [165–167], and attention deficit hyperactive disorder (ADHD) [168,169]. The cases of
cognitive impairments result in the lower quality of life among the suffering individuals, in-
crease social and economic burden to the society in general and to the families of patients in
particular [170–174]. Imbalanced levels of neurotransmitters such as glutamate, dopamine,
acetylcholine, and GABA are linked with cognitive impairments [175]. Exposure to higher
metal induced oxidative stress, neurotoxicity and neurodegeneration can also cause cogni-
tive deficits [176–178]. In the recent years several studies have reported the improvement
in the cognitive skills of suffering individuals by the use of allicin. As for example, in a
preclinical study, administration of copper and aluminium resulted and elevated levels
of pro-inflammatory cytokines, oxidative stress, and altered levels of neurotransmitters.
Allicin has shown antioxidant activity, restored the levels of neurotransmitters and reduced
the inflammatory cytokines [179]. The cell membrane of microglia has receptors for the
recognition scavenger, cytokines and chemokines and cells are activated by binding of any
of these molecules to the corresponding receptors [180]. Activation and resting state of
microglia are regulated by a set of molecules. As for example CD200 is a molecule produced
on neurons and its corresponding receptor is CD200R on microglia. Binding of CD200
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with its receptor inhibits the activation of microglia and retains its resting state [181]. The
other common ligands that keep the resting state of microglia include CD172a/Sirp alpha,
CD200R, and CX3CR1. TREM2 (triggering receptor expressed on myeloid cells 2) mimic the
neuronal injury and activates the microglia [182]. The balanced regulation of cell surface
ligands and receptors is necessary for the homeostasis of microglia, any dysregulation in
this system may lead to adverse changes in microglia that can be damaging to the neuronal
networks, leading to neuropathological events in adults and developmental issues in the
young [183,184]. Activation of microglia is also regulated by lipopolysaccharides (LPS) and
damage-associated molecular patterns (DAMPS) which leads to the ROS production, neu-
roinflammation or nerve damage [185]. Microglia can be activated by chronic psychological
stress can have several downstream consequences including neurobiological complications
and mental illness [186,187]. In addition to that mitochondrial dysfunction induced by
some drugs [188,189], diabetes [190], and other factors, has been well associated with the
onset of neurodegenerative diseases. Administration of allicin attenuates oxidative stress,
mitochondrial dysfunction, apoptosis, inhibits neuroinflammation [191,192]. Hence, allicin
improves cognitive ability by attenuating the upstream oxidative stress, mitochondrial
dysfunction and inflammation. A proposed mechanism of elevation of cognitive functions
by the application of allicin is summarized (Figure 8).
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5. Limitations

Allicin has been extensively studied and reported for its therapeutic potential as
an antioxidant with antimicrobial, anticancer, and anti-inflammatory activities. There
are numerous reports on the neuroprotection and improvement of cognitive abilities by
the application of allicin. However, almost all study reports on these subject areas are
based on preclinical studies conducted on animal models or human cell lines and only
two or three specific clinical studies have been reported. Crushed garlic material mainly
consisting of allicin has been reported to treat thrush (whitish patches of yeast infection
that cover the mouth) in newborn infants [193]. In a small-scale clinical study involving
only 20 patients, allicin has been reported to treat Behcet’s disease [194]. In a randomized
double blind placebo trial involving 96 patients, allicin tablets were effectively used for the
treatment of aphthous ulceration with no significant side effects [195]. In another study
on 52 Chinese patients (six male and 46 females) suffering from stage II oral submucous
fibrosis (OSF), allicin was injected for 16 weeks intralesionally which gave significant
improvement [196]. Only one clinical trial has been reported in clinicaltrials.gov where
allicin is being applied for the treatment of cancer, no results have been yet reported. Allicin
was also found effective against common cold in a trial [197]. Human trials and dose
optimization studies are required for the establishment of allicin as a neuroprotective agent
and in the improvement of cognitive functions.

6. Conclusions

Allicin is a volatile substance produced from amino acids by enzyme catalysed reac-
tions in the crushed garlic cloves. Its potential as a potent antioxidant have been recognized
in the management of pathogenic microbes, cancers and CVDs. Administration of allicin
can reduce the ROS by reducing the expression of ROS producing NOX enzymes and
promoting the CAT, SOD, GPX and several types of peroxidases. Allicin has been found
a useful natural compound against neuroinflammation, in the management of neurode-
generative diseases such as AD, PD and psychneurological conditions including ASD, and
ADHD. It can protect the neurons and nervous system, improves the cognitive abilities
of patients suffering from neurological diseases. However, clinical studies are required to
establish the therapeutic efficacy of allicin.
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synthesis and pharmacological activity. Facta Univ.-Ser. Phys. Chem. Technol. 2011, 9, 9–20. [CrossRef]

43. Albrecht, F.; Leontiev, R.; Jacob, C.; Slusarenko, A.J. An optimized facile procedure to synthesize and purify allicin. Molecules
2017, 22, 770. [CrossRef] [PubMed]

44. Lawson, L.D.; Hunsaker, S.M. Allicin Bioavailability and Bioequivalence from Garlic Supplements and Garlic Foods. Nutrients
2018, 10, 812. [CrossRef] [PubMed]

45. Marchese, A.; Barbieri, R.; Sanches-Silva, A.; Daglia, M.; Nabavi, S.F.; Jafari, N.J.; Nabavi, S.M. Antifungal and antibacterial
activities of allicin: A review. Trends Food Sci. Technol. 2016, 52, 49–56. [CrossRef]

46. Fujisawa, H.; Suma, K.; Origuchi, K.; Seki, T.; Ariga, T. Thermostability of allicin determined by chemical and biological assays.
Biosci. Biotechnol. Biochem. 2008, 72, 2877–2883. [CrossRef] [PubMed]

47. Sarvizadeh, M.; Hasanpour, O.; Ghale-Noie, Z.N.; Mollazadeh, S.; Rezaei, M.; Pourghadamyari, H.; Khooy, M.M.; Aschner, M.;
Khan, H.; Rezaei, N.; et al. Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities.
Front. Oncol. 2021, 11, 650256. [CrossRef]

48. Olson, K.R. Are reactive sulfur species the new reactive oxygen species? Antioxid. Redox Signal. 2020, 33, 1125–1142. [CrossRef]
49. Gruhlke, M.; Slusarenko, A.J. The Cellular “Thiolstat” as an emerging potential target of some secondary metabolites. In Recent

Advances in Redox Active Plant and Microbial Products; Jacob, C., Ed.; Springer: Dordrecht, The Netherlands, 2014.
50. Morgan, B.; Ezerin, a, D.; Amoako, T. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat.

Chem. Biol. 2012, 9, 119–125. [CrossRef]
51. Killeen, D.J.; Roger, B.; André, K. Advanced monitoring and control of redox potential in wine fermentation. Am. J. Enol. Vitic.

2018, 69, 394–399. [CrossRef]
52. McMahon, B.K.; Thorfinnur, G. Selective detection of the reduced form of glutathione (GSH) over the oxidized (GSSG) form

using a combination of glutathione reductase and a Tb (III)-cyclen maleimide based lanthanide luminescent ‘switch on’ assay. J.
Am. Chem. Soc. 2012, 134, 10725–10728. [CrossRef]

53. Di Meo, S.; Susanna, I.; Paola, V. Skeletal muscle insulin resistance: Role of mitochondria and other ROS sources. J. Endocrinol.
2017, 233, R15–R42. [CrossRef]

54. Paglialunga, S.; Ludzki, A.; Root-McCaig, J.; Holloway, G.P. In adipose tissue, increased mitochondrial emission of reactive
oxygen species is important for short-term high-fat diet-induced insulin resistance in mice. Diabetologia 2015, 58, 1071–1080.
[CrossRef] [PubMed]

55. Gao, W.; Wang, W.; Zhang, J.; Deng, P.; Hu, J.; Yang, J.; Deng, Z. Allicin ameliorates obesity comorbid depressive-like behaviors:
Involvement of the oxidative stress, mitochondrial function, autophagy, insulin resistance and NOX/Nrf2 imbalance in mice.
Metab. Brain Dis. 2019, 34, 1267–1280. [CrossRef] [PubMed]

56. Faisal, A.N. The Role of Allicin in Regulating Insulin and Glycemic Level in White Mice with Induced Insulin Resistance. Ann.
Rom. Soc. Cell Biol. 2021, 25, 10921–10928.

57. Lu, S.; Liao, Z.; Lu, X.; Katschinski, D.M.; Mercola, M.; Chen, J.; Brown, J.; Molkentin, J.D.; Bossuyt, J.; Bers, D.M. Hyperglycemia
acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular
myocytes. Circ. Res. 2020, 126, e80–e96. [CrossRef] [PubMed]

58. Sun, H.H.; Feng, X.M.; Wang, J.C.; Cai, J. Allicin can suppress the activity of vascular endothelial cells probably by regulating
JAK2/STAT3 pathway. Mol. Cell. Biochem. 2021, 476, 435–441. [CrossRef]

59. Koca, F.D.; Yilmaz, D.D.; Onmaz, N.E.; Yilmaz, E.; Ocsoy, I. Green synthesis of allicin based hybrid nanoflowers with evaluation
of their catalytic and antimicrobial activities. Biotechnol. Lett. 2020, 42, 1683–1690. [CrossRef]

http://doi.org/10.1079/BJN2001343
http://www.ncbi.nlm.nih.gov/pubmed/11520428
http://doi.org/10.1016/j.phytochem.2004.11.009
http://www.ncbi.nlm.nih.gov/pubmed/15652575
http://doi.org/10.1038/s41598-018-21421-x
http://www.ncbi.nlm.nih.gov/pubmed/29476144
http://doi.org/10.1016/j.transproceed.2019.04.039
http://doi.org/10.1016/j.isci.2020.101113
http://doi.org/10.3390/nu12030624
http://doi.org/10.2298/FUPCT1101009I
http://doi.org/10.3390/molecules22050770
http://www.ncbi.nlm.nih.gov/pubmed/28489057
http://doi.org/10.3390/nu10070812
http://www.ncbi.nlm.nih.gov/pubmed/29937536
http://doi.org/10.1016/j.tifs.2016.03.010
http://doi.org/10.1271/bbb.80381
http://www.ncbi.nlm.nih.gov/pubmed/18997429
http://doi.org/10.3389/fonc.2021.650256
http://doi.org/10.1089/ars.2020.8132
http://doi.org/10.1038/nchembio.1142
http://doi.org/10.5344/ajev.2018.17063
http://doi.org/10.1021/ja300887k
http://doi.org/10.1530/JOE-16-0598
http://doi.org/10.1007/s00125-015-3531-x
http://www.ncbi.nlm.nih.gov/pubmed/25754553
http://doi.org/10.1007/s11011-019-00443-y
http://www.ncbi.nlm.nih.gov/pubmed/31201726
http://doi.org/10.1161/CIRCRESAHA.119.316288
http://www.ncbi.nlm.nih.gov/pubmed/32134364
http://doi.org/10.1007/s11010-020-03919-z
http://doi.org/10.1007/s10529-020-02877-2


Antioxidants 2022, 11, 87 14 of 19

60. Chung, L.Y. The antioxidant properties of garlic compounds: Allyl cysteine, alliin, allicin, and allyl disulfide. J. Med. Food 2006, 9,
205–213. [CrossRef]

61. Schwartz, I.F.; Hershkovitz, R.; Iaina, A.; Gnessin, E.; Wollman, Y.; Chernichowski, T.; Blum, M.; Levo, Y.; Schwartz, D. Garlic
attenuates nitric oxide production in rat cardiac myocytes through inhibition of inducible nitric oxide synthase and the arginine
transporter CAT-2 (cationic amino acid transporter-2). Clin. Sci. 2002, 102, 487–493. [CrossRef]

62. Kelsey, N.A.; Wilkins, H.M.; Linseman, D.A. Nutraceutical Antioxidants as Novel Neuroprotective Agents. Molecules 2010, 15,
7792–7814. [CrossRef]

63. Blanchetot, C.; Johannes, B. The ROS-NOX connection in cancer and angiogenesis. Crit. Rev. Eukaryot. Gene Expr. 2008, 18, 35–45.
[CrossRef]

64. Kurusu, T.; Kuchitsu, K.; Tada, Y. Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under
salinity stress. Front. Plant Sci. 2015, 6, 427. [CrossRef]

65. Pendyala, S.; Viswanathan, N. Redox regulation of Nox proteins. Respir. Physiol. Neurobiol. 2010, 174, 265–271. [CrossRef]
66. Bedard, K.; Karl-Heinz, K. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev.

2007, 87, 245–313. [CrossRef]
67. Shi, X.E.; Zhou, X.; Chu, X.; Wang, J.; Xie, B.; Ge, J.; Guo, Y.; Li, X.; Yang, G. Allicin improves metabolism in high-fat diet-induced

obese mice by modulating the gut microbiota. Nutrients 2019, 11, 2909. [CrossRef]
68. Maghzal, G.J.; Krause, K.H.; Stocker, R.; Jaquet, V. Detection of reactive oxygen species derived from the family of NOX NADPH

oxidases. Free. Radic. Biol. Med. 2012, 53, 1903–1918. [CrossRef] [PubMed]
69. Yang, D.; Lv, Z.; Zhang, H.; Liu, B.; Jiang, H.; Tan, X.; Lu, J.; Baiyun, R.; Zhang, Z. Activation of the Nrf2 signaling pathway

involving KLF9 plays a critical role in allicin resisting against arsenic trioxide-induced hepatotoxicity in rats. Biol. Trace Elem. Res.
2017, 176, 192–200. [CrossRef] [PubMed]

70. Burtenshaw, D.; Hakimjavadi, R.; Redmond, E.M.; Cahill, P.A. Nox, reactive oxygen species and regulation of vascular cell fate.
Antioxidants 2017, 6, 90. [CrossRef]

71. Chen, S.; Tang, Y.; Qian, Y.; Chen, R.; Zhang, L.; Wo, L.; Chai, H. Allicin prevents, H2O2-induced apoptosis of HUVECs by
inhibiting an oxidative stress pathway. BMC Complementary Altern. Med. 2014, 14, 321. [CrossRef] [PubMed]

72. Cho, S.J.; Rhee, D.K.; Pyo, S. Allicin, a major component of garlic, inhibits apoptosis of macrophage in a depleted nutritional state.
Nutrition 2006, 22, 1177–1184. [CrossRef]

73. Horev-Azaria, L.; Eliav, S.; Izigov, N.; Pri-Chen, S.; Mirelman, D.; Miron, T.; Rabinkov, A.; Wilchek, M.; Jacob-Hirsch, J.; Amariglio,
N. Allicin up-regulates cellular glutathione level in vascular endothelial cells. Eur. J. Nutr. 2009, 48, 67–74. [CrossRef] [PubMed]

74. Liu, C.; Cao, F.; Tang, Q.-Z.; Yan, L.; Dong, Y.-G.; Zhu, L.-H.; Wang, L.; Bian, Z.-Y.; Li, H. Allicin protects against cardiac
hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways. J. Nutr. Biochem. 2010, 21,
1238–1250. [CrossRef] [PubMed]

75. Trio, P.Z.; You, S.; He, X.; He, J.; Sakao, K.; Hou, D.-X. Chemopreventive functions and molecular mechanisms of garlic
organosulfur compounds. Food Funct. 2014, 5, 833–844. [CrossRef]

76. Wang, Z.Y.; Shen, L.J.; Tu, L.; Hu, D.N.; Liu, G.Y.; Zhou, Z.L.; Lin, Y.; Chen, L.H.; Qu, J. Erythropoietin protects retinal pigment
epithelial cells from oxidative damage. Free Radic. Biol. Med. 2009, 46, 1032–1041. [CrossRef] [PubMed]

77. Kaarniranta, K.; Pawlowska, E.; Szczepanska, J.; Jablkowska, A.; Blasiak, J. Role of mitochondrial DNA damage in ROS-mediated
pathogenesis of age-related macular degeneration (AMD). Int. J. Mol. Sci. 2019, 20, 2374. [CrossRef]

78. Ozawa, Y. Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration. Redox Biol. 2020,
37, 101779. [CrossRef]

79. Bellezza, I. Oxidative Stress in Age-Related Macular Degeneration: Nrf2 as Therapeutic Target. Front. Pharmacol. 2018, 9, 1280.
[CrossRef]

80. Tu, G.; Zhang, Y.-F.; Wei, W.; Li, L.; Zhang, Y.; Yang, J.; Xing, Y. Allicin attenuates H2O2-induced cytotoxicity in retinal pigmented
epithelial cells by regulating the levels of reactive oxygen species. Mol. Med. Rep. 2016, 13, 2320–2326. [CrossRef]

81. Diaz, L.S.; Schuman, M.L.; Aisicovich, M.; Toblli, J.E.; Pirola, C.J.; Landa, M.S.; García, S.I. Angiotensin II requires an intact cardiac
thyrotropin-releasing hormone (TRH) system to induce cardiac hypertrophy in mouse. J. Mol. Cell. Cardiol. 2018, 124, 1–11.
[CrossRef]

82. Tang, F.; Lu, M.; Yu, L.; Wang, Q.; Mei, M.; Xu, C.; Han, R.; Hu, J.; Wang, H.; Zhang, Y. Inhibition of TNF-α–mediated NF-κB
Activation by Ginsenoside Rg1 Contributes the Attenuation of Cardiac Hypertrophy Induced by Abdominal Aorta Coarctation. J.
Cardiovasc. Pharmacol. 2016, 68, 257–264. [CrossRef]

83. Lai, L.; Chen, J.; Wang, N.; Zhu, G.; Duan, X.; Ling, F. MiRNA-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-
induced heart failure through inhibiting cardiomyocytes autophagy. Life Sci. 2017, 169, 69–75. [CrossRef]

84. Gu, J.; Hu, W.; Song, Z.P.; Chen, Y.G.; Zhang, D.D.; Wang, C.Q. Rapamycin inhibits cardiac hypertrophy by promoting autophagy
via the MEK/ERK/Beclin-1 pathway. Front. Physiol. 2016, 7, 104.

85. Ferro, F.; Servais, S.; Besson, P.; Roger, S.; Dumas, J.F.; Brisson, L. Autophagy and mitophagy in cancer metabolic remodelling. In
Seminars in Cell Developmental Biology; Academic Press: Cambridge, MA, USA, 2020; Volume 98.

86. Abdel-Daim, M.M.; Kilany, O.; Khalifa, H.A.; Ahmed, A.A.M. Allicin ameliorates doxorubicin-induced cardiotoxicity in rats
via suppression of oxidative stress, inflammation and apoptosis. Cancer Chemother. Pharmacol. 2017, 80, 745–753. [CrossRef]
[PubMed]

http://doi.org/10.1089/jmf.2006.9.205
http://doi.org/10.1042/CS20010221
http://doi.org/10.3390/molecules15117792
http://doi.org/10.1615/CritRevEukarGeneExpr.v18.i1.30
http://doi.org/10.3389/fpls.2015.00427
http://doi.org/10.1016/j.resp.2010.09.016
http://doi.org/10.1152/physrev.00044.2005
http://doi.org/10.3390/nu11122909
http://doi.org/10.1016/j.freeradbiomed.2012.09.002
http://www.ncbi.nlm.nih.gov/pubmed/22982596
http://doi.org/10.1007/s12011-016-0821-1
http://www.ncbi.nlm.nih.gov/pubmed/27561292
http://doi.org/10.3390/antiox6040090
http://doi.org/10.1186/1472-6882-14-321
http://www.ncbi.nlm.nih.gov/pubmed/25174844
http://doi.org/10.1016/j.nut.2006.08.011
http://doi.org/10.1007/s00394-008-0762-3
http://www.ncbi.nlm.nih.gov/pubmed/19048328
http://doi.org/10.1016/j.jnutbio.2009.11.001
http://www.ncbi.nlm.nih.gov/pubmed/20185286
http://doi.org/10.1039/c3fo60479a
http://doi.org/10.1016/j.freeradbiomed.2008.11.027
http://www.ncbi.nlm.nih.gov/pubmed/19136057
http://doi.org/10.3390/ijms20102374
http://doi.org/10.1016/j.redox.2020.101779
http://doi.org/10.3389/fphar.2018.01280
http://doi.org/10.3892/mmr.2016.4797
http://doi.org/10.1016/j.yjmcc.2018.09.009
http://doi.org/10.1097/FJC.0000000000000410
http://doi.org/10.1016/j.lfs.2016.09.006
http://doi.org/10.1007/s00280-017-3413-7
http://www.ncbi.nlm.nih.gov/pubmed/28785995


Antioxidants 2022, 11, 87 15 of 19

87. Gao, Y.; Zhao, D.; Xie, W.Z.; Meng, T.; Xu, C.; Liu, Y.; Zhang, P.; Bi, X.; Zhao, Z. Rap1GAP Mediates Angiotensin II-Induced
Cardiomyocyte Hypertrophy by Inhibiting Autophagy and Increasing Oxidative Stress. Oxid. Med. Cell. Longev. 2021,
2021, 7848027. [CrossRef] [PubMed]

88. Li, X.H.; Li, C.Y.; Xiang, Z.G.; Hu, J.J.; Lu, J.M.; Tian, R.B.; Jia, W. Allicin ameliorates cardiac hypertrophy and fibrosis through
enhancing of Nrf2 antioxidant signaling pathways. Cardiovasc. Drugs Ther. 2012, 26, 457–465. [CrossRef]

89. Ba, L.; Gao, J.; Chen, Y.; Qi, H.; Dong, C.; Pan, H.; Zhang, Q.; Shi, P.; Song, C.; Guan, X.; et al. Allicin attenuates pathological
cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways.
Phytomedicine 2019, 58, 152765. [CrossRef]

90. Kong, X.; Gong, S.; Su, L.; Li, C.; Kong, Y. Neuroprotective effects of allicin on ischemia-reperfusion brain injury. Oncotarget 2017,
8, 104492. [CrossRef] [PubMed]

91. Sharifi-Rad, J.; Cristina Cirone Silva, N.; Jantwal, A.D.; Bhatt, I.; Sharopov, F.C.; Cho, W.; Taheri, Y.; Martins, N. Therapeutic
Potential of Allicin-Rich Garlic Preparations: Emphasis on Clinical Evidence toward Upcoming Drugs Formulation. Appl. Sci.
2019, 9, 5555. [CrossRef]

92. Yoo, D.Y.; Kim, W.; Nam, S.M.; Yoo, M.; Lee, S.; Yoon, Y.S.; Won, M.H.; Hwang, I.K.; Choi, J.H. Neuroprotective effects of Z-ajoene,
an organosulfur compound derived from oil-macerated garlic, in the gerbil hippocampal CA1 region after transient forebrain
ischemia. Food Chem. Toxicol. 2014, 72, 1–7. [CrossRef]

93. Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: A general review. Int. J.
Neurosci. 2017, 127, 624–633. [CrossRef]

94. Johri, A.; Beal, M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 2012, 342, 619–630.
[CrossRef] [PubMed]

95. Joshi, A.U.; Mochly-Rosen, D. Mortal engines: Mitochondrial bioenergetics and dysfunction in neurodegenerative diseases.
Pharmacol. Res. 2018, 138, 2–15. [CrossRef]

96. Reddy, P.H.; Reddy, T.P. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr. Alzheimer Res. 2011,
8, 393–409. [CrossRef] [PubMed]

97. Norat, P.; Soldozy, S.; Sokolowski, J.D.; Gorick, C.M.; Kumar, J.S.; Chae, Y.; Yağmurlu, K.; Prada, F.; Walker, M.; Levitt, M.R.; et al.
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