
energies

Article

An Improved Artificial Jellyfish Search Optimizer for Parameter
Identification of Photovoltaic Models

Mohamed Abdel-Basset 1, Reda Mohamed 1,*, Ripon K. Chakrabortty 2 , Michael J. Ryan 2 and Attia El-Fergany 3

����������
�������

Citation: Abdel-Basset, M.;

Mohamed, R.; Chakrabortty, R.K.;

Ryan, M.J.; El-Fergany, A. An

Improved Artificial Jellyfish Search

Optimizer for Parameter Identification

of Photovoltaic Models. Energies 2021,

14, 1867. https://doi.org/10.3390/

en14071867

Academic Editor: Lyes Bennamoun

Received: 13 February 2021

Accepted: 15 March 2021

Published: 27 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Zagazig University, Shaibet an Nakareyah, Zagazig 44519, Egypt;
mohamedbasset@zu.edu.eg

2 Capability Systems Centre, School of Engineering and IT, UNSW Canberra 2052, Australia;
r.chakrabortty@adfa.edu.au (R.K.C.); m.ryan@adfa.edu.au (M.J.R.)

3 Department of Electric Power & Machines, Zagazig University, Shaibet an Nakareyah, Zagazig 44519, Egypt;
el_fergany@ieee.org

* Correspondence: redamoh@zu.edu.eg

Abstract: The optimization of photovoltaic (PV) systems relies on the development of an accurate
model of the parameter values for the solar/PV generating units. This work proposes a modified
artificial jellyfish search optimizer (MJSO) with a novel premature convergence strategy (PCS) to
define effectively the unknown parameters of PV systems. The PCS works on preserving the diversity
among the members of the population while accelerating the convergence toward the best solution
based on two motions: (i) moving the current solution between two particles selected randomly from
the population, and (ii) searching for better solutions between the best-so-far one and a random one
from the population. To confirm its efficacy, the proposed method is validated on three different PV
technologies and is being compared with some of the latest competitive computational frameworks.
The numerical simulations and results confirm the dominance of the proposed algorithm in terms
of the accuracy of the final results and convergence rate. In addition, to assess the performance of
the proposed approach under different operation conditions for the solar cells, two additional PV
modules (multi-crystalline and thin-film) are investigated, and the demonstrated scenarios highlight
the utility of the proposed MJSO-based methodology.

Keywords: artificial jellyfish search optimizer; premature convergence strategy; solar systems;
performance measures; PV modules

1. Introduction

Recently, renewable energy sources (RESs) such as solar, wave, wind, and biomass
play a vital role in addressing the cost, environmental pollution, global warming impact,
and shortage of fossil fuels [1–3]. Among the RESs, solar energy has great potential to
replace fossil fuels due to its ready availability and cleanliness [4]. The photovoltaic
(PV) system is used widely worldwide to directly convert sunlight into electricity [5,6].
For efficient use, an accurate PV model is required for the optimal estimation of the
unknown parameters based on the experimental data measured for PV systems under
different operation conditions.

Meta-heuristic algorithms (MHAs) have been considered the optimal choice for ad-
dressing several real-world problems to identify better solutions in a reasonable time [7–10].
Therefore, MHAs have been widely used to generate the best values of the unidentified
parameters of PV systems. Some of them will be surveyed in the rest of this section.

The Grasshopper optimization algorithm (GOA) improved using the levy flight strat-
egy has been proposed for finding the unknown parameters of the PV models with the
real data under different operating conditions. This proposed algorithm was abbreviated
as LGOA [1]. The integration of levy flight strategy with the GOA guarantees diversity
solutions and improves the exploitation and exploration operators in addition. The experi-
mental findings show that LGOA was superior to GOA with respect to accuracy during
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estimating the unknown parameters of PV models. The marine predators algorithm has
been proposed to solve the parameter extraction problem for the PV models by optimizing
the Lambert W function as an objective function, namely MPALW [11]. This algorithm was
compared with a number of well-established optimization algorithms for identifying the
parameters of the single diode model (SDM) and double diode model (DDM) based on the
empirical data of the Kyocera KC120-1 multi-crystalline PV module model. The outcomes
proved the superiority of this algorithm in comparison with the others.

An approach based on modifying the teaching-learning-based optimization (TLBO)
has been recently proposed to tackle the parameter identification problem of PV models
under any irradiance and temperature level [12]. This modified TLBO (MTLBO) has been
validated on five PV cells and modules and compared with a number of the recent robust
optimization algorithms to see its efficacy. The experimental outcomes show that MLBO is
the best.

A hybrid adaptive TLBO with differential evolution (DE), namely ATLDE, has recently
been proposed for identifying accurately and efficiently the unknown parameters of the PV
models [13]. ATLDE was applied for estimating the parameters of different PV models to
verify their performance. Furthermore, it was compared with a number of well-established
algorithms, which show that this algorithm is competitive in terms of accuracy and conver-
gence speed. The social spider algorithm improved by replacing a number of the worst
solutions at the beginning of each predefined period with other new ones in the search
space was suggested for estimating the unidentified parameters of the PV models [14].

Furthermore, the learning search algorithm (LSA) was improved to identify the
unknown parameters for solar cell models and PV models [15]. This improved LSA (ILSA)
used the constant self-adjustment rate to improve the solutions diversity, the self-adaptive
weight to guide the iterative direction during the optimization process, and the global
optimal neighborhood perturbation and chaotic perturbation methods to avoid falling into
local minima problem and improve final accuracy. The efficacy of ILSA was observed with
some of the state-of-the-art algorithms on SDM, DDM, and PV modules. According to
the experimental outcomes, it is proved that ILSA is the best with regard to accuracy
and effectiveness.

An improved equilibrium optimizer (IEO) has been proposed for extracting the PV
parameters of both SDM and DDM under different operational conditions [4]. The IEO used
two novel strategies, namely linear reduction diversity technique (LRD) and local minima
elimination method (MEM), to promote the exploitation and exploration capability for
reaching better outcomes. IEO was verified on SDM and DDM for R.T.C. France commercial
solar cells and three PV modules. In addition, it was also compared with some of the
recently published state-of-the-art algorithms to observe its superiority.

Recently, MPA and SHADE algorithm were effectively combined for the optimal
parameter values selection of SDM and DDM of monocrystalline, thin-film, and polycrys-
talline [16]. This algorithm was experimentally compared with some of the optimization
techniques to check its effectiveness. The findings show that this algorithm is more effective.
The Coyote Optimization Algorithm (COA) has been adapted for finding the unknown
parameters of various PV solar cell and module models, including SDM, DDM, and third-
diode models [17]. COA was validated on various PV modules using different operating
conditions to check its stability and compared with a number of state-of-the-art techniques
to see its ability in estimating the unknown parameters that fulfill lower value for the root
mean square error (RMSE) with the experimental data. COA could have acceptable RMSE
values of 7.64801 × 10−4, 7.59756 × 10−4, and 7.7547 × 10−4 for DDM, TDM, and SDM.

The bat algorithm has been modified to estimate the unknown parameters of various
PV models and is called the enhanced Lévy flight bat algorithm (ELBA) [18]. This modifi-
cation is based on: improving the diversity of the solutions using a specific mathematical
expression; using the levy flight to improve the local search ability; and balancing between
exploration and exploitation using new equations to update specific control parameters.
The experiments show that ELBA could be superior in terms of stability, effectiveness,
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convergence speed, robustness, and time. An enhanced TLBO (ETLBO) has been proposed
to reach the unknown parameters of the PV cell and modules models, including SDM,
DDM, and two real PV modules [19]. The ETLBO has been suggested to improve balancing
between exploration and exploitation operators in the traditional TLBO by tuning the
parameters which control in those two operators. After validation and comparison, it was
proven that ETLBO was the best in terms of effectiveness and superiority.

A new parameter estimation technique called comprehensive learning Jaya algorithm
(CLJAYA) has been proposed for PV models, which enhances the conventional Jaya al-
gorithm by a mechanism called comprehensive learning used to promote its exploration
capability for avoiding getting stuck in local minima and subsequently reaching better
outcomes [20]. CLJAYA has been applied to extract the parameter values for three PV
models: SDM, DDM, and PV module. As a result of validation and comparison with the
Jaya algorithm, in addition to some of the other competitors, it was shown that CLJAYA
was the best. A boosted Harris hawks optimization algorithm (BHHO) was improved by
borrowing the exploration capability of the FPA and the powerful mutation strategy of
the DE to accelerate convergence and exploration of other regions in the search space [21].
The real results proved the superiority of BHHO compared with the standard approach
and other state-of-the-art methods.

A new meta-heuristic algorithm, namely generalized normal distribution optimization
(GNDO) was applied to estimate the unknown parameters of the SDM, DDM, and PV mod-
ule [22]. This algorithm was experimentally compared with some robust existing parameter
estimation techniques to see its effectiveness. As a result of validation and comparison,
GNDO could be competitive and superior in comparison with the others. The Harris
hawks optimization algorithm has been reported to estimate the unidentified parameters
of PV models [23]. Further, the slime mould algorithm (SMA) was proposed for estimating
the parameters of SDM, DDM, TDM, and PV modules to see its efficacy under a number
of function evaluations of 40,000 [24]. In addition, to validate the performance of SMA,
the obtained outcomes were checked with the empirical data to see how far this algorithm
could be near to the empirical data. More than that, it was also compared with a number of
the meta-heuristic algorithms to see its superiority under various statistical metrics.

The opposition-based mechanism and the Nelder mead simplex method were in-
tegrated with the ant-lion optimization algorithm (ALO) to erase local minima, slow
convergence speed, and imbalanced exploration and exploitation operators during se-
lecting the optimal PV models parameters [25]. The opposition-based mechanism was
used to strengthen the exploration operator of ALO to avoid entrapment into local min-
ima. In addition, the Nelder–Mead simplex method was used for a smooth transfer from
diversified search to an intensified one to increase the convergence speed for reaching
better outcomes. This improved ALO (IALO) was validated by three solar cell and module
models based on the experimental data to see if it can estimate the values of the parameters
that minimize the error with empirical data or not. In addition, it was also compared with
various well-established optimization algorithms to see its effectiveness and superiority.
The experimental findings show that IALO was a promising technique for finding the
unknown parameters of various PV models under standard operating conditions and
various operating conditions.

In the same context, ALO was also improved to erase local minima and low conver-
gence speed for estimating accurately and efficiently the unknown parameters of the PV
cell models; this improved version was abbreviated as improved ALO [26]. This improved
ALO used the tent chaotic map, chaotic search strategy, and adaptive parameter to get rid
of those two problems mentioned above. Then, this algorithm was compared with the
other existing algorithms for identifying the parameters of the PV cells under various irra-
diance and temperature levels. The experimental outcomes confirmed the superiority and
effectiveness of this improved version. A new hybrid algorithm has been proposed for the
optimal selection of the PV models’ parameters [27]. This hybrid algorithm combined the
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symbiotic differential evolution and the moth-flame optimization to utilize the advantages
of each one to reach better accuracy for the PV models’ parameters estimation.

To estimate the parameters of the solar units of SDM and DDM, the JAYA algorithm
was modified by integrating DE with the classical JAYA operator in addition to using a
self-adaptive population size strategy to improve the exploration capability [28]. This algo-
rithm was compared with different variants of JAYA, DE, and other algorithms to prove
its superiority. Winner-leading competitive swarm optimizer with dynamic Gaussian
mutation (WLCSODGM) was used for estimating the parameters of solar photovoltaic
models [29]. WLCSODGM was validated to four different PV models and compared with
12 state-of-the-art algorithms. Many other algorithms have been recently proposed for
tackling the parameters extraction problem of the solar cells, such as hybrid Jaya-NM
algorithm [30], hybrid Firefly and Pattern Search Algorithms [31], genetic algorithm [32],
diversification-enriched Harris hawks optimization with chaotic drifts [33], efficient salp
swarm-inspired algorithm (SSA) [34], and modified SSA [35].

This paper proposes a new model that has a high ability to estimate the optimal
parameters for PV systems (SDM and DDM) under the range of irradiance and temperature
levels. The optimization model is based on an MHA called the artificial jellyfish search
optimizer (JSO), inspired by the behaviors of jellyfish when searching for food. To accelerate
the convergence of the proposed algorithm with preserving the diversity among the
members of the population, a new method is proposed using the premature convergence
strategy (PCS). This method works on preserving the diversity among the members of
the population while accelerating the convergence toward the best solution based on two
motions: (i) moving the current solution between two particles selected randomly from the
population, and (ii) searching for better solutions between the best-so-far and a random
solution from the population; those two motions are managed with a weight variable,
also known as a control variable, which is generated randomly between 0 and 1. When the
weight variable has a high value, then the motion between two particles selected randomly
is high, but if it is small, then the premature method pays attention to the area between the
best-so-far and the randomly selected one.

PCS can assist an MHA to accelerate its convergence towards the best-so-far solution
by preserving the diversity among the members in order to avoid becoming trapped in
local minima. By way of illustration, an MHA is based on two operators: exploration and
exploitation. The former explores the search space of the problem far away from the best
solution looking for the optimal solution; the latter focuses on the best-so-far solution in
the hope of improving its quality. MHAs separate the exploration about the exploitation
by giving emphasis to the exploration operator on the optimization process at the outset,
but that will reduce the convergence toward the best-so-far solution by virtue of searching
for a better solution in regions not near to the best-so-far solution that may be in an area
near to the optimal solution. At the end of the optimization process, the exploitation
capability increases and the exploration fades away forever. Therefore, if the best-so-far
solution is a local minimum, the probability of reaching better is zero. We propose the PCS
method to help an MHA to accelerate convergence while preserving the diversity among
the population to avoid becoming trapped into local minima.

In this work, JSO is modified by PCS to accelerate its performance toward the best
solution by reducing the possibility of falling into local minima; this proposed algorithm is
called the modified JSO (MJSO). MJSO is validated to examine its efficacy on a solar cell
called R.T.C.

France and two different PV units in addition to two other PV modules with different
operating conditions. MJSO is also compared with a number of the well-known robust
algorithms to show its superior performance on the different PV models in regard to
accuracy and convergence speed.

The key contributions of the current work are (i) a novel application of MJSO to tackle
the PV parameters’ identifications, (ii) proposing a new strategy to boost the performance
of the basic JSO using PCS, and (iii) competitive results compared to selected extant MHA.
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The remainder of this paper is arranged as follows. Section 2 describes the different
PV models: SDM, DDM, and PV module. Section 3 describes the standard artificial
JSO. Section 4 explains the steps of the proposed algorithm for addressing the parameter
estimation problem of the PV models: SDM and DDM. Section 5 shows the outcomes of the
proposed approach along with comparisons to show its superiority. Section 6 explains the
managerial implications and Section 7 provides conclusions and summarizes future work.

2. Mathematical Description of the Problem

This section describes the two most common mathematical models used to establish
the I–V and P–V curve characteristics of solar cells and PV modules: SDM and DDM [36].

2.1. SDM

Figure 1 shows the equivalent electrical circuit of the SDM. Iph indicates the photo-
generated current [37]. ID is the diode current and computed as follows [38]:

ID = Isd

(
exp

(
V + I ∗ Rs

n ∗Vt

)
− 1
)

(1)

where Isd is the reverse saturation current of this diode, V is the output voltage, Rs is the
series resistance, n is the diode ideality factor, and Vt is mathematically described as [24]:

Vt =
k ∗ T

q
(2)

where T refers to the temperature degree of the junction in kelvin, k is the Boltzmann
constant (1.3806503 × 10−23 J/K), and q defines the electron charge and is equal to
1.60217646 × 10−19 C.
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Ish is the shunt resistor current and formulated using the following equation [38]:

Ish =
V + I ∗ Rs

Rsh
(3)

where Rsh indicates the shunt resistance. I expresses the output of the SDM and mathemat-
ically formulated as follows [19,38]:

I = Iph − ID − Ish (4)

Substituting Equations (2) and (3) into Equation (4), I is expressed as [19,38]:

I = Iph − Isd

(
exp

(
q ∗ (V + I ∗ Rs)

n ∗ k ∗ T

)
− 1
)
− V + I ∗ Rs

Rsh
(5)

From the mathematical model, five unknown parameters ( Iph, Isd, n, Rs, Rsh) need
to be optimized for better performance of the SDM.
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2.2. DDM

The DDM model in Figure 2 is preferred at low irradiance levels because of its high
accuracy. The equivalent circuit has two diodes in parallel so the DDM is mathematically
described as [19]:

I = Iph − ID1 − ID2 − Ish (6)
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Equation (6) can be described in detail [19,38]:

I = Iph − Isd1

(
exp

(
V + I ∗ Rs

n1 ∗Vt

)
− 1
)
− Isd2

(
exp

(
V + I ∗ Rs

n2 ∗Vt

)
− 1
)
− V + I ∗ Rs

Rsh
(7)

where Isd1 indicates the current of the first diode, while Isd2 expresses the currents of the
second diode, and n1 and n2 are the diodes’ ideality factors. From Equation (7), it is obvious
that there are seven parameters (Iph, Isd1, Isd2, Rs, Rsh, n1, n2) with unidentified values that
need to be extracted accurately in order to optimize the performance of the solar cell DDM.

2.3. Photovoltaic (PV) Module

The mathematical models of the SDM and DDM of a PV module that consists of a
compound of Ns cells connected in series can be also formulated as Equations (5) and (7),
where Vt =

NskT
q [39].

3. Artificial Jellyfish Search Optimizer

Chou and Troung proposed a new MHA based on the behavior of jellyfish in the
ocean—the artificial jellyfish search optimizer (JSO) [40]. The behavior of the JSO for
searching for food in the ocean involves: following the ocean current or movements inside
the swarm, and using a time control mechanism to switch between these movements.

For the initialization steps, the authors in [40] observed several chaotic maps in
addition to the typical random methods to find the better initialization way that will
distribute the solutions within the search space of the problem accurately to accelerate the
convergence and prevent stuck into local minima. After observation, JS is performed better
under the logistic map [41] which is mathematically described as follows [40]:

→
Xi+1 = η

→
Xi(1− Xi), 0 ≤

→
X0 ≤ 1 (8)

→
Xi is a vector that contains the logistic chaotic values of the ith jellyfish.

→
X0 is an initial

vector of jellyfish 0, generated randomly between 0 and 1. This vector is the start point
that is relied on for generating the logistic chaotic values for the remainder of the jellyfish.
η is assigned a value of 4 according to [40]. After initialization, each solution is observed

and the one with the best fitness value is chosen as the location with the most food
→
X
∗
.

After that, the current location of each jellyfish is updated either toward the ocean current
or motions inside the swarm based on the time control mechanism to switch between these
two movements. In mathematical terms, the ocean current is formulated as follows [40]:

→
Xi(t + 1) =

→
Xi(t) +

→
r . ∗

(→
X
∗
− β ∗ r1 ∗ µ

)
(9)
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where
→
r is a vector generated randomly between 0 and 1, and .∗ is the element-by-element

vector multiplication. β > 0 is the distribution coefficient and based on the sensitivity
analysis in [40], β = 3. µ is the mean of the population and r1 is a random number between
0 and 1.

Movements inside the jellyfish swarm are divided into two motions: passive and
active. In passive motion, the jellyfish move around their locations and the new location is
given by the following formula [40]:

→
Xi(t + 1) =

→
Xi(t) + r3 ∗ γ ∗ (Ub − Lb) (10)

where r3 is a random number between 0 and 1, and γ > 0 indicates the length of the motion
around the current location. Ub and Lb are the upper and the lower bound of the search
space of the problem, respectively. The active motion is mathematically formulated as
follows [40]:

→
Xi(t + 1) =

→
Xi(t) +

→
r ∗
→
D (11)

where
→
r is a vector that contains random values between 0 and 1.

→
D is used to determine

the direction of the motion of the current jellyfish within the next generation and this
motion is always in the direction to the location of the best food and formulated according
to the following formula [40]:

→
D =


→
Xi(t)−

→
X j(t), i f f

(→
Xi

)
< f (

→
X j)

→
X j(t)−

→
Xi(t), otherwise

(12)

where j is the index of a jellyfish selected randomly, and f indicates the fitness function.
The time control mechanism is used to switch among the ocean current, passive and active
motions, and includes a constant c0 and a time control function mathematically formulated
as follows [40]:

c(t) =
(

1− t
tmax

)
∗ (2 ∗ r− 1) (13)

where t is the current evaluation, tmax is the maximum evaluation, and r is a random
number between 0 and 1. According to [40], the switching among the movements of
the jellyfish under the time control mechanism is described in Figure 3. According to
Figures 3 and 4, the jellyfish follow the ocean current when c(t) ≥ c0, and move inside the
swam otherwise with passive or active motion; passive motion is applied to the current
jellyfish when a random number, r4, generated randomly between 0 and 1 is greater than
(1 − c(t)), otherwise, active motions are applied. Finally, Figure 4 describes the steps of
the JSO.
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4. Proposed Modified JSO (MJSO)

Within this section, the JSO is integrated with a novel method to promote exploration
and exploitation capabilities when addressing the parameter extraction problem of the
PV models based on SDM and DDM. This novel strategy called the PCS is related to a
control variable to switch between the exploitation capability of the method to increase
convergence toward the best solution and the exploration capability to reduce the likelihood
of becoming trapped in local minima. The steps of the proposed algorithm are described in
detail within the next subsections.

4.1. Initialization

At the start, the proposed algorithm uses a population consist of N solutions
→
Xi(i ∈ N)

and each solution includes a number of the dimensions d equal to the number of the
unknown parameters that need to be optimized: five dimensions (Iph, Isd, n, Rs, Rsh) for
the SDM (see Table 1) and seven dimensions (Iph, Isd1, Isd2, Rs, Rsh, n1, n2) for the DDM
(see Table 2). Afterward, those dimensions are initialized using the logistic chaotic map,
described previously within Section 3, within the search space of each unknown parameter
shown later. After initialization, each solution is evaluated using the objective function
(OF) described in the next section to determine the quality of each solution in comparison
with the other solutions in addition to the solutions obtained within the next generations.
In Tables 1 and 2, the depiction of a solution initialized within the search boundaries of
each unknown parameter given later in Table 3 for estimating the parameters of the SDM
and DDM, respectively, is shown.

Table 1. Depiction of an initial solution for SDM.

Iph(A) Isd(A) Rs(Ω) Rsh(Ω) n

0.760775 3.23E-07 0.036377 53.718523 1.481183

Table 2. Depiction of an initial solution for DDM.

Iph(A) Isd1(A) Rs(Ω) Rsh(Ω) n1 Isd2(A) n2

0.76077 2.7E-07 0.036561 54.5337 1.8266 2.49E-07 1.4609

4.2. Evaluation Phase

The main target of solving the parameter extraction problem is to identify the values
of the unknown parameters that minimize the error between the measured and simulated
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current data; this is the OF used with the proposed algorithm. The root mean squared error
(RMSE) of the OF is computed between the measured current and the simulated current
calculated by solving its non-linear equation using the Newton–Raphson method. In detail,
the OF used with the proposed is described as follows [42,43]:

RMSE = f (Xi) =

√√√√ 1
M
∗

M

∑
k=1

(Im − Ie(V, Xi))2 (14)

Im and Ie are the measured and estimated currents, respectively. M indicates the length of
the measured data. Xi is the estimated parameters of the ith solution. Ie is computed based
on the extracted parameters represented in Xi and using Newton–Raphson for solving
Equations (5) and (7) as follows [42]:

Ie = Ie −
dF
dF′

(15)

dF is the derivative function of I as shown in Equation (16) for SDM. dF′ is the first
derivative of dF with respect to I (see Equation (17) for SDM).

dF = Iph − Isd

(
exp

(
q(V + I ∗ Rs)

nkTNs

)
− 1
)
− V + I ∗ Rs

Rsh
− I (16)

dF′ = −Isd
qRs

nkTNs

(
exp

(
q(V + I ∗ Rs)

nkTNs

)
− 1
)
− Rs

Rsh
− 1 (17)

Ie, dF, and dF′ for the DDM can be similarly formulated.

Table 3. The search boundaries of each unknown parameter.

Parameter
R.T.C. France Cell Photowatt-PWP201 STP6-120/36

Lb Ub Lb Ub Lb Ub

Iph (A) 0 1 0 2 0 8
Isd, Isd1,
Isd1 (A) 0 1E-06 0 50E-06 0 50E-06

Rs (Ω) 0 0.5 0 2 0 0.36
Rsh (Ω) 0 100 0 2000 0 1500
n, n1, n2 1 2 1 50 1 50

4.3. Premature Convergence Strategy (PCS)

From the description of the JSO in Section 3, it can be seen that the exploitation
capability of the algorithm is low due to moving the current jellyfish inside the population
which may not accelerate the convergence toward the best so-far solution, which may
result in the algorithm taking a long time to reach a better solution. Moreover, the local
exploration capability within the regions where the swarms are found is also weak and this
may consume several iterations in searching within regions. Therefore, searching within
the regions inside the swarm that maybe not be explored by any of the other jellyfish will
help to reach better outcomes. This motivates the proposed PCS method to give improve
the algorithm’s ability in the exploitation around the best-so-far solution when the control
variable r is a small and improved exploration around the swarm for reaching other regions
when r is high. Mathematically, the premature convergence method is:

→
Xi(t + 1) =

→
Xi(t) + r ∗

(→
Xr1(t)−

→
Xr2(t)

)
+ (1− r) ∗

(
X∗ −

→
Xr3(t)

)
(18)

where r1, r2, and r3 are the indices of three solutions picked randomly from the population,
r is the control parameter. This control parameter is a random number between 0 and 1 that
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is used to control in moving of the current solution; if it is small, the current solution will be

moved to a location located between the best-so-far and
→
Xr3(t) to accelerate convergence;

if it is high, the current one is updated based on two randomly selected solutions from the
population to promote the ability of the algorithm to reach other regions. This method is
then combined with the JS to modify its performance to reach better solutions in fewer
evaluations. The MJSO method to include PCS is listed in Algorithm 1.

Algorithm 1. The MJSO for the parameter estimation of PV models

Output:
→
x∗

1. Initialization step

2. Evaluate each Xi and set the one with the lowest value in
→
x∗

3. t = 1; //the current iteration
4. while t < tmax
5. for i = 1:N
6. Compute c(t) using Equation (13)
7. If c(t) ≥ c0
8. Jellyfish follow the ocean current using Equation (9)
9. Else// motions inside the warm
10. If r4> (1 − c(t))
11. Passive motions using Equation (10)
12. Else
13. Active motions using Equation (12)
14. End
15. End if

16. Evaluate
→
X i and uses it in the next generation if better

17. Update
→
x∗

18. t = t + 1;
19. End for
20. for i = 1:NP
21. Generate a random number r between 0 and 1.

22. Update the current position of the
→
X i using Equation (18).

23. Repeat Line 15–16.
24. End for
25. End while

4.4. Time Complexity

The time complexity of the proposed algorithm: MJSO is based on two components:

• The big-O of the standard JSO.
• The big-O of the premature convergence method.

In the first, the big-O of JSO is based on three effective factors: the population size
N, the number of the unknown parameters d, and maximum function evaluations tmax,
which is estimated as O(Ndtmax) according to Algorithm 1. In the same context, the time
complexity of the PCM is based on the same three factors and subsequently the same big-O.
Hence, it is concluded that the time complexity of the proposed algorithm is of O(Ndtmax)
since the speed up of both the standard JSO and the premature convergence method is
the same.

4.5. Advantages and Disadvantages

Before speaking about the advantage of the proposed algorithm, let us expose the
strengths and weak points of the JSO. The conventional JSO is based on three behaviors:
moving in the direction based on the ocean current and this behavior, as modeled in
the algorithm, will encourage the exploration capability to search for the better position
including more food; active motions inside the swarm, that will move the current solution
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in the direction of a solution selected randomly from the population and this might also
help in exploring most regions within the search space, but if the optimal solution is near
of the best-so-far solution, the algorithm might fail in reaching it; and passive motions,
which will move the current solution randomly based on the step sizes generated randomly
between the upper bound and lower bound of the optimization problem. All mentioned
above shows that the conventional JSO encourages the exploration capability significantly
and this is considered and advantage and disadvantage at the same time. Therefore,
to overcome this disadvantage, the premature convergence method is proposed to promote
the search in two directions: the first one is in the direction of the best-so-far solution to
promote the exploitation capability, and the other is based on updating the current solution
based on a step size generated using two solutions selected randomly from the population.

5. Results and Discussion

In this section, the performance of the proposed algorithm is validated on four differ-
ent PV models: SDM on R.T.C. France cell, DDM on R.T.C. France cell, Photowatt-PWP201
module [44], and STP6-120/36 module [45]. In addition, to determine the stability of the
proposed algorithm under different operation conditions, its performance is observed
on two commercial PV systems based on SDM and DDM [46,47]. To confirm the supe-
riority of the proposed algorithm, some of the recent parameter extraction algorithms
are implemented using the same parameters values as in the cited paper to be compared
with MJSO:

1. Classified Perturbation Mutation Based PSO (CPMPSO) [46].
2. Improved Teaching Learning-Based Optimization (ITLBO) [48].
3. Whale Optimization Algorithm (WOA) [49].
4. Generalized normal distribution optimization (GNDO) [22].
5. Sine cosine algorithm (SCA) [50].
6. The standard JSO [40].

The experiments are conducted on a device with Intel(R) Core(TM) i7-4700MQ CPU @
2.40 GHz, 32 GB RAM, Windows 10, and MATLAB R2019a to implement the algorithms.
This part is structured as follows:

• Section 5.1 exposes the characteristics of the PV models.
• Section 5.2 shows the sensitivity analysis.
• Section 5.3 compares MJSO and JSO under the convergence speed.
• Section 5.4 gives the comparison of the R.T.C. France cell based on SDM.
• Section 5.5 announces a comparison of the R.T.C. France cell based on DDM.
• Section 5.6 gives a comparison of the Photowatt-PWP201 module.
• Section 5.7 announces a comparison of the STP6-120/36 module.
• Section 5.8 demonstrates the performance comparisons of the two commercial PV models.

5.1. Characteristics of Various Used PV Models

MJSO is validated on four well-known PV models: SDM on R.T.C. France cell, DDM on
R.T.C. France cell, Photowatt-PWP201 module, and STP6-120/36 module due to using
widely in the literature as test systems [20,24,51–55]. For the SDM and DDM, the current–
voltage data are measured on a 57-mm diameter commercial silicon R.T.C. France solar cell
under 1000 W/m2 at 33 ◦C [44]. To determine the performance of the proposed algorithm
under different temperature levels, two different PV modules are used: the first is the
Photowatt-PWP201 module compounded of 36 polycrystalline silicon cells connected in
series and the current–voltage data are measured at 45 ◦C [44]. The second are the STP6-
120/36 modules that also consist of 36 polycrystalline silicon cells connected in series and
measured at 55 ◦C. The measured current–voltage data of the STP6-120/36 module are
taken from [45,56]. The search boundaries of the unknown parameters are introduced in
Table 3 as used in the other literature [39,48,57–59].

In addition, two solar modules—thin-film ST40 and mono-crystalline SM55 [12]—are
used to determine the performance of the proposed algorithm under a range of operation
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conditions involving five irradiance levels: 200 W/m2, 400 W/m2, 600 W/m2, 800 W/m2,
and 1000 W/m2 for both two modules and three temperature levels for mono-crystalline
SM55 and four for thin-film ST40. The search boundary of Isc is specified according to the
datasheet parameters of each module at the standard test condition (STC). Firstly, at the
non-standard condition, Isc is computed as described in [36]:

Isc = Isc−STC ∗
G

GSTC
+ ∝ (T − TSTC) (19)

where T and G indicate the temperature and irradiance, respectively. Isc−STC refers to the
short circuit current at STC, and ∝ expresses the temperature coefficient for the short circuit
current [12]. Then, the upper bound and lower bounds of Iph plus the other unknown
parameters are assigned as described in Table 4. Further details in regard to the computation
of other parameters such as Iph, Isd, Rsh, and band-energy voltage

(
Eg
)

for the non-standard
condition can be found in [12].

Table 4. Upper bound and lower bound for unknown parameters of both SM55 and ST40.

Parameter
SM55 and ST40

Lb Ub

Iph (A) 0 2*Isc
Isd 0 100E-06

Rs (Ω) 0 2
Rsh (Ω) 0 5000

n, n1, n2/cell 1 4

5.2. Parameter Setting

For all the algorithms used in these experiments, the maximum number of evaluations
is set to 80,000. However, the population size may negatively affect the performance of the
algorithms due to reducing the number of evaluations of each solution when the population
size N is high. Therefore, to adjust the value of the parameter N, several values are used
and the performance of the proposed approach under each value within 30 independent
trials is observed and illustrated in Figure 5. According to this figure, values of 5, 22,
24, 23, 25, 40, and 50 for N degrade the performance of the algorithms. Meanwhile,
the performance of the proposed approach reaches the maximum when N is between 8
and 17 while deteriorating a little between 18 and 21. Within the experiments, N is set to
17. Based on the original algorithm [40], the values of β, c0, and γ are set to 3, 0.5, and 0.1,
respectively. Table 5 reveals the parameter settings of the algorithms.
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Table 5. Parameter settings of the compared algorithms.

Algorithm Parameter Value Algorithm Parameter Value

CPMPSO

N 50 MJSO N 17
tmax (Number of evaluations) 80,000 tmax 50,000
Acceleration coefficient (c1) 1.49445 β 3
Acceleration coefficient (c2) 1.49445 c0 0.5

Inertia weight (w) 0.7298

ITLBO
N 50 JSO N 50

tmax 80,000 tmax 80,000

WOA
N 50 GNDO N 50

tmax 80,000 tmax 80,000
b 1

SCA
N 50

tmax 80,000

5.3. Comparison between JSO and MJSO in Term of Convergence Speed

The proposed MJSO algorithm is compared in Figure 6 with the standard algorithm:
JSO according to the convergence speed under the different number of evaluations in-
volving 80,000, 40,000, 10,000, and 5000. According to this figure, our proposed algorithm
has a higher convergence speed in comparison with the JSO under a different number
of evaluations. In detail, in Figure 6a–d, which picture the convergence curve of MJSO
and JSO within 80,000 function evaluations for approximating the unknown parameters of
SDM, DDM, Photowatt-PWP201, and STP6-120/36, MJSO could dramatically reach less
RMSE value in comparison with the standard one and this obvious superiority is due to the
premature convergence method, which helps in promoting the exploitation capability of the
standard one with avoiding stuck into local minima. Furthermore, those two algorithms,
MJSO and JSO, are compared under the other three maximum function evaluations to see
if the performance of PCM is stable with the number of function evaluations or not. Af-
ter picturing the convergence curve for those three maximum function evaluations within
Figure 6e–h for 40,000 function evaluations, Figure 6i–l for 10,000 function evaluations,
and Figure 6m,n for 5000 function evaluations, it is obvious that the improved version is
the best and this shows the effectiveness of our proposed method.

5.4. Results for R.T.C France Cell Based on SDM

After running each algorithm 30 independent times, the extracted parameters that
achieved the best RMSE for each algorithm within these runs are introduced in Table 6
with the corresponding RMSE. The table shows that ITLBO, CPMPSO, GNDO, and the
proposed algorithm achieved the best value for RMSE, while JSO achieves a better RMSE
for both WOA and SCA. The best, average, and worst values of the RMSE within these
runs are arranged in Table 7, which shows that CPMPSO, GNDO, ITLBO, and MJSO can
achieve the same average with a value of 0.0007730063. Five algorithms, including the
proposed one, achieve lower average values for RMSE on SDM, so the convergence curve
is used to determine which algorithm could reach the best RMSE in fewer. The parameters
extracted by the MJSO are used to draw the I–V, P–V curves, and error values between all
I estimated and I measured data points were computed using Equation (19) in Figure 7,
which shows that MJSO identifies the parameter values that produce simulated data that
are significantly harmonious with the measured for both I–V and P–V. The Time column in
Table 7 shows the time, in seconds, needed by each algorithm. MJSO is in the fourth rank
in terms of CPU time after SCA, WOA, and ITLBO.

error value = (−Im,k + Ie,k(Vk, Xi)), k = 1, 2, 3, 4 . . . M (19)
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Table 6. Comparison of the R.T.C. France SDM based on the best-extracted parameter values and
their RMSE.

Algorithms Iph(A) Isd(A) Rs(Ω) Rsh(Ω) n RMSE

ITLBO [48] 0.760788 3.11E-07 0.036547 52.88979 1.477268 0.0007730063
JSO [40] 0.76079 3.11E-07 0.036547 52.888226 1.477272 0.0007730063

CPMPSO [46] 0.760788 3.11E-07 0.036547 52.88979 1.477268 0.0007730063
WOA [60] 0.761629 3.86E-07 0.035308 45.93082 1.499535 0.0010858206
SCA [50] 0.75826 4.09E-07 0.035951 68.838809 1.505000 0.0024834154

GNDO [22] 0.760788 3.11E-07 0.036547 52.88979 1.477268 0.0007730063
MJSO 0.760788 3.11E-07 0.036547 52.88979 1.477268 0.0007730063

Bold values refer to the optimal outcomes.

Table 7. Comparison of SDM.

Algorithms Best Worst Avg SD Rank Time (S)

ITLBO [48] 0.0007730063 0.0007730063 0.0007730063 1.07705E-17 1 0.62
JSO [40] 0.0007730063 0.0007747280 0.0007730737 3.12840E-07 2 0.83

CPMPSO [46] 0.0007730063 0.0007730063 0.0007730063 9.40000E-18 1 4.54
WOA [60] 0.0010858206 0.0392926194 0.0052829509 6.82142E-03 4 0.63
SCA [50] 0.0024834154 0.0446736790 0.0244466994 1.50365E-02 5 0.54

GNDO [22] 0.0007730063 0.0007730063 0.0007730063 1.04628E-17 1 1.15
MJSO 0.0007730063 0.0007730063 0.0007730063 9.76743E-18 1 0.77

Bold values indicate the best results.
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5.5. Results for R.T.C. France Cell Based on DDM

The best-extracted parameter values and the corresponding RMSE over 30 indepen-
dent runs on the DDM is introduced in Table 8 which shows that CPMPSO, GNDO,
and MJSO attain the best parameter values with lower RMSE. Table 9 shows the best, aver-
age, worst, and SD obtained by each algorithm within the 30 independent runs. MJSO can
be seen to outperform all the other algorithms in the average of RMSE with a value of
0.0007419371, while SCA is the worst with a value of 0.0480180357. Figure 8a,b show that
the parameters estimated by MJSO produce a consistent match between the measured
and estimated data for both the I–V and P–V characteristics. In addition, Figure 8c was
presented to show the error value between each I estimated and I measured on R.T.C France
cell based on DDM, which confirms that the selected parameter values by MJSO could
significantly reach I estimated values so near that of the measured ones. This superiority in
terms of RMSE and convergence curve is because of the PCM that could help in improving
the exploitation capability of the proposed algorithm to reach better outcomes by avoiding
stuck into local minima. Even now, our proposed algorithm is a strong alternative to the
existing algorithms as elaborated in the current and previous sections.
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Table 8. Comparison on the DDM in terms of obtained parameter and the corresponding RMSE.

Algorithms Iph(A) Isd1(A) Rs(Ω) Rsh(Ω) n1 Isd2(A) n2 RMSE

ITLBO [48] 0.7608 2.47E-07 0.0368 53.9599 1.4579 4.78E-07 1.9949 0.0007422641
JSO [40] 0.7608 5.38E-07 0.0371 54.4640 1.7980 1.61E-07 1.4262 0.0007541675

CPMPSO [46] 0.7608 7.03E-08 0.0378 56.2715 1.3642 1.00E-06 1.7963 0.0007419371
WOA [60] 0.7608 2.67E-07 0.0368 51.8538 1.4662 4.10E-08 1.6133 0.0007764641
SCA [50] 0.7684 0.00E+00 0.0324 38.3064 1.1740 3.84E-07 1.4970 0.0073511847

GNDO [22] 0.7608 1.00E-06 0.0373 55.6033 1.9051 1.40E-07 1.4130 0.0007423279
MJSO 0.7608 7.03E-08 0.0378 56.2715 1.3642 1.00E-06 1.7963 0.0007419371

Bold values indicate the best results.

Table 9. Comparison of the DDM.

Algorithms Best Worst Avg SD Rank Time (S)

ITLBO [48] 0.0007422641 0.0007722457 0.0007559007 9.86421E-06 4 0.65
JS [40] 0.0007541675 0.0007841579 0.0007703203 6.92073E-06 5 0.99

CPMPSO [46] 0.0007419371 0.0007467838 0.0007421432 9.08E-07 2 5.52
WOA [60] 0.0007764641 0.0387099260 0.0061785479 9.77291E-03 7 0.65
SCA [50] 0.0073511847 0.0480180357 0.0299392021 1.61644E-02 6 0.63

GNDO [22] 0.0007423279 0.0007452253 0.0007433514 7.17546E-07 3 1.21
MJSO 0.0007419371 0.0007419406 0.0007419372 6.39E-10 1 0.94

Bold values indicate the best findings.
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5.6. Results for the PHOTOWATT-PWP201 Module

Table 10 announces the extracted parameters for the Photowatt-PWP201 module for
the best RMSE within 30 independent trials of each algorithm. ITLBO, CPMPSO, GNDO,
and MJSO are competitive on this model because all could reach the same smallest value of
RMSE. Table 11 lists the stability of the algorithms over all the runs and ITLBO, CPMPSO,
GNDO, and MJSO are competitive with the lowest values of the average values of RMSE.
Figure 9 confirms that there is good consistency between the estimated and experimental
data for MJSO for both the I–V and P–V principal characteristics and hence the error values
between the I measured and estimated are so small as confirmed in Figure 9c.

Table 10. Comparison on the Photowatt-PWP201 module under extracted parameter values and the
corresponding RMSE.

Algorithms Iph(A) Isd(A) Rs(Ω) Rsh(Ω) n RMSE

ITLBO [48] 1.031434 2.64E-06 1.235634 821.6413 47.59823 0.0020529606
JSO [40] 1.03137 2.64E-06 1.235211 827.1906 47.60654 0.0020531476

CPMPSO [46] 1.031434 2.64E-06 1.235634 821.6413 47.59823 0.0020529606
WOA [60] 1.030221 4.22E-06 1.178008 1105.314 49.39672 0.0022966238
SCA [50] 1.03364 1.18E-05 0.930711 1268.463 53.72168 0.0117780330

GNDO [22] 1.031434 2.64E-06 1.235634 821.6413 47.59823 0.0020529606
MJSO 1.031434 2.64E-06 1.235634 821.6413 47.59823 0.0020529606

Bold values refer to the optimal results.
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Table 11. Comparison on the Photowatt-PWP201 module.

Algorithms Best Worst Avg SD Rank Time (S)

ITLBO [48] 0.0020529606 0.0020529606 0.0020529606 8.60342E-18 1 0.57
JSO [40] 0.0020531476 0.0020721180 0.0020582422 5.22985E-06 2 0.85

CPMPSO [46] 0.0020529606 0.0020529606 0.0020529606 7.59000E-18 1 4.94
WOA [60] 0.0022966238 0.2742508362 0.0733819237 9.48170E-02 4 0.53
SCA [50] 0.0117780330 0.2743100751 0.1712452167 1.20550E-01 5 0.52

GNDO [22] 0.0020529606 0.0020529606 0.0020529606 2.04091E-17 1 1.20
MJSO 0.0020529606 0.0020529606 0.0020529606 1.05495E-17 1 0.82

Bold values indicate the optimal outcomes.
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5.7. Results for the STP6-120/36 Module

In this section, the performance among the algorithms on the STP6-120/36 module
will be compared. Table 12 displays the best RMSE estimated by each algorithm with the
corresponding extracted parameters. ITLBO, CPMPSO, GNDO, and MJSO have the lowest
RMSE value. Table 13 shows the best, average, worst, SD, Rank, and time in seconds; ITLBO,
CPMPSO, GNDO, and MJSO are competitive in terms of best, average, worst, while ITLBO
is superior in terms of SD and time. Figure 10 confirms that the obtained parameters
produce a consistent match between the measured and simulated characteristics.

Table 12. Comparison on the STP6-120/36 in terms of extracted parameter and the correspond-
ing RMSE.

Algorithms Iph(A) Isd(A) Rs(Ω) Rsh(Ω) n RMSE

ITLBO [48] 7.475284 1.93E-06 0.168918 570.1972 44.80042 0.0142510636
JSO [40] 7.47525 1.93E-06 0.168905 571.5660 44.80254 0.0142510668

CPMPSO [46] 7.475284 1.93E-06 0.168918 570.1975 44.80042 0.0142510636
WOA [60] 7.503181 3.27E-06 0.157818 307.7831 46.40846 0.0175819626
SCA [50] 7.56027 1.70E-06 0.173188 323.9495 44.38346 0.0524438250

GNDO [22] 7.475284 1.93E-06 0.168918 570.1972 44.80042 0.0142510636
MJSO 7.475284 1.93E-06 0.168918 570.1975 44.80042 0.0142510636

Bold values refer to the optimal findings.

Table 13. Comparison of the STP6-120/36 module.

Algorithms Best Worst Avg SD Rank Time (S)

ITLBO [48] 0.0142510636 0.0142510636 0.0142510636 6.48898E-17 1 0.59
JSO [40] 0.0142510668 0.0142787559 0.0142541538 5.09788E-06 2 0.89

CPMPSO [46] 0.0142510636 0.0142510636 0.0142510636 6.43E-17 1 4.2
WOA [60] 0.0175819626 1.4131220500 0.3060754580 4.56106E-01 3 0.54
SCA [50] 0.0524438250 1.4131220567 0.4211660060 5.09904E-01 4 0.61

GNDO [22] 0.0142510636 0.0142510636 0.0142510636 4.99530E-17 1 1.18
MJSO 0.0142510636 0.0142510636 0.0142510636 5.54223E-17 1 0.84

Bold values indicate the best results.
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Five algorithms, including the proposed one, achieve lower average values for RMSE
on SDM, so the convergence curve is used to determine which algorithm could reach the
best RMSE in fewer evaluations (see Figure 11). Figure 11a,b shows that the proposed
algorithm has a high convergence in comparison to the other algorithms for R.T.C France.
Figure 11b introduces the convergence curve of each algorithm on DDM, showing that
MJSO converges faster. This superiority in terms of RMSE and convergence curve is be-
cause of the PCM that could help in improving the exploitation capability of the proposed
algorithm to reach better outcomes by avoiding stuck into local minima. However, the con-
vergence curve in Figure 11c shows that MJSO again converges the fastest. Once again,
Figure 11d shows that the proposed algorithm converges fastest for STP6-120/36 based
on SDM.
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5.8. Observation with Experimental Data from the Manufactures’ Datasheets

To observe its practicability, the proposed algorithm is used in this section to find
the values of the unknown parameters of DDM and SDM for two commercial PV models:
mono-crystalline SM55, also called single crystalline silicon solar panels, and thin-film ST40.
The experimental data for those PV modules are extracted from the I–V curves introduced
by the manufacture’s datasheet at five different irradiance levels: 1000 W/m2, 800 W/m2,
600 W/m2, 400 W/m2, and 200 W/m2, and three temperature levels for SM55 and four
for ST40. In terms of convergence, Figures 12–20 illustrate without any doubts that the
proposed algorithm reaches the best solution in fewer iterations and are presented to show
the error value between each I measured and I estimated on SM55 and ST40, respectively,
at varied temperature levels to show how far our proposed could accurately estimate the
unknown parameters. The latter mentioned is detailed as follows:
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independent trials. In addition, it can be observed that all the algorithms achieve the same 
value within 30 independent runs. Figures 12 and 18 establish the consistency between 
the measured and estimated data for both the I–V and P–V curves confirming the accuracy 
of the obtained parameters by MJSO for both ST40 and SM55 at various temperature 
levels. Figures 14 and 16 also indicate the accuracy of the estimated parameters by 
MJSO for those two modules at various irradiance levels. In addition, Figures 13 and 
21 are presented to show the error value between each I measured and I estimated on SM55 
and ST40, respectively, at varied temperature levels to show how far our proposed could 
accurately estimate the unknown parameters. After inspecting those figures, it is obvious 
that the proposed algorithm could accurately estimate the parameter values that minimize 
the error values between the measured and estimated data and this reflects the superior 
performance of our proposed algorithm. In addition, Figures 15 and 17 depict the error 
value between each I measured and I estimated on SM55 and ST40 at different irradiance 
levels, respectively. Those figures show that the error values between the measured and 
estimated I are so small and this reflects the high-ability of our proposed algorithm in 
accurately estimating the unknown parameters. Table 16 exposes the estimated 
parameters with its corresponding RMSE obtained by MJSO under different G and T for 
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A. Case Study 1: Single Diode Model
In this section, the efficacy of MJSO is observed on SM55 and for ST40 based on

SDM under different operation conditions. Table 14 contains the average, worst, best,
and SD of the RMSE obtained by ITLBO, GNDO, and MJSO at various irradiance levels
with a temperature of 25 ◦C through 30 independent trials. It can be observed that all
the algorithms achieve the same value within 30 independent runs. Regarding Table 15,
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it contains the best, worst, average, and SD of the RMSE obtained by ITLBO, GNDO,
and MJSO at various temperature levels with an irradiance level of 1000 W/m2 through 30
independent trials. In addition, it can be observed that all the algorithms achieve the same
value within 30 independent runs. Figures 12 and 18 establish the consistency between the
measured and estimated data for both the I–V and P–V curves confirming the accuracy
of the obtained parameters by MJSO for both ST40 and SM55 at various temperature
levels. Figures 14 and 16 also indicate the accuracy of the estimated parameters by MJSO
for those two modules at various irradiance levels. In addition, Figures 13 and 21 are
presented to show the error value between each I measured and I estimated on SM55
and ST40, respectively, at varied temperature levels to show how far our proposed could
accurately estimate the unknown parameters. After inspecting those figures, it is obvious
that the proposed algorithm could accurately estimate the parameter values that minimize
the error values between the measured and estimated data and this reflects the superior
performance of our proposed algorithm. In addition, Figures 15 and 17 depict the error
value between each I measured and I estimated on SM55 and ST40 at different irradiance
levels, respectively. Those figures show that the error values between the measured and
estimated I are so small and this reflects the high-ability of our proposed algorithm in
accurately estimating the unknown parameters. Table 16 exposes the estimated parameters
with its corresponding RMSE obtained by MJSO under different G and T for ST40 and
SM55 modules based on SDM.
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Table 14. Comparison at T = 25 ◦C and various G.

Algorithm
ST40 SM55

Avg Worst Best SD Avg Worst Best SD

G = 1000 W/m2

ITLBO [48] 0.0005639798 0.0005639798 0.0005639798 1.56E-17 0.0010291774 0.0010291774 0.001029177 2.69E-17
GNDO [22] 0.0005639798 0.0005639798 0.0005639798 1.63E-17 0.0010291774 0.0010291774 0.001029177 2.42E-17

MJSO 0.0005639798 0.0005639798 0.0005639798 1.93E-17 0.0010291774 0.0010291774 0.001029177 2.14E-17
G = 800 W/m2

ITLBO [48] 0.0005922938 0.0005922938 0.0005922938 1.17E-17 0.0005894903 0.0005894903 0.00058949 2.28E-17
GNDO [22] 0.0005922938 0.0005922938 0.0005922938 1.44E-17 0.0005894903 0.0005894903 0.00058949 2.07E-17

MJSO 0.0005922938 0.0005922938 0.0005922938 1.34E-17 0.0005894903 0.0005894903 0.00058949 2.33E-17
G = 600 W/m2

ITLBO [48] 0.0005846744 0.0005846744 0.0005846744 7.94E-18 0.0007395954 0.0007395954 0.000739595 1.60E-17
GNDO [22] 0.0005846744 0.0005846744 0.0005846744 9.50E-18 0.0007395954 0.0007395954 0.000739595 1.92E-17

MJSO 0.0005846744 0.0005846744 0.0005846744 6.64E-18 0.0007395954 0.0007395954 0.000739595 2.11E-17
G = 400 W/m2

ITLBO [48] 0.0005617498 0.0005617498 0.0005617498 9.22E-18 0.0007047463 0.0007047463 0.000704746 2.28E-17
GNDO [22] 0.0005617498 0.0005617498 0.0005617498 9.91E-18 0.0007047463 0.0007047463 0.000704746 2.07E-17

MJSO 0.0005617498 0.0005617498 0.0005617498 8.87E-18 0.0007047463 0.0007047463 0.000704746 2.33E-17
G = 200 W/m2

ITLBO [48] 0.0004637921 0.0004637921 0.0004637921 1.98E-18 0.0003198549 0.0003198549 0.000319855 2.69E-17
GNDO [22] 0.0004637921 0.0004637921 0.0004637921 2.61E-18 0.0003198549 0.0003198549 0.000319855 2.42E-17

MJSO 0.0004637921 0.0004637921 0.0004637921 2.70E-18 0.0003198549 0.0003198549 0.000319855 2.14E-17

Bold values indicate the best results.

Table 15. Comparison at various T and G = 1000 W/m2.

Algorithm
ST40 SM55

Avg Worst Best SD Best Avg Worst SD

T = 25 ◦C T = 25 ◦C
ITLBO [48] 0.000564 0.000564 0.000564 1.33E-17 0.0010292 0.0010292 0.0010292 1.92E-17
GNDO [22] 0.000564 0.000564 0.000564 1.53E-17 0.0010292 0.0010292 0.0010292 2.00E-17

MJSO 0.000564 0.000564 0.000564 1.40E-17 0.0010292 0.0010292 0.0010292 2.26E-17
T = 40 ◦C T = 40 ◦C

ITLBO [48] 0.0007818 0.0007818 0.0007818 1.45E-17 0.0026636 0.0026636 0.0026636 3.71E-17
GNDO [22] 0.0007818 0.0007818 0.0007818 1.75E-17 0.0026636 0.0026636 0.0026636 3.54E-17

MJSO 0.0007818 0.0007818 0.0007818 1.41E-17 0.0026636 0.0026636 0.0026636 4.17E-17
T = 55 ◦C T = 60 ◦C

ITLBO [48] 0.0009651 0.0009651 0.0009651 1.74E-17 0.0022478 0.0022478 0.0022478 2.57E-17
GNDO [22] 0.0009651 0.0009651 0.0009651 2.64E-17 0.0022478 0.0022478 0.0022478 4.02E-17

MJSO 0.0009651 0.0009651 0.0009651 1.03E-17 0.0022478 0.0022478 0.0022478 4.87E-17
T = 70 ◦C

ITLBO [48] 0.000539 0.000539 0.000539 1.68E-17
GNDO [22] 0.000539 0.000539 0.000539 1.67E-17

MJSO 0.000539 0.000539 0.000539 3.19E-17

Bold values indicate the best results.

B. Case Study 2: Double Diode Model
After running each algorithm 30 independent runs on the SM55 module and ST40

module based on the DDM with experimental data extracted at various irradiance levels
(G), the best, average, worst, and SD of the RMSE obtained within those runs are introduced
in Table 17. To the best of our knowledge, ITLBO and GNDO are the best two-parameter ex-
traction models developed to date. MJSO is competitive with those two algorithms, but the
convergence curves in Figures 21–29 illustrate that the proposed algorithm converges faster
and confirm the consistency between the estimated and measured data at various condi-
tions. More specifically, Figures 23 and 25 confirm the consistency between the estimated
and measured data, for both the SM55 module and ST40, respectively. More than that,
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Figures 24 and 28 are presented to picture the error values between the I estimated and I
measured on SM55 and ST40, respectively, at varied irradiance levels to show the ability of
our proposed algorithm in estimating the near-optimal values of the unknown parameters
that minimize those error values. By observation, it is clear that the proposed algorithm
could significantly minimize the error value between the measured and estimated.
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Table 16. The estimated parameters by MJSO at various G and T levels based on SDM.

Parameter ST40 SM55 Parameter ST40 SM55

T = 25 ◦C, and G = 200 W/m2 T = 40 ◦C, and G = 1000 W/m2

Iph (A) 0.53312 0.691509545 Iph (A) 2.68115 3.469926504
Isd (A) 1.45E-06 1.46E-07 Isd (A) 5.49E-06 9.68E-07
Rs ( ) 1.17734 0.286523008 Rs ( ) 1.13189 0.320563643
Rsh ( ) 345.15083 448.2175783 Rsh ( ) 359.65270 495.0786498

n 1.49906 1.183446863 n 1.47289 1.20188218
RMSE 0.00046379 0.000319855 RMSE 0.0007818 0.002663588

T = 25 ◦C, and G = 400 W/m2 T = 55 ◦C, and G = 1000 W/m2

Iph (A) 1.06765 1.382832492 Iph (A) 2.6911303
Isd (A) 1.76E-06 1.01E-07 Isd (A) 2.07E-05
Rs ( ) 1.09107 0.39516802 Rs ( ) 1.13961
Rsh ( ) 360.63189 427.3227638 Rsh ( ) 306.99020

n 1.51885 1.159532356 n 1.46206
RMSE 0.00056175 0.000704746 RMSE 0.000965

T = 25 ◦C, and G = 600 W/m2 G = 1000 W/m2, and T = 60 ◦C
Iph (A) 1.60485 2.07096087 Iph (A) 3.495231764
Isd (A) 1.42E-06 1.51E-07 Isd (A) 6.28E-06
Rs ( ) 1.11530 0.332953565 Rs ( ) 0.323433045
Rsh ( ) 346.98896 447.9630777 Rsh ( ) 456.4139753

n 1.49405 1.187025834 n 1.195804351
RMSE 0.0005847 0.000739595 RMSE 0.002247768

T = 25 ◦C and G = 800 W/m2 and T = 25 ◦C T = 70 ◦C, and G = 1000 W/m2

Iph (A) 2.13808 2.760435313 Iph (A) 2.692803
Isd (A) 1.14E-06 1.41E-07 Isd (A) 8.41E-05
Rs ( ) 1.12708 0.339101259 Rs ( ) 1.12991
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Table 16. Cont.

Parameter ST40 SM55 Parameter ST40 SM55

Rsh ( ) 332.00526 458.1129235 Rsh ( ) 356.24166 -
n 1.47140 1.182239275 n 1.47490

RMSE 0.0005923 0.00058949 RMSE 0.0005390
T = 25 ◦C and G = 1000 W/m2

Iph (A) 2.67589 3.45018412
Isd (A) 1.5005E-06 1.67E-07
Rs ( ) 1.11484 0.330128968
Rsh ( ) 356.13413 480.8300872

n 1.49837 1.194667673
RMSE 0.00056 0.001029177

Table 17. Comparison at T = 25 ◦C and at various G.

Algorithm
ST40 SM55

Best Avg. Worst SD Best Avg. Worst SD

G = 200 W/m2

ITLBO [48] 0.0004415083 0.0004497670 0.0004978335 1.07E-05 0.0003198549 0.0003285538 0.0005203898 3.72E-05
GNDO [22] 0.0004412887 0.0004561559 0.0004602882 7.63E-06 0.0003198549 0.0003198549 0.0003198549 2.05E-18

MJSO 0.0004411123 0.0004453019 0.0004602866 7.67E-06 0.0003198549 0.0003198549 0.0003198549 1.61E-18
G = 400 W/m2

ITLBO [48] 0.0005617498 0.0005617498 0.0005617498 5.66E-18 0.0007047463 0.0007047463 0.0007047463 3.67E-18
GNDO [22] 0.0005617498 0.0005617498 0.0005617498 1.06E-17 0.0007047463 0.0007047463 0.0007047463 4.41E-18

MJSO 0.0005617498 0.0005617498 0.0005617498 8.94E-18 0.0007047463 0.0007047463 0.0007047463 5.77E-18
G = 600 W/m2

ITLBO [48] 0.0005846744 0.0005916726 0.0006381399 1.07E-05 0.0007395954 0.0007550137 0.0008904002 3.77E-05
GNDO [22] 0.0005846744 0.0005846943 0.0005850305 7.73E-08 0.0007395954 0.0007395954 0.0007395954 1.72E-17

MJSO 0.0005846744 0.0005846744 0.0005846744 1.52E-17 0.0007395954 0.0007395954 0.0007395954 3.09E-17
G = 800 W/m2

ITLBO [48] 0.0005922938 0.0006535996 0.0012032795 1.36E-04 0.0005894903 0.0007796570 0.0058091595 0.000951
GNDO [22] 0.0005922938 0.0005937060 0.0006330156 7.43E-06 0.0005894903 0.0005894903 0.0005894903 2.36E-17

MJSO 0.0005922938 0.0005922938 0.0005922938 1.51E-17 0.0005894903 0.0005894903 0.0005894903 2.81E-17
G = 1000 W/m2

ITLBO [48] 0.0005639798 0.0006215359 0.0010948758 1.13E-04 0.0010291774 0.0010570765 0.0012518618 5.89E-05
GNDO [22] 0.0005639798 0.0005643865 0.0005721906 1.54E-06 0.0010291774 0.0010291774 0.0010291774 1.90E-17

MJSO 0.0005639798 0.0005639798 0.0005639798 2.42E-17 0.0010291774 0.0010291774 0.0010291774 3.28E-17

Bold value refers to the best result.

Under different temperature levels and G = 1000 W/m2, Table 18 provides the best,
average, worst, and SD of the RMSE extracted within 30 independent trials. MJSO is
competitive with GNDO at temperature levels of 25 ◦C for the SM55 module, and superior
at all the other levels for both modules. Figures 21 and 27 confirm the extracted parameters
produce consistent results between the measured and estimated data with different T for
both I–V and P–V curves. In addition, to show to how far the outcomes of our proposed
algorithm are near of the I measured, Figures 24 and 26 are presented to show the error
value between each I estimated and I measured on SM55 and ST40 at varied temperature
levels. After inspecting those figures, it was obvious that the proposed algorithm could
significantly minimize the error value between the I estimated and I measured for all
25 datapoints. The estimated parameters with the corresponding RMSE obtained under
the proposed algorithms for those two modules based on DDM at various G and T are
pictured in Table 19.
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at different irradiance.
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Table 18. Comparison among Improved Teaching Learning-Based Optimization (ITLBO), generalized normal distribution
optimization (GNDO), and MJSO at G = 1000 W/m2 and various T.

Algorithm
ST40 SM55

Best Avg. Worst SD Best Avg. Worst SD

T = 25 ◦C T = 25 ◦C
ITLBO [48] 0.0005639798 0.0005975313 0.0007920238 5.44E-05 0.0010291774 0.0010792842 0.0013427016 9.85E-05
GNDO [22] 0.0005639798 0.0005644851 0.0005707906 1.63E-06 0.0010291774 0.0010291774 0.0010291774 2.00E-17

MJSO 0.0005639798 0.0005639804 0.0005639971 3.16E-09 0.0010291774 0.0010291774 0.0010291774 3.22E-17
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Table 18. Cont.

Algorithm
ST40 SM55

Best Avg. Worst SD Best Avg. Worst SD

T = 40 ◦C T = 40 ◦C
ITLBO [48] 0.0007818401 0.0008411024 0.0012483674 1.11E-04 0.0026635883 0.0026698511 0.0027624654 2.15E-05
GNDO [22] 0.0007818401 0.0007818738 0.0007824605 1.27E-07 0.0026635883 0.0026635883 0.0026635883 5.21E-17

MJSO 0.0007818401 0.0007818401 0.0007818401 2.72E-17 0.0026635883 0.0026635883 0.0026635883 8.00E-17
T = 55 ◦C T = 60 ◦C

ITLBO [48] 0.0008751784 0.0009265589 0.0009647880 3.31E-05 0.0022477676 0.0023141713 0.0030494582 0.000153
GNDO [22] 0.0008845343 0.0009462633 0.0009636183 3.20E-05 0.0022477676 0.0022478880 0.0022495080 3.85E-07

MJSO 0.0008751733 0.0009252746 0.0009636183 4.19E-05 0.0022477676 0.0022477676 0.0022477676 7.72E-17
T = 70 ◦C

ITLBO [48] 0.0005390036 0.0005409504 0.0005711203 6.55E-06
GNDO [22] 0.0005390036 0.0005390036 0.0005390036 1.02E-16

MJSO 0.0005390036 0.0005390036 0.0005390036 2.87E-17

Bold value indicates the best result.

Table 19. The estimated parameters by MJSO at various G and T levels based on DDM.

Parameter ST40 SM55 Parameter ST40 SM55

T = 25 ◦C and G = 200 W/m2 G = 1000 W/m2 and T = 40 ◦C
Iph (A) 0.533128071 0.691509545 Iph (A) 2.681147085 3.469926503
Isd1 (A) 1.00E-04 1.46E-07 Isd1 (A) 5.49E-06 9.68E-07
Rs ( ) 1.389590565 0.286522984 Rs ( ) 1.131889775 0.320563644
Rsh ( ) 361.5945492 448.2175819 Rsh ( ) 359.6526938 495.0786584

n1 3.695395541 1.183446871 n1 1.47288933 1.201882177
Isd2 (A) 6.63E-07 4.36E-10 Isd2 (A) 4.79E-16 2.67E-20

n2 1.415993437 1.183446104 n2 3.894289586 1.059268814
RMSE 0.000441112 0.000319855 RMSE 0.00078184 0.002663588

T = 25 ◦C and G = 400 W/m2 T = 55 ◦C and G = 1000 W/m2

Iph (A) 1.067647486 1.382832493 Iph (A) 2.691114387
Isd1 (A) 1.76E-06 1.01E-07 Isd1 (A) 2.02E-05
Rs ( ) 1.091071212 0.395168019 Rs ( ) 1.139967319
Rsh ( ) 360.6318995 427.322756 Rsh ( ) 307.4107912

n1 1.518853785 1.159532355 n1 1.460050927
Isd2 (A) 5.89E-07 7.66E-07 Isd2 (A) 1.00E-06

n2 1.198084303 2.811330228 n2 1.803428118
RMSE 0.00056175 0.000704746 RMSE 0.000963618

T = 25 ◦C and G = 600 W/m2 G = 1000 W/m2 and T = 60 ◦C
Iph (A) 1.604854997 2.07096087 Iph (A) 3.495231762
Isd1 (A) 4.18E-07 2.99E-19 Isd1 (A) 6.28E-06
Rs ( ) 1.115301286 0.332953561 Rs ( ) 0.323433041
Rsh ( ) 346.9889634 447.9630754 Rsh ( ) 456.4140324

n1 1.494046019 1.530239528 n1 1.195804357
Isd2 (A) 1.00E-06 1.51E-07 Isd2 (A) 4.96E-18

n2 1.494046072 1.187025838 n2 1.143884255
RMSE 0.000584674 0.000739595 RMSE 0.002247768

T = 25 ◦C and G = 800 W/m2 G = 1000 W/m2 and T = 70 ◦C
Iph (A) 2.138075668 2.760435313 Iph (A) 2.675888717
Isd1 (A) 4.78E-07 1.00E-17 Isd1 (A) 1.50E-06
Rs ( ) 1.127075246 0.339101255 Rs ( ) 1.114835111
Rsh ( ) 332.0052634 458.1129287 Rsh ( ) 356.1341223 -

n1 1.471397046 3.966370682 n1 1.498371345
Isd2 (A) 6.60E-07 1.41E-07 Isd2 (A) 4.38E-20

n2 1.47139699 1.182239278 n2 1.291342175
RMSE 0.000592294 0.00058949 RMSE 0.00056398
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Table 19. Cont.

Parameter ST40 SM55 Parameter ST40 SM55

T = 25 ◦C and G = 1000 W/m2

Iph (A) 2.675888718 3.45018412
Isd1 (A) 1.50E-06 2.72E-20
Rs ( ) 1.114835118 0.330128971
Rsh ( ) 356.134117 480.8300837

n1 1.498371336 1.558723379
Isd2 (A) 2.34E-19 1.67E-07

n2 1.355469966 1.194667667
RMSE 0.00056398 0.001029177

6. Managerial Implications

Based on the above experiments, a number of observations can be made regarding
the implications related to the proposed models. This research proposes a new alternative
model with high efficiency for estimating the parameters of the PV systems. According to
the results of this model, it has a high ability for efficiently and accurately finding the
unidentified parameters of the SDM and DDM models under various operational condi-
tions in comparison with the recent robust parameter extraction model in terms of the
accuracy of the final results, especially for DDM, and the convergence speed. In addition,
under various operating conditions on two commercial models, SM55 and ST40 based on
both SDM and DDM, the model is able to adapt itself to estimate the optimal values of
the unknown parameters, outperforming the other algorithms in particular for the DDM.
Therefore, MJSO is a straightforward model in terms of understanding and implementa-
tion, in addition to its efficacy for estimating the parameters of the PV models efficiently
and accurately under any conditions in a reasonable time. Consequently, MJSO is a good
alternative for estimating the unidentified parameters of the PV systems under different
operational conditions.

7. Conclusions

This paper presents an effective parameter extraction for PV models (i.e., SDM and
DDM) based on the JSO integrated with a novel PCS; namely MJSO. The PCS is a simple
approach to searching within the search space, preserving the diversity among the solutions
while promoting the convergence speed toward the best solution based on two predefined
motions. The efficiency of the proposed approach is justified on three different PV systems
including SDM and DDM for R.T.C France cell, and other PV modules with different solar
technologies. After validating the proposed approach, it is compared with several recently
published algorithms for solving the same problem under the same conditions for fair
comparisons. The proposed algorithm has shown to be superior to the others based on the
outcomes and convergence speed. By way of quantitative example, for the R.T.C France
cell based on SDM, MJSO could achieve an average RMSE value of 7.730063E-3 A, which is
also achieved by some of the other algorithms but with slow convergence speed. Further,
for DDM and the R.T.C France cell, MJSO minimizes the RMSE until an average value of
7.419372E-3 A and outperformed the other methods. Further, two PV modules at different
irradiance and temperature levels (mono-crystalline and thin-film) are used as examples
of PV technologies to confirm the superiority of the proposed approach under different
operating conditions. Future work involves checking the performance of this method with
one of the other robust optimization algorithms seeking better outcomes for extracting the
parameter values of the solar cell efficiently and accurately.
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