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Abstract: The path planning of unmanned ships in complex waters using heuristics usually suffers
from problems such as being prone to fall into the local optimum, slow convergence, and instability in
global path planning. Given this, this paper proposes a Self-Adaptive Hybrid Bald Eagle Search (SAHBES)
Algorithm by incorporating adaptive factors into the traditional BES in order to enhance the early
global searching ability of the BES algorithm. Moreover, Pigeon-Inspired Optimization (PIO) is
introduced to overcome the disadvantage of traditional BES algorithms: that it is easy for them to
fall into local optimization. This study improves the fitness function by adding a distance between
the ships’ path corners. The obstacle is based on the calculation of the path length. The curve
optimization module is applied to smooth the obtained path to generate more rational path planning
results, which means the path is the shortest and avoids collision successfully. A simulation test of
the SAHBES algorithm on the path planning under different obstacle scenarios is conducted by using
the MATLAB platform. The results show that SAHBES can generate the shortest safe, smooth path in
different complex water environments, considering the limitations of fundamental ship maneuvering
operations compared to other algorithms, thus verifying the feasibility and efficiency of the proposed
SAHBES algorithm.

Keywords: bald eagle search; self-adaptive factors; curve optimization; unmanned ships; global
path planning

1. Introduction

In recent years, with the development of water transportation, the number of ships
has increased dramatically, and the size of the vessels has mainly expanded. Suppose ship
collision accidents occur in the navigation area. In that case, the navigation of ships near
the accident area will be affected, and the leakage accident caused by the collision will
cause large-scale pollution in the water area. Therefore, effectively reducing the risk of ship
collision is a significant challenge facing the current shipping safety field [1].

The research on ship collision avoidance systems is significant to ship navigation safety.
The path planning of ships is more complex than that of mobile robots due to the in-

fluence of factors such as the navigation environment and ship maneuverability. Therefore,
autonomous collision avoidance, path planning, and other issues of unmanned ships have
always been the research focus of the shipping industry. Ship path planning methods can
be broadly grouped into two categories. One is deterministic ship path planning based on
mathematical, physical, and other theoretical backgrounds; the other is based on intelligent
optimization techniques, such as a heuristic algorithm.

1.1. Complicated Waters

At present, there is no clear definition of complex waters, which usually refers to
waters with poor natural conditions, complex ship traffic flow, and great difficulty for
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ships to navigate, including offshore construction waters, bridge area waters, multi-channel
intersection waters, channel bending sections, narrow channel sections, shoal navigation
areas, and the dam area navigation section, anchoring area, fishing area for fishing vessels,
island and reef area [2].

However, the complex waters studied in this paper mainly include waters with a high
navigation density and many obstacles, which make it challenging to avoid ship collisions.

1.2. Ship Collision Avoidance Path Planning Based on Deterministic Mathematical Methods

The research on ship collision avoidance based on deterministic methods such as
mathematics and physics primarily uses geometry, analytics, kinematics, and field theory.
The research history can trace back to the early 1990s. The Japanese scholars
Iijima and Hagiwara [3] developed a ship-automatic collision avoidance decision control
system that automatically implements collision avoidance strategies. This control system
uses the breadth-first search method to select and plan collision avoidance paths. However,
in thedesign of the system, the single collision avoidance scenario lacks universality.

With the rapid development of the shipping industry, ship collision avoidance has
become a hot issue in maritime transportation. More and more, scholars have invested
in ship collision avoidance and path planning. Tsou et al. [4] used the predicted area of
danger (PAD) theory in the principle of ship collision avoidance. The relative speed, the
relative orientation of two ships, and the distance to the closest point of approach (DCPA)
or time of closest point of approach (TCPA) predict the area where other ships may collide
with their ship in the future and regard the PAD area as a static obstacle. The evolutionary
algorithm searches for a safe path to avoid static obstacles and PAD areas. Zhang et al. [5]
proposed a real-time collision avoidance method for under-actuated ships based on im-
proved dynamic virtual ships, which uses a control method combining neural networks
and robust neural damping technology to achieve automatic collision avoidance. During
collision avoidance, the course angle and speed change smoothly, which is consistent with
the actual navigation of ships. Jeong et al. [6] proposed a multi-criteria path planning
technique to quantitatively assess the navigation traffic risk of routes using ship domain
models, and then by structuring the data into contour maps. Finally, the path planning
model is established based on the main criteria of security and efficiency. The AIS data
from the numerical simulation and actual evaluation show that the technology can generate
and evaluate target-oriented routes at the same time. Huang et al. [7] proposed a general-
ized velocity obstacle algorithm (GVO) for ship path planning. This algorithm effectively
compensates for the shortcomings of previous collision avoidance path planning research
by assuming a constant speed, ignoring the ship kinematics model, and not taking the
Convention on the International Regulations for Preventing Collisions at Sea (COLREG)
into account. Yu et al. [8] proposed a path planning method based on dynamic cluster
analysis (DCA) because of the long iteration time of path planning in the situation of
multi-ship encounters and the impact of target ship behavior changes on path planning.
This method reduced the number of calculation targets and improved the efficiency of path
planning. Chen et al. [9] proposed a hybrid method for global path planning of marine au-
tonomous surface ships (MASS), which used the concept of time-varying collision risk (TCR)
to calculate the collision risk between ships and obstacles. Moreover, the team also pro-
posed a new cost function to combine the proximity of obstacles with the impact of collision
risk in the region; finally, the fast-marching square algorithm is used to generate the globally
optimal path. Zhao et al. [10] first proposed a path-tracking control algorithm for surface
ships based on global heading constraints. The controller is designed using a closed-loop
gain-shaping algorithm (CGSA) and nonlinear feedback technology. The algorithm ensures
that the ship can follow the predetermined track with a slight rudder angle, rolling angle,
and smooth course change, to be more in line with other maritime transportation.
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1.3. Ship Collision Avoidance Path Planning Based on Heuristic Algorithms

With the rapid development of artificial intelligence, heuristic algorithms such as the
A star algorithm, deep reinforcement learning [11,12], the particle swarm optimization algo-
rithm, the genetic algorithm [13], and Markov decision making have also been extensively
applied in collision avoidance decision-making and path planning.

Singh [14] proposed the use of the A star method for the current and dynamic and static
obstacles in the marine environment, as it is used to plan the optimal path of unmanned
ships in a restricted marine environment. The simulation of different environmental
conditions proves that this method can generate a safer route path without reducing
navigation efficiency based on the traditional A star. He et al. [15] proposed a dynamic
path planning method based on the A star algorithm and ship navigation rules for complex
multi-ship encounter situations, namely, the Dynamic Anti-collision A-Star (DAA star)
algorithm. This algorithm considers the maneuverability constraints of a single ship
and the differences between ships, and can solve the path planning problem of dynamic
obstacles in multi-ship encounter situations. Xie et al. [16] proposed a global and multi-
directional A-star algorithm, which first displayed the artificial potential field (APF) in a
scalar mode.

Furthermore, a punishment mode was established for submarine pipelines, which,
combined with the A star optimization algorithm, reasonably planned out the path of
working ships in the offshore wind farm to ensure the safety and efficiency of navigation.
Tharwat et al. [17] used the model of the Bezier curve to plan the path, used a new chaotic
particle swarm optimization algorithm to optimize the control points of the Bezier curve,
and proposed two variants of particle swarm optimization algorithm: CPSO-I and CPSO-II.
The experiment proved that both variants could find the optimal path. Based on the premise
that there is no external interference in the open sea area, Li et al. [18] used the improved
multi-objective optimization algorithm NSGA-II, combined with the ship domain model,
to conduct collision avoidance simulation experiments. The experimental results show that
this method can optimize the ship’s collision avoidance strategy and provide a reasonable
scheme for the ship’s navigation path. Joohyun and Nakwan [19] proposed an autonomous
collision avoidance method based on deep reinforcement learning for the collision avoid-
ance process of unmanned surface ships. This method uses the visual recognition ability
of the deep neural network to analyze the encounter situation of ships and determine the
stand-on and giveaway vessels. The deep learning, combined with the Markov decision-
making model, is used to establish a collision avoidance simulation experiment, and the
optimal collision avoidance strategy is obtained through continuous iterative training.
Xue [20] designed a sine-cosine particle swarm optimization (SC-PSO) algorithm based on
quasi-reflection. The new algorithm has a fast convergence speed and ideal results, and
the effectiveness and rationality of the algorithm have been proven through simulation
experiments. Han et al. [21] proposed a dynamic hybrid path planning scheme. In this
method, a non-uniform cost map with a risk function for global path planning and an
implemented reverse search from the target node through a non-uniform Theta-A star are
used to solve the problem of a path falling into the local optimum. Experimental results
show the effectiveness of the proposed algorithm.

In conclusion, the ship collision avoidance model based on the deterministic mathe-
matical method has high computational complexity and accurate results. However, such
methods generally only consider the navigation status between collision avoidance ships
for calculation and often need to consider the changeable and complex navigation envi-
ronment at sea, with a poor degree of freedom and generalization ability. In order to solve
this problem, artificial intelligence algorithms are widely used in ship collision avoidance
and path planning. With the help of computers, vessels’ collision avoidance simulation
experiments can consider the impact of ship parameters, the external environment, and
other complex factors on collision avoidance between ships, making the collision avoidance
process more realistic and the results more accurate. However, most heuristic algorithms
require extensive training and many iterations to get accurate results, which sometimes
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affects computational efficiency. In order to solve this problem, this paper refers to the idea
of the Bald Eagle Search Algorithm. It proposes an adaptive hybrid eagle Search Algorithm
to study ship collision avoidance and path planning.

In order to solve the problems of global path planning for unmanned ships in complex
waters, which ca easily fall into the local optimum with slow and unstable convergence,
this paper is inspired by the Bald Eagle Search Algorithm (BES). It makes various improve-
ments based on the traditional BES: firstly, the adaptive control factor is introduced in the
structure of the algorithm, and some ideas of the pigeon flock algorithm are incorporated;
secondly, the structure of the fitness function is combined with the structure of the adaptive
degree function which is combined with the actual navigation and curve optimization
module to make corresponding improvements. The proposed model converges faster and
iterates more efficiently, which means it has robustness and does not easily fall into the
local optimum.

The rest of the paper is constructed as follows: the Section 2 introduces the improve-
ment of the traditional BES algorithm and the calculation process of the proposed collision
avoidance algorithm in detail and selects four groups of test functions to verify the feasibil-
ity of the adaptive hybrid BES algorithm. In Section 3, four groups of obstacle avoidance
experiments are designed and compared with the adaptive particle swarm optimization
algorithm and the traditional BES algorithm. Section 4 concludes this research.

2. Methodology

The BES algorithm was first proposed by Malaysian scholar Alsattar [22] in 2020. It is
a meta-heuristic algorithm based on the predation process of the bald eagle. It simulates the
bald eagle’s hunting strategy or intelligent social behavior when searching for prey. In this
paper, it is equivalent to the behavior of finding the optimal path. BES hunting is divided
into three stages: the first stage is to select the space with the most prey, the second stage is
to search for prey in the selected space, and the third stage is to conduct diving hunting.
The whole algorithm will repeat these three stages in each iteration. The mathematical
expression of the three stages of the traditional BES is shown as follows.

(1) Selection stage:
The individual determines the search space through the optimal fitness to the initial

population and the average position of the current population and randomly selects the
direction to update the individual post to a new area near the previous search area to
continue to choose. The particular location update method is shown in Equation (1):

Pnew,i = Pbest + α ∗ ε ∗ (Pmean − Pi) (1)

where α = [1.5, 2] refers to factors controlling position changes, ε is a uniform random
number in [0, 1], Pbest is the current optimal individual position, Pi is the position at this
moment, and Pmean is the average position of the population.

(2) Prey searching stage:
In the prey-searching stage, the eagles will update their positions with the trajectory

of Archimedes’s spiral around the current status. The formulas are shown as follows:

Pnew,i = Pi + xi ∗ (Pi − Pmean) + yi ∗ (Pi − Pi+1) (2)

where xi, yi; xri, yri; θi, ri can be respectively expressed by Equations (3)–(5):{
xi =

xri
max(|xr|)

yi =
yri

max(|yr|)
(3)

{
xri = ri × cos(θi)
yri = ri × sin(θi)

(4)
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{
θi = αi × π × ε
ri = θi × R× ε

(5)

In Equation (5), α ∈ [5, 10], R ∈ [0.5, 2], which is the parameter that controls the spiral
path, θi and ri are the polar angle and polar diameter of the spiral equation, and xi and yi
are the positions of corresponding individuals in Cartesian coordinates. The value is [−1, 1]
to change the spiral shape.

It can be seen that an individual flies around himself, and the flying distance is
determined by the distance between himself and the center of the group and the distance
between himself and the following individual (if the current individual is the last in the
group, its following individual is the first individual in the group).

(3) Swooping stage:
In the swooping stage, the population dives from the best position in the search space

to the target. The specific formula is shown as follows:

Pnew,i = ε ∗ Pbest + x′ i ∗ (Pi − c1 ∗ Pmean) + y′ i ∗ (Pi − c2 ∗ Pbest) (6){
x′ i =

xri
max(|xr|)

y′ i =
yri

max(|yr|)
(7)

{
xri = ri × cos h(θi)
yri = ri × sin h(θi)

(8){
θi = α× π × ε

ri = θi
(9)

where c1 and c2 refer to a constant number and the general value range is [1, 2]. In this
stage, individuals will update their positions around the optimal individuals in a spiral
path. In the position update process in the swoop stage, the optimal individual position is
a random coefficient. The parameters c1 and c2 will increase the movement intensity of the
individual toward the best point and the center point. The algorithm will accelerate the
convergence speed at the beginning if there is no random coefficient. However, when it is
near the best point, it will produce oscillation, resulting in no convergence. The other three
stages have a common step: if the new position obtained by searching is better than the
original one, the individual will update to the new one. Otherwise, it will stay in its original
position. Because of the special structure of the traditional BES algorithm, it calculates the
fitness three times in each population update process. Combined with the search path of
Archimedes spiral, the algorithm converges very quickly in the early iteration, making it
easy for it to fall into the local optimum. The process of the traditional BES algorithm is
shown in Figure 1.

In addition, the location update method in the traditional BES at each stage also
has some improvement: in the region selection stage, from Equation (1), it can be seen
that the search performance in this stage mainly depends on the value of control factor.
Control factor α is a fixed value, and the optimization potential of the algorithm cannot be
fully exerted. In the swoop phase, from Equation (6), it can be seen that, because there is a
random coefficient of [0, 1] before the optimal position, its position will gradually converge to 0;
when the optimal solution is not at 0, the result is relatively poor. Aiming at the above
shortcomings and considering the unique requirements of path planning in the unmanned
ship, this paper proposes two improvement strategies for the traditional BES.
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2.1. Algorithm Structure Improvement

In order to maximize the optimization potential of the algorithm, this paper introduces
an adaptive control factor to determine the value of the control factor in the selection
region stage. The adaptive control factor can adjust its value with the increasing number
of iterations so that the individuals in the early iteration of the algorithm fly away from
the population to increase population diversity, expand the search range, and maintain
good global search performance. In contrast, in the late iteration, they gather in the optimal
global direction, making the algorithm cluster, thus enhancing the local optimization ability
of the algorithm and accelerating the convergence speed. This paper designs an adaptive
control factor whose value decreases with the number of iterations α′. The improved
mathematical expression of α′ is shown as follows:

α′ = αmax − (αmax − αmin)× (
t
T
)

2
(10)

where αmax and αmin respectively represent the maximum and minimum values of α in
traditional BES, t refers to the number of iterations of the current algorithm, and T represents
the maximum number of iterations of the algorithm.

On the other hand, to improve the algorithm’s zero tendencies, this paper adds part
of the idea of the pigeon swarm algorithm in the dive phase of the traditional BES. First,
it needs to sort the individuals of the population according to the corresponding fitness
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function value and divide the population into two groups. The better group keeps its
position unchanged while providing its average position as a parameter. At the same time,
α′ is used to adaptively adjust the new position determined by the group with poor fitness
to enrich the diversity of the population while preserving the population advantage. If the
fitness value of the individual position after the grouping update is better than that of the
original individual, the new individual is retained. Otherwise, the original is maintained.
The specific formulas are shown as follows: Pmean = i ∑N′

i (Pi× f (Pi))

N′×∑N
i=1 f (Pi)

N′ = N
2

(11)

{
Pnew,i = Pi + α′ × (Pmean − Pi), f (Pnew,i) < f (Pi)

Pnew,i = Pi, f (Pnew,i) ≥ f (Pi)
(12)

where N refers to the total number of individuals in the eagle population, and Equation (11)
gives the average position of the better part of individuals. At the same time, Equation (12)
shows that the worse part of individuals randomly flies a distance toward the center of
gravity of the better part of individuals.

In order to verify whether the algorithm improvement is reasonable, this paper selects
four groups of functions for the maximum value search test. Because the global path
planning of ships has the characteristics of high demand population dimension and a large
number of locally optimal solutions, the optimal solution is not fixed. This paper selects
4 multimodal surface functions from 23 standard test functions and makes minor changes
to them before the test; the optimal value deviates from the (0,0) point. At the same time, it
is complicated to a certain extent, increasing the difficulty of optimization. The four test
function names, the dimensions of the test population, and the search range are shown
in Table 1.

Table 1. Function Maximum Optimization Test.

No. Function’s Name Dim Search Interval Min-Value Min-Coordinate

F1 Ackley 30 [−10, 10] 8.88178 × 10−16 (2,2)

F2 Penalized 30 [−5, 5] 64 ([−5:1:5],1)

F3 Schwefel 2.26 30 [−500, 500] −1675.93 (421,421)

F4 Rastrigin 30 [−5.12, 5.12] 10,230 ([−5.02:1:2.98],[2.98:−1:−5.02])

Compared with the function prototype, the minimum value of the function and the
position coordinates corresponding to the minimum value are the main differences. The
modified function image is shown in Figure 2.

As shown in Figure 2, the characteristic of the Ackley function is that it has a large
number of local minima but only one global minimum, which brings the risk that optimiza-
tion algorithms, especially mountain climbing algorithms, are trapped in one of their many
local minima. The distribution of Schwefel 2.26 function values is exceptionally irregular.
Similarly to Ackley, there are a large number of local minima and only one global minimum.
In addition, the Penalized function is similar to the Rastigin function, although the function
image is quite different, and there are also many local minima. They are highly multimodal,
but the minimum values are regularly distributed.

Assume that the number of the eagle is 50, the number of iterations is 100, and the
population dimension is uniformly set to 30. The size of the current optimal value reached
by the population after the iteration or the number of iterations reaching the optimal global
value is taken as the basis for evaluating the optimization effect of the algorithm. At the
same time, in order to test the robustness of the algorithm, this paper runs each test function
50 times with the traditional BES and SAHBES algorithms and averages the fitness curve to
get the final result, as shown in Figure 2.
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It can be seen from Figure 3 that the improved BES algorithm performs well in the
test results of the four functions, and its convergence speed is more robust than that of
the traditional BES algorithm. In the four groups of tests, SAHBES can reach the optimal
value of the function after an average of 15 iterations, while the traditional BES requires an
average of 65 iterations. In terms of convergence efficiency, SAHBES is 77% higher than the
traditional BES. In the test results of F1 and F2 functions, the optimization effect of SAHBES
not only makes it fast in convergence but also more potent than that of traditional BES
when it falls into local optimization. From the above, the overall performance of SAHBES
is better than that of traditional BES.
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2.2. Improvement of Fitness Function

The general global path planning method only aims at finding the shortest path, but
many factors must be considered in the actual waters. Considering the limitations of the self-
maneuverability of the unmanned ship when traveling and the requirements for navigation
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safety, this paper adds the turning angle function and the safety distance function to the
path length function when calculating the fitness function. The overall fitness function
of the path is obtained by weighted average processing of the three functions, to obtain
the safest path that meets the maneuverability of the ship. To facilitate the calculation, the
obstacles in this paper are simplified as circles. The fitness function calculation model is
shown in Figure 4.
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Figure 4. Principle diagram of fitness functions design.

In Figure 4, P(n) refers to the n-th path point, O(m) refers to the center point of the m-th
obstacle. The range is represented by a circle with a radius of S(O), ϑn refers to the included
angle of the path corresponding to the n-th path point, Sm

n refers to the nearest distance
from the first route n to the second obstacle m.

(i) The path length fitness function is used to calculate the total length of the path
generated by the model. The function is shown in Equation (13):

f1(P) =
(D−1)

∑
n=1

∣∣∣P(n+1) − P(n)
∣∣∣

10
(13)

where D represents the individual dimension, i.e., the number of path points generated.
(ii) Steering angle fitness function is used to calculate the path angle corresponding to

each path point. In combination with the actual navigation at sea and the requirements of
collision avoidance rules, small angles shall be selected for steering as far as possible, and
the inverse of the included path angle shall be considered for fitness calculation in function
design. The function is shown in the following formula:

f2(P) =
(D− 2)

∑
(D−1)
n=2 arccos(

ρ(n−1) ·ρ(n+1)

|ρ(n−1)|∗|ρ(n+1)|
)

(14)

where ρ(n−1) and ρ(n+1) are the difference between the (n− 1) and (n + 1) path points and
the n-th path point.

(iii) The safety distance function calculates the distance S between the generated path
and the center of each obstacle. The greater the distance, the smaller the function value.
The function is shown as follows:

f3(P) =
D× N(O)

∑
(D−1)
n=1 ∑

N(O)

m=1 Sm
n

(15)

where N(O) represents the total number of obstacles. In addition, to prevent invalid paths
from being generated, when calculating Sm

n , there will be a judicial process. If the generated
path intersects the obstacle range circle, the algorithm will jump out of the loop and update
the current individual. The formulas are shown as follows:

Sm
n =

{
On

m+On+1
m

2 , Sm
n > S(O)

NαN, Sm
n ≤ S(O)

(16)
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In order to more conveniently compare the effect of path planning with other algo-
rithms through the fitness function value, this paper adjusts the optimized fitness function
value: the fitness value obtained from the path length function in the above three functions
is taken as the main body, and the steering angle function and the safety distance function
are normalized and weighted at the same time to obtain the overall fitness, where the
weighted coefficient of the path length function is 0.4. The weighting coefficient of steering
angle function and safety distance function is set as 0.3, and the function is as follows:

F(P) = f1(P)× [0.4 + 0.6× (
f2(P)
2π

+
f3(P)

ρ
)] (17)

where ρ represents the maximum expected distance between the generated path and the
obstacle center.

2.3. Curve Optimization Module

The route derived by SAHBES is a sequential linking of the coordinates of the optimal
individuals into a fold line, which still has a discrepancy with the actual path. For the
folding path generated by SAHBES, this paper introduces a curve optimization module
to optimize the resulting path using Bézier curves. Finally, it obtains a smooth curve that
matches the actual motion trajectory of the unmanned ship.

Bézier curves are commonly applied as vector curves, and the generalized nth order
Bézier curve is shown in Equation (18):

B(t) =
n

∑
i=0

(
n
i

)
Pi(1− t)n−iti, t ∈ (0, 1] (18)

where B(t) denotes the Bézier curve connecting the key point P0, P1, . . . , Pn. The current
common path optimization method uses high-order Bézier curves by extracting the floating
points in the algorithm-generated folding path and then using its number as the basis
for selecting the order of the Bézier curve to obtain a smooth continuous path. However,
this method does not optimize the path in the case of curved path points because the
optimized path will not be able to bypass the obstacles due to the characteristics of the
higher-order Bézier curve. The optimized path does not work, so to deal with this problem,
the obtained folding path is segmented, and the order of the Bézier curve is limited to 3.
The optimization is performed only at the turning point of the folding path, and the
straight-line part is retained in the original form so that the adaptation of the folding path
generated by the algorithm can be maintained at the maximum and the purpose of smooth
optimization can be achieved. The Bézier curve path optimization is shown in Figure 5.
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2.4. SAHBES Iteration Steps

The final structure block diagram of the complete SAHBES and the specific iteration
steps are shown in Figure 6.
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Step 1: The parameters relating to the algorithms and map information are set: values
are assigned to the population size N, the search range [lbx, ubx, lby, uby], the spatial
dimension D, the maximum number of iterations T, and the coordinates O and the obstacle
radius S of the obstacles.

Step 2: The location of each individual in the population is initialized and a random
N × D dimensional matrix is generated as the initial population within the search range,
storing the location information of the individuals.

Step 3: The population’s initial fitness value is calculated.
Each individual’s fitness value is calculated according to the fitness function F(P).
These are then sorted to select the smallest fitness in the population, denoted as Pbest,

and its corresponding individual is denoted as PbestX.
Step 4: In the selection stage, individual positions are updated according to

Equations (1) and (10), the self-adaptive control factor α’ is calculated using the decreas-
ing function, and the population fitness is calculated after the update is completed. The
individuals with better fitness than before are updated in their normal positions, and vice
versa, and the replacement record operation is also performed for Pbest and PbestX.
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Step 5: In the prey searching stage, the population position updated by Equation (1) is
updated again according to Equation (2), and the population fitness is calculated after the
update is completed. The individuals with better fitness than before are updated in their
normal positions, and vice versa, and the replacement record operation is also performed
for Pbest and PbestX.

Step 6: In the swooping stage, the population is sorted according to the fitness value
according to Equation (11), and the individuals with poor fitness are updated once individu-
ally, and then the population position is updated as an entire group according to Equation (6),
and the population fitness is calculated after the update is completed. The individuals with
better fitness than before are updated in their normal positions, and vice versa, and the
replacement record operation is also performed for Pbest and PbestX.

Step 7: The iterative process from step 4 to step 6 is repeated, the search is stopped
when the termination condition is satisfied, and the global optimal solution PbestX
is output.

Step 8: The generated paths’ key points (n) are extracted in floating points. Then, the
generated fold paths are optimized by segmentation using third-order Bézier curves to
derive the final paths.

3. Simulation Tests

In order to test the path planning performance of SAHBES more comprehensively, a
variety of complex maps, including random distribution obstacles as well as trap obstacles,
are set in this paper. In terms of the algorithm parameters, the total number of individuals
in the population is set to 20, and the total number of iterations is 1000. The individual
dimension can also be understood as the number of path points of the algorithm-generated
paths, and the larger the value is, the smoother the paths generated by the algorithm will
be. However, this will also increase the computing time significantly, so in order to improve
the efficiency of the calculation, this individual dimension is set to 5 and combined with
the curve optimization module to make the generated paths smoother. The fitness function
also needs to be set to the value of ρ. Since the radius of obstacles varies in random charts,
this paper sets ρ to 0.5 times the radius of obstacles.

In this paper, Self-Adaptive Particle Swarm Optimization (SAPSO), as well as con-
ventional BES, are applied to global path planning as a control group to highlight the
advantages of the proposed SAHBES in global path planning and optimized with Bézier
curves, respectively, with the specific parameters shown in Table 2.

Table 2. Algorithms’ parameters.

Algorithm Population Number Max Iterations Fitness Function Other Parameters

SAPSO 20 1000 f1(P) c1, c2, w, Vmax

BES 20 1000 f1(P) c1, c2, α, R

SAHBES 20 1000 F(P) c1, c2, α, R

In the BES and SAHBES algorithms, α, R controls the shape of the spiral search trajec-
tory of the individual algorithm in the search stage, and c1, c2 reflects the late convergence
strength of the algorithm in the swoop stage, which are taken as the default values in this
paper: α = 10, R = 1.5, c1 = c2 = 2.

c1, c2 denotes the two learning factors, which take the default value of two. It acts
similarly to α′ and is related to the upper limit of the number of iterations T, whose value
varies with the number of iterations t. Vmax denotes the dynamic range of each variable in
the particle swarm, which is set to 1 by default. The value of w is mathematically expressed
as the following Equation (19):

w = w− (w− 0.3)t/T (19)
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3.1. Path Planning Simulation with Obstacles

The distribution of the random obstacles chart is shown in Figure 7. Due to the
obstacles’ dispersion, the population is easily affected by its low initial fitness during the
initialization of the algorithm in the early search phase by falling into the local optimum.
SAPSO and BES fall into the local optimum to varying degrees due to their low iteration
efficiency. Although the generated paths meet the safety requirements, the curvature of the
paths generated by BES is larger. At the same time, the SAHBES algorithm has a greater
global search ability, and the fitness value is lower. Moreover, its fitness function and
control factor are improved to generate smooth, safe, and better paths in the early iteration.
The fitness values curves of the three algorithms are shown in Figure 8.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 23 
 

Algorithm 
Population 

Number 
Max Iterations Fitness Function Other Parameters 

SAPSO 20 1000 𝑓1(𝑃) c1, c2, w, Vmax 

BES 20 1000 𝑓1(𝑃) c1, c2, a, R 

SAHBES 20 1000 𝐹(𝑃) c1, c2, a, R 

In the BES and SAHBES algorithms, Ra,  controls the shape of the spiral search tra-

jectory of the individual algorithm in the search stage, and 
21,cc  reflects the late con-

vergence strength of the algorithm in the swoop stage, which are taken as the default val-

ues in this paper: 2,5.1,10 21 === =ccRa . 

21,cc  denotes the two learning factors, which take the default value of two. It acts 

similarly to '  and is related to the upper limit of the number of iterations T, whose 

value varies with the number of iterations t. Vmax denotes the dynamic range of each 

variable in the particle swarm, which is set to 1 by default. The value of w is mathemati-

cally expressed as the following Equation (19): 

Ttwww /)3.0( −−=   (19) 

3.1. Path Planning Simulation with Obstacles 

The distribution of the random obstacles chart is shown in Figure 7. Due to the ob-

stacles’ dispersion, the population is easily affected by its low initial fitness during the 

initialization of the algorithm in the early search phase by falling into the local optimum. 

SAPSO and BES fall into the local optimum to varying degrees due to their low iteration 

efficiency. Although the generated paths meet the safety requirements, the curvature of 

the paths generated by BES is larger. At the same time, the SAHBES algorithm has a 

greater global search ability, and the fitness value is lower. Moreover, its fitness function 

and control factor are improved to generate smooth, safe, and better paths in the early 

iteration. The fitness values curves of the three algorithms are shown in Figure 8. 

 

Figure 7. Global path planning chart of random obstacles simulation. 
Figure 7. Global path planning chart of random obstacles simulation.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 15 of 23 
 

 

Figure 8. Comparison of the curves of the three algorithms’ fitness values. 

3.2. Trap Obstacle Path Planning Experiment 

3.2.1. Trap Obstacles Simulation I 

(1) Simulation Results 

In order to compare the path planning effects of the three algorithms more obviously, 

three more complex trap obstacles charts are set up in this paper. The distribution of the 

Trap Obstacles Simulation I is shown in Figure 9. In this simulation, the search and gen-

eration of the optimal path are more difficult, and the global search ability and iteration 

efficiency of the algorithms are tested more. The values of the fitness functions of the three 

algorithms are shown in Figure 10. 

 

Figure 9. Global path planning chart of trap obstacles simulation I. 

Figure 8. Comparison of the curves of the three algorithms’ fitness values.

3.2. Trap Obstacle Path Planning Experiment
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(1) Simulation Results
In order to compare the path planning effects of the three algorithms more obviously,

three more complex trap obstacles charts are set up in this paper. The distribution of
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the Trap Obstacles Simulation I is shown in Figure 9. In this simulation, the search and
generation of the optimal path are more difficult, and the global search ability and iteration
efficiency of the algorithms are tested more. The values of the fitness functions of the
three algorithms are shown in Figure 10.
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(2) Conclusion of simulation results
From Figure 9, it can be seen that all three algorithms can find safe paths to avoid

obstacles, but the path of SAPSO has an obvious turning point, which is caused by the
two path points being too close to each other before the curve optimization. The path
generated by SAHBES reduces the unnecessary and redundant parts of the path more than
BES, which can be more economical in practical applications. However, by analyzing the
fitness values, the global search ability of SAPSO and BES does not dominate when there
are few optimal solutions. The optimal solution of BES is updated frequently but hardly
reaches the optimum. SAHBES has more vital local search ability and greater convergence
due to integrating part of the PIO into the swooping stage. However, it can be reflected
only after decreasing in the later iterations.
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3.2.2. Trap Obstacles Simulation II

(1) Simulation Results
The Trap Obstacles Simulation II distribution is shown in Figure 11, and there is only

one optimal path. The values of the fitness functions of the three algorithms are shown
in Figure 12.
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(2) Simulation Conclusions
Similarly to the Trap Obstacles Simulation I, Figure 11 shows that only one optimal

path exists, but with a higher degree of folding complexity. SAHBES generates a path that
can remain highly efficient and safe under the improved fitness function. While SAPSO
does not find the optimal path and has the problem of falling into a local optimum, the
path generated by BES fails to satisfy the safety condition and finds the optimal path after
curve optimization and intersection with the obstacles. The advantage of SAHBES in global
path planning can be observed.
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3.2.3. Trap Obstacles Simulation III

(1) Simulation Results
The distribution of the Trap Obstacles Simulation III is shown in Figure 13, and there

are two optimal paths. The values of the fitness functions of the three algorithms are shown
in Figure 14.
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(2) Simulation Conclusions
Figure 13 shows the symmetric structure obstacles; there exist two optimal paths.

The path generated by SAPSO has intersection points with the obstacles. The global
optimization ability needs to be better and converge to the optimum. In contrast, BES
generates paths that can maintain a safe distance from the obstacles, but the paths generated
by this algorithm may have local optimum problems. SAHBES still performs the best,
and, combined with the analysis of the fitness values curve (Figure 14), the algorithm has
converged to an optimal solution similarly to BES in the middle of the iteration. At the end
of the iteration, it can optimize further due to the effect of the self-adaptation factor.

4. Conclusions

This paper improves the algorithm structure of the basic BES. It proposes SAHBES by
introducing self-adaptive control factors and incorporating a part of the ideas of PIO, which
has good robustness, a higher convergence rate, and high iteration efficiency (77% higher
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than traditional BES) (The code of SAHBES can be found in Appendix A). In order to make
the generated paths realistic, this paper also introduces a curve optimization module to
optimize the generated fold paths using third-order Bézier curves. Compared with SAPSO
and traditional BES, SAHBES also shows excellent performance in global path planning
simulation tests and generates a continuous smooth path that meets the actual navigation
situation. Moreover, the path is safe enough in terms of its distance and reliability, laying
the foundation for unmanned ships’ path planning.

However, the multiple calculations of the fitness values in the algorithm structure lead
to its high iteration efficiency but weak overall operation speed, which can be reconsidered
to improve the algorithm structure further to decrease its operation time. In addition,
this paper only verifies the superiority of SAHBES compared with traditional BES and its
feasibility in global path planning. The simulation experiments are completed with the
MATLAB platform, which can be considered for the application to real ships for further
testing in future studies.
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Appendix A

The code of SAHBES:
clc;
clear;
number_fun = ‘F’;
MaxIt = 100;
nPop = 50;
[low,high,dim,fobj] = Get_Functions(number_fun);
% st = cputime;
% Initialize Best Solution
BestSol.cost = inf;
for i = 1:nPop

pop.pos(i,:) = low + (high-low).*rand(1,dim);
pop.cost(i) = fobj(pop.pos(i,:));

if pop.cost(i) < BestSol.cost
BestSol.pos = pop.pos(i,:);
BestSol.cost = pop.cost(i);

end
end

%disp(num2str([0 BestSol.cost]));
for t = 1:MaxIt

%% 1- select_space
[pop, BestSol, s1(t)] = select_space(t,MaxIt,fobj,pop,nPop,BestSol,low,high,dim);
%% 2- search in space
[pop, BestSol, s2(t)] = search_space(fobj,pop,BestSol,nPop,low,high);
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%% 3- swoop
[pop, BestSol, s3(t)] = swoop(fobj,pop,BestSol,nPop,low,high,t,MaxIt);

Convergence_curve(t) = BestSol.cost;
%disp(num2str([t BestSol.cost]))

% ed = cputime;
% timep = ed-st;
end
%%
semilogy(Convergence_curve,‘-’);
xlabel(‘Iteration’)
ylabel(‘fitness’)
legend(’BES’)
%%
function [pop BestSol s1] = select_space(t,MaxIt,fobj,pop,npop,BestSol,low,high,dim)
Mean = mean(pop.pos);
% Empty Structure for Individuals
empty_individual.pos = [];
empty_individual.cost = [];
% lm= 2;
lm= 2-0.5*(t/MaxIt)ˆ2;
s1 = 0;
for i = 1:npop

newsol = empty_individual;
newsol.pos= BestSol.pos+ lm*rand(1,dim).*(Mean - pop.pos(i,:));
newsol.pos = max(newsol.pos, low);
newsol.pos = min(newsol.pos, high);
newsol.cost = fobj(newsol.pos);
if newsol.cost < pop.cost(i)

pop.pos(i,:) = newsol.pos;
pop.cost(i)= newsol.cost;
s1 = s1 + 1;

if pop.cost(i) < BestSol.cost
BestSol.pos= pop.pos(i,:);

BestSol.cost = pop.cost(i);
end

end
end
end
function [pop, best, s1] = search_space(fobj,pop,best,npop,low,high)
Mean = mean(pop.pos);
a = 10;
R = 1.5;
% Empty Structure for Individuals
empty_individual.pos = [];
empty_individual.cost = [];
s1 = 0;
for i = 1:npop-1

A = randperm(npop);
pop.pos = pop.pos(A,:);
pop.cost = pop.cost(A);

[x, y] = polr(a,R,npop);
newsol = empty_individual;

Step = pop.pos(i,:) - pop.pos(i + 1,:);
Step1 = pop.pos(i,:)-Mean;
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newsol.pos = pop.pos(i,:) +y(i)*Step + x(i)*Step1;
newsol.pos = max(newsol.pos, low);
newsol.pos = min(newsol.pos, high);
newsol.cost = fobj(newsol.pos);
if newsol.cost < pop.cost(i)

pop.pos(i,:) = newsol.pos;
pop.cost(i)= newsol.cost;

s1 = s1 + 1;
if pop.cost(i) < best.cost

best.pos= pop.pos(i,:);
best.cost = pop.cost(i);

end
end

end
end
function [pop, best, s1] = swoop(fobj,pop,best,npop,low,high,t,MaxIt)
Mean = mean(pop.pos);
a = 10;
R = 1.5;
% Empty Structure for Individuals
empty_individual.pos = [];
empty_individual.cost = [];
s1 = 0;
%%
for i = 1:npop-1 %sort the pigeons

for j = i+1:npop
if pop.cost(:,i) > pop.cost(:,j)

temp_pos = pop.pos(i,:);
temp_cost = pop.cost(:,i);
pop.pos(i,:) = pop.pos(j,:);
pop.cost(:,i) = pop.cost(:,j);
pop.pos(j,:) = temp_pos;
pop.cost(:,j) = temp_cost;

end
end

end
npop1 = ceil(npop/2); %remove half of the pigeons according

to the landmark
for m = (npop1 + 1):npop %local searching

newsol.pos = pop.pos(m,:) + (2-0.5*(t/MaxIt)ˆ2)*rand*(Mean-pop.pos(m,:));
end

for i = 1:npop
newsol.cost = fobj(newsol.pos);
if newsol.cost < pop.cost(i)

pop.pos(i,:) = newsol.pos;
pop.cost(i)= newsol.cost;

if pop.cost(i) < best.cost
best.pos= pop.pos(i,:);

best.cost = pop.cost(i);
end

end
end

%%
for i = 1:npop
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A = randperm(npop);
pop.pos = pop.pos(A,:);
pop.cost = pop.cost(A);

[x y] = swoo_p(a,R,npop);
newsol = empty_individual;

Step = pop.pos(i,:) - 2*Mean;
Step1= pop.pos(i,:)-2*best.pos;
newsol.pos = rand(1,length(Mean)).*best.pos + x(i)*Step + y(i)*Step1;

% newsol.pos = (2*rand(1,length(Mean))-ones(1,length(Mean))).*best.pos + x(i)*Step
+ y(i)*Step1;

newsol.pos = max(newsol.pos, low);
newsol.pos = min(newsol.pos, high);
newsol.cost = fobj(newsol.pos);
if newsol.cost < pop.cost(i)

pop.pos(i,:) = newsol.pos;
pop.cost(i)= newsol.cost;

s1 = s1 + 1;
if pop.cost(i) < best.cost

best.pos= pop.pos(i,:);
best.cost = pop.cost(i);

end
end

end
end
function [xR yR] = swoo_p(a,R,N)
th = a*pi*exp(rand(N,1));
r = th; %R*rand(N,1);
xR = r.*sinh(th);
yR = r.*cosh(th);

xR = xR/max(abs(xR));
yR = yR/max(abs(yR));

end
function [xR yR] = polr(a,R,N)

%// Set parameters
th = a*pi*rand(N,1);
r = th + R*rand(N,1);
xR = r.*sin(th);
yR = r.*cos(th);

xR = xR/max(abs(xR));
yR = yR/max(abs(yR));
end

function [lb,ub,dim,fobj] = Get_Functions(F)
switch F

case ’F’%Branin Function
fobj = @F17;
lb = [−5,0];
ub = [10,15];
dim = 2;

end
end

function o = F(x)
o = (x(2)-(x(1)ˆ2)*5.1/(4*(piˆ2)) + 5/pi*x(1)-6)ˆ2 + 10*(1-1/(8*pi))*cos(x(1)) + 10;

end
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