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Abstract: Smart grids (SGs) enhance the effectiveness, reliability, resilience, and energy-efficient
operation of electrical networks. Nonetheless, SGs suffer from big data transactions which limit their
capabilities and can cause delays in the optimal operation and management tasks. Therefore, it is
clear that a fast and reliable architecture is needed to make big data management in SGs more efficient.
This paper assesses the optimal operation of the SGs using cloud computing (CC), fog computing,
and resource allocation to enhance the management problem. Technically, big data management
makes SG more efficient if cloud and fog computing (CFC) are integrated. The integration of fog
computing (FC) with CC minimizes cloud burden and maximizes resource allocation. There are three
key features for the proposed fog layer: awareness of position, short latency, and mobility. Moreover,
a CFC-driven framework is proposed to manage data among different agents. In order to make the
system more efficient, FC allocates virtual machines (VMs) according to load-balancing techniques. In
addition, the present study proposes a hybrid gray wolf differential evolution optimization algorithm
(HGWDE) that brings gray wolf optimization (GWO) and improved differential evolution (IDE)
together. Simulation results conducted in MATLAB verify the efficiency of the suggested algorithm
according to the high data transaction and computational time. According to the results, the response
time of HGWDE is 54 ms, 82.1 ms, and 81.6 ms faster than particle swarm optimization (PSO),
differential evolution (DE), and GWO. HGWDE’s processing time is 53 ms, 81.2 ms, and 80.6 ms
faster than PSO, DE, and GWO. Although GWO is a bit more efficient than HGWDE, the difference is
not very significant.

Keywords: cloud computing; fog computing; improved differential evolution; gray wolf optimization;
efficient resource utilization; smart grid

1. Introduction

Smart grids (SG) are essential components of smart communities. A fast and efficient
communication system to monitor and control power consumption is used in these grids
to establish a smart and distributed system that can control power needs economically
and sustainably [1]. In this regard, the Internet of Energy (IoE) could be thought of as a
combination of SG and the Internet of Things (IoT) [2]. IoE aims to simplify the power
trade among users by providing an effective structure. Internet controls and observes
intermittent and distributed power production and storage logically. A wide variety of
loads and sources will be allowed to trade power through the IoE, such as distributed energy
storage, renewable energy resources (RERs), as well as residential and industrial users.
Cloud computing (CC) is required to process, access, store, and manage robust processing
sources. Therefore, IoT and CC can be grouped together to form IoE platforms capable of
empowering pervasive sensing. By storing and utilizing sensing data coherently, intelligent
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observation and robust handling of the detection of data streams can be accomplished. With
more smart appliances, latency and response time in CC increase, leading to deviations
for several delay-sensitive devices and smart appliances [3]. In [4], authors developed
realistic measures for assessing the physical structure of the cloud-fog-edge layers based
on the reliability approach. They used the fault tree and Markov chain model to provide
quantitative solutions. Ref. [5] suggested fog computing (FC) to address such problems. CC
is dragged to the edge or corner of the network by fog or edge computing. By preprocessing
the data, delay restrictions can be achieved, when meeting the scalability, interoperability,
consistency, and enhanced system connectivity. Awareness of position, minimal delay,
geographical distribution, a large number of appliances, mobility, real-time devices, and
heterogeneity are some of the best attributes of FC [6]. The smart device system faces several
issues, such as delayed demands, source-restricted devices, and network bandwidth. As
the appliances have been linked to the internet, some safety issues arise, such as keeping
source-restricted appliances safe, ensuring security, updating smart appliances, evaluating
the safety state of large distributed systems accurately, and responding to vulnerabilities
without any insurmountable problems which cannot be met by CC. Ref. [7] depicted
the FC as a networking structure dispensing computing, storage, control, and system
management near the appliances of consumers. The purpose of the study is to present a
feasible framework for SG by integrating two new technologies: cloud and fog computing
(CFC). Based on the proposed idea, a CFC-driven SG scheme was discussed in the paper,
along with load-balancing strategies for handling SG consumer requirements.

SG structure is observable when two-way communication network systems are com-
bined with electrical grids [8]. SGs are capable of providing electricity to consumers
gradually and efficiently with the help of information and communication technology. Ac-
cording to SG technology, there are three main parts within the system, namely distribution,
transmission, and production [9]. Obsolete power plants make up the production side. In
addition, electric power must be distributed to consumers by the transmission feeders. In
order to reduce environmental issues and the number of transmission losses caused by
power plants, green energy or RERs have been introduced and gained popularity in recent
years. Energy usage is monitored by the most important features of SG utilizing a variety of
optimization strategies for the consumer [10,11]. Assuring the price, peak-to-average ratio,
and consumer satisfaction are met by scheduling devices with various consumption pro-
files. Further, demand response management is emerging as an important empowerment
technology for SGs.

In the literature, there are numerous studies that support the CC paradigm, such as
ref. [12]. Ref. [13] compared CC with traditional approaches, recognizing several technical
and nontechnical challenges and CC alternatives. The CC has been progressing quickly, but
it has faced several problems, including long delays, poor reliability, mobility, awareness of
position, and privacy issues [14,15]. Ref. [6] offered FC as a solution to the issues mentioned
above. FC offers excellent solutions regarding latency, processing time, reliability, and so
on. Technically, congestion and overburdening are caused by too many requests. This
arbitrariness has its biggest drawback in task allocation. As a result of the random task
allocation, there will be a few overloaded and a few underloaded processors [16]. As a
result of load balancing, overloaded processes are directly transferred to underloaded ones.
This problem is addressed by a number of experts, such as [17,18]. Ref. [19] examined the
FC paradigm to optimize task planning with bee swarm algorithms aiming to optimize
source usage.

CFC has been investigated as a way to aid in managing SG by many researchers. As
a solution, a test case study was discussed for demand response optimization in the SG
utilizing the CFC platform. As a result, CC’s performance will be increased in the SG by
using FC. Authors in [20] examined the SG information management system using the
CC scheme, employing distributed information management for real-time information
capturing, ubiquitous accessibility, and real-time data retrieval using parallel processing.
In [21], a cloud-driven demand response framework was devised to enable quicker response
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times in large-scale implementations. There were two kinds of demand response strategies
investigated: cloud-driven demand response and dispersed demand response. Moreover,
the convergence time was minimized and bandwidth was efficiently utilized. As it can be
inferred from these explanations, none of the above works have investigated the role of CFC
in SGs including the computational time needed to solve the problem. Therefore, this paper
focuses on the use of computational intelligence (CI) methods for improving the efficiency
of data transaction systems for multi-objective, multi-level optimization problems in CFC.
There are two types of optimization problems, depending on the variables considered:
combinatorial problems and continuous problems, respectively, for discrete variables and
continuous variables. The paper discusses combinatorial optimization problems in SGs,
presenting and analyzing the outcomes. Two novel hybrid algorithms including the gray
wolf optimization (GWO) and improved differential evolution (IDE) are proposed which
would decrease the computational burden effectively. The study’s main contributions
consist of:

• Developing new intelligent optimization algorithms for constructing fast and reliable
computational algorithms needed in the CFC architectures including the hybrid ver-
sions of the gray wolf optimization (GWO) and improved differential evolution (IDE);

• Proposing a hybrid gray wolf differential evolution (HGWDE) optimization algorithm
for SG energy management;

• Comparing the optimization approaches to help the cloud schedules for decreasing
the response time and running time of tasks in CFCs.

The remainder of the study consists of below parts: the system scheme, problem
definition, and suggested load-balancing method are discussed in Section 2. The suggested
optimization approach is presented in Section 3. Section 4 provides a detailed description
of the outcomes. The study is summarized and concluded in Section 5.

2. System Scheme

There are often several data centers located across the globe for cloud service providers [22].
The described system scheme of the CFC environments consists of several fog data centers
and cloud data centers. An example of the SG model is shown in Figure 1, utilizing a
geo-distributed CFC environment. Three layers are included in the proposed scheme: the
end user, the fog layer, and the core cloud layer. The fog layer consists of a variety of
software and hardware components to provide local analyses and monitoring. Users and
the cloud are connected via this layer to each other. Moreover, the fog layer is responsible
for managing requests from users from various parts of the globe. Data access and energy
consumption are included in the requests. Therefore, the cloud load is reduced by the
fog. The following part proposes architecture with 3 layers, consisting of a cloud, a user,
and a fog. Data is shared between the 3 layers [23]. It is assumed that N buildings with
several houses make up the user layer. All residences are equipped with an RER and an
energy storage system (ESS) for meeting energy demands [24,25]. It is environmentally
friendly and does not emit pollutants due to the fact that the energy is derived from natural
resources. Furthermore, the ESS stores surplus produced power at low-production times
for meeting domestic load demands [26]. A house’s power consumption, production, and
device planning are each received by the fog layer. Cloud services are used by the layer for
operating their applications. The fog devices are connected to smart homes or households
by smart meters. Each household communicates its energy shortage and surplus data via
the CFC environments. The communication among the smart meters is performed through
a local area network, a wide area network, or a metropolitan area network.

Cloud extensions such as fog act as a middleman between users and the cloud. All
clusters are connected by the fog. Fog layers are used to temporarily store information,
immediately prior to moving to the cloud for permanent storage. Fog provides similar
characteristics as the cloud but can be more accessible to users. Hence, low-delay services
are therefore beneficial to consumers. Virtual machines (VMs) in the fog process requests
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from customers. A user can request power from microgrids by submitting a request to
the fog.
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The second layer, called the fog layer, regulates delay and manages network sources
effectively. As the fog layer has been located near the clients, it physically takes place at
their local place. If the communication and physical distances are similar, the fog node will
be near the user.

Another focus of this article is to propose an intelligent and fast cyber-layer for smart
grids to record, store, analyze, and manage the big data all around the smart grid. In this
way, first, the structure of the cloud-fog-user layer is depicted and described in Figure 1.
Second, the appropriate model and algorithms required to control the proposed layer are
described. Although these three layers look similar at first glance, they represent different
computing resources as different layers of SG. In fact, each layer builds on the capabilities
of the previous layer. In Figure 1, the lower level is the user layer, also called the edge layer,
and is in charge of edge computing. In other words, this layer will handle some processing
of sensor data away from the cloud layer (or central control of the SG). Therefore, the user
layer pushes the computations to happen on the edge of the network. The input to this
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layer can be named as the active and reactive power demand of the system loads, the
voltage level of the system buses, the network topology, the renewable energy sources
output power, the distributed generators capacity, price and limitations, the market price,
etc. It will try not to let data transfer from the end users to the cloud for analysis of action.
Therefore, the communication of big data toward the upper layers reduces and thus a
simpler chain of communication with less potential for failures would be provided. In the
second layer, the fog layer exists which extends cloud computing to a lower layer. This
layer tries to push intelligence down to the end users and simulate an analyzing system
close to the sensors in SG. Therefore, the fog layer is the first layer in the digital world
of the smart grid. On the top of all layers, the cloud layer exists which has the capability
of global storage of data, analyzing and launching final commands for the operation of
the smart grid. The output of the upper cloud layer would be the power flow outputs
including the voltage level of the buses, the power flow in the feeders, the optimal output
power of the units, the renewable energy sources, and the operating point of the loads.
These fogs have been controlled by internet service providers. To this end, various fogs
are present in the fog layer. A fog device has been connected to all smart buildings in this
way. A fog device consists of virtualized hardware (H/W). Through virtualization, VM
monitors and manages multiple VMs on one computer. Virtual machines (VMs) manage
multiple operating systems (OSs) on one H/W platform (VMM). VMMs or hypervisors are
interfaces among guest OSs and VMs. VMs, or guest OSs, are central processing units that
run multiple programs. User connections to the cloud are made through the fog.

The final layer includes the core cloud. In the cloud layer, information is processed and
administered on demand via remote servers. There is an inextricable connection between
CFCs. Consumer information is temporarily stored in fogs prior to being sent to the cloud
to be permanently stored. A computing application’s computational load profile plays a
crucial role in the implementation of CC. Overburdened servers occur whenever there are
many applications running on a single platform. According to Figure 2, consumers request
numerous visits to the service providers. VMs utilize load balancers to maintain load
balance and optimize source usage. Numerous load-balancing methods are used by CC to
ensure effective control of computing load profiles. Computing load profiles are the same
as power load profiles in SGs. Therefore, if the SGs are integrated with the CFC-driven
environments, afterward, tasks associated with the SGs must also be efficiently managed
in terms of the computing load profile. The paper uses 4 heuristic solutions to solve the
load-balancing issue. In the case of the system scheme being applied to each part of the
world, all areas have various numbers of structures and fogs.
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As can be seen from the cloud-fog-edge layer, the main purpose is to reduce the
communication traffic and push the high computational burden down to the local areas. In
this way, each layer should be equipped with appropriate fast and intelligent algorithms.
The first task for any optimizer is to have a clear objective function. In Equations (1)–(10),
the objective functions including the response time, the latency time, and the price of
VMs are modeled. Later, new optimization evolving methods are developed to solve the
optimization problem at the appropriate level. Through such an intelligent structure, the
power delivery services would enhance greatly in the smart grid.

2.1. Problem Definition

There are 3 layers in the offered system framework. A representation of the offered
structure is depicted in Figure 1. At the top, the cloud layer stands. The 2nd and sole
intermediate layer would be the fog layer. The 3rd and last layers belong to the consumer.
Hence, consumers’ requirements are met by the layers communicating among themselves.
The suggested structure consists of 6 distinct parts. Users send requests to the fog via the
SG for computing and other measuring tasks. As a result of utilizing resources effectively,
the fog meets consumer needs. The task group T is expressed as follows:

T = T1, T2, . . . , Tm (1)

Fogs can have the following number of VMs:

VM =
v

∑
i=1

(VMi) (2)

wherein v shows the number of VMs. The objective function consists of minimizing
response time and processing, expressed in the following way:

Kminimizw =
m

∑
j=1

n

∑
i=1

(
RT ∗ Pij ∗ Delay

)
(3)

wherein RT shows the response time as in Equation (6) and Delay shows the delay time.
The fitness function can be determined in the following way:

Fitness = Max[EXCvm1(F1), . . . , EXCvmn(Fm) ] (4)

In which, EXCvm1(F1) shows the working time for performing the group of tasks on fog
F1 on vm1. F1 shows the group of clusters of consumers, meaning, F1 = [C1, C2, . . . , Cx],
in which x is the count of consumers on fog F1. In addition, n shows the count of VMs and
m shows the count of fogs.

2.1.1. Processing Time

VM capacity and task length processing time are determined in the following manner:

PT =
N

∑
i=1

M

∑
j=1

(
Pij ∗ Ai

)
(5)

2.1.2. Response Time

The response time has been determined by the difference between the times that the
task began to execute and when the customer transmitted the request:

RT = DelayTime + FinishTime− ArrivalTime (6)
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2.1.3. Price

The cost of CFC is also an essential parameter. In addition to the MG cost, VM cost and
data transfer (DT) cost are also two factors that the cost depends on. The below formulas
are used to calculate the total cost.

CostTotal = CostDT + CostVM + CostMG (7)

As can be seen in Equation (7), the total cost is computed based on the summation
prices of DT, VM, and MG, where CostDT represents the cost of DT, CostVM shows the cost
of VM, and CostMG defines the cost of MG. VM cost and DT cost are obtained by Equations
(8) and (9), respectively, as follows:

CostVM =
N

∑
i=1

(VMFinalTime −VMInitialTime) ∗ u (8)

CostDT =
TTotal

DataUsed ∗ β
(9)

where u shows a fixed factor and β shows a per GB transferring price. VMFinalTime and
VMInitialTime are the final time and start time of VM, respectively. DataUsed shows the
transmitted data which is used to execute. VM’s overall time is shown in Equation (10):

TotalTime = FinishTime − StartTime (10)

where TotalTime defines the overall time of VM. StartTime and FinishTime are the start time
and finish time of VM execution.

3. Suggested Model

This paper proposes HGWDE as an optimization method that combines two meta-
heuristics: IDE and GWO for optimizing energy usage. The three methods have been
employed for comparing the efficiency of the suggested model to that of current models.

3.1. Improved Differential Evolution (IDE)

IDE shows a new version of DE, offered by Storn in 1995 for the first time. In the
algorithm, the primary population has been determined at random. IDE involves four major
stages: population production, mutation, crossover, and choice. Equation (11) generates
the population at random.

Xi,j = lj +
(
rand×

(
uj − lj

))
(11)

The goal is to produce a mutant vector by generating three vectors xr1, xr2, xr3.
The target vector belongs to the 1st vector. Equation (12) gives the mutant vector in the
following way:

Vi,G+1 = xr1,G + F(xr2,G − xr3,G) (12)

In which, F shows a scaling factor. Following the creation of the mutant vector, 3 test
vectors have been produced. Next, the optimal test vector has been chosen for comparing it
to the target vector, thereby populating the production with the optimal vector. Equations
(13)–(15) can be used to create the first 3 test vectors.

uj,i,G+1 =

{
Vj,i,G+1 i f randb(j) ≤ 0.3
xj,i,G otherwise

(13)

uj,i,G+1 =

{
Vj,i,G+1 i f randb(j) ≤ 0.6
xj,i,G otherwise

(14)
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uj,i,G+1 =

{
Vj,i,G+1 i f randb(j) ≤ 0.9
xj,i,G otherwise

(15)

Equations (16) and (17) can be used to create the 4th and 5th test vectors.

uj,i,G+1 = randb(j).xj,i,G (16)

uj,i,G+1 = randb(j).vj,i,G + (1− randb(j)).xj,i,G (17)

Max. iter shows the maximal number of iterations; POP shows the whole population,
i.e., all potential solutions to home energy management (HEM); and h shows the whole
time intervals. CR shows the crossover factor, usually 0.3, 0.6, and 0.9. u, µ, and x show
the mutant vector, test vector, and target vector. Table 1 shows IDE with regard to HEM.

Table 1. IDE mapping on HEM.

IDE variables Population Number of dimensions Gradient of problem

HEM variables Feasible solution Number of appliances Scheduling

Amounts 50 17 Vary

3.2. Gray Wolf Optimization (GWO)

Wolf hunting behavior and leadership hierarchies are the inspirations for GWO’s
meta-heuristic optimization method. Leadership can be divided into 4 levels: alpha α, beta
β, delta δ, and gamma γ. As the group’s smartest leader, alpha guides the others on how to
hunt. Alpha is followed by delta and beta under the hierarchical structure, and gamma
defines at the bottom. Thus, gamma is ineligible for leadership positions. In HEM, alpha
would be considered the fittest member to minimize costs. Equation (18) creates a random
population at the start:

X(i, j) = rand(POP, D) (18)

In which, POP is the entire gray wolf population, and D represents all counts of
devices. In every search agent, the objective function (the distance from the target) is
determined using A and C.

3.2.1. Encircling Target

Target is encircled by gray wolves prior to the hunt. According to ref. [27], the below
formulas can be used to formulate gray wolves’ encircling behavior.

X(t + 1) = Xp(t)− A× D (19)

D =
∣∣C× Xp(t)− X(t)

∣∣ (20)

Here Xp shows the location of the target, whereas X shows the location of the wolf for
the tth iteration, and can be determined via Equation (19). Moreover, Equations (21) and (22)
can be used to calculate the vectors A and C:

→
A = 2

→
a ×→r1 −

→
a (21)

→
C = 2×→r2 (22)

In which,
→
r1 and

→
r2 show randomly selected vectors in the range [0, 1]. Several

iterations reduce a’s value from 2 to 0. C varies at random within a range of 0 and 2,
indicating the weight for target attractiveness [28].

3.2.2. Hunting

Alpha is the primary guide to the hunt, with beta and delta serving as secondary
factors. The alpha leads them because the alpha knows the location of the target most well.
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Gamma updates its location based on the optimal solution determined by the 1st three
members. Equation (23) updates the location of wolves.

→
Xt+1 =

→
x1 +

→
x2 +

→
x3

3
(23)

Equations (24)–(26) can be used to determine
→
x1,
→
x2, and

→
x3.

→
x1 =

→
xα −

→
A1 ×

(→
dα

)
(24)

→
x2 =

→
xβ −

→
A2 ×

(→
dβ

)
(25)

→
x3 =

→
xδ −

→
A3 ×

(→
dδ

)
(26)

Here
→
xα,

→
xβ, and

→
xδ show the optimal solutions achieved in the tth iteration; Equation

(21) can be used to determine
→
A1,

→
A2, and

→
A3, and Equations (27)–(29) can be used to

determine
→
Dα,

→
Dβ, and

→
Dδ:

→
Dα =

→
C1 ×

→
xα −

→
x (27)

→
Dβ =

→
C2 ×

→
xβ −

→
x (28)

→
Dδ =

→
C3 ×

→
xδ −

→
x (29)

Equation (22) can be used to determine C1, C2 and C3. In the final step, variable a is
graded from two to zero in all iterations, controlling the balance between exploitation and
exploration based on Equation (30).

a = 2− t
2

Max.iter
(30)

The objective function is shown in Equation (31) and can be determined by multiplying
the power rating by the state of every device.

Fitness = ρD × XvD(h) (31)

Max. iter shows the maximal iterations, POP shows the entire population, D shows
the count of devices, and fitness would be the objective function. α shows the optimal
solution or participant in the hunting process, whereas β and δ would be the 2nd and 3rd
optimum solutions.

The fitness function has been compared to the fitness of α, β, and δ for evaluating the
optimal leader. Equations (27)–(29) can be used to update their last locations.

3.3. Hybrid Gray Wolf Differential Evolution (HGWDE)

Please note that the new hybrid algorithm called HGWDE is a direct contribution of
this work which is specifically designed for the optimal operation of the SG. The proposed
algorithm benefits from the hybridization of the GWO and DE with a new formulation to
limit the computational time needed for big data analysis and transactions within the CFC
architecture. A detailed discussion of the suggested model has been provided here. IDE
generates an updated population through four stages: initialization, mutation, crossover,
and choice. In order to update the population, the optimal test vector will be chosen from
five vectors and then compared to the target vector. Since IDE takes into account the entire
range of test vectors, it is efficient at selecting the optimal trial vector. Encircling targets,
hunting, and updating wolf locations make up GWO’s main stages. The leader belongs to
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α. Each search agent updates its location based on α. GWO does not compare α to β or δ.
Moreover, β and δ may be nearer to the target than α. Crossover from IDE must be used to
compare each search agent. GWO is used to update the location of search agents after the
optimal search agent has been selected. The HGWDE was chosen because it combines the
most advantageous characteristics of IDE and GWO.

Initialization, encircling the target, selecting the optimal search agent, and updating the
location are the stages of HGWDE. To this end, the population of wolves Xi(i = 1, 2, . . . , n)
is first generated randomly. Then, three randomly selected vectors are used to create a
mutant vector v. α, β, and δ are initially set up as three vectors. Equation (31) calculates
the fitness of v and α, β, and δ. The crossover will be carried out according to the
following formulas:

αnew =

{
vj i f f itness o f vj ≤ α

α Otherwise
(32)

βnew =

{
vj i f f itness o f vj ≤ β

β Otherwise
(33)

δnew =

{
vj i f f itness o f vj ≤ δ

δ Otherwise
(34)

The location of search agents generally changes following a selection process. Table 2
illustrates the mapping of HGWDE parameters with HEM.

Table 2. HGWDE mapping on HEM.

Variable
HEM

Feasible Solution Devices Minimum (Price) State of the Devices

Amount 50 17 vary 1 or 0

Variable

HGWDE

Population Wolfs in
all packs

Minimal distance
form target State of the leader

Amount 50 17 vary 1 or 0

In the beginning, the needed parameters are initialized. Stage 2 generates the popula-
tion at random. Iterations are adjusted to max once the population has been generated. IDE
is used to compare the mutant vector’s fitness to α, β, and δ. GWO updates the location of
search agents until the stopping criteria are met.

4. Simulation Results and Explanation

This process is likewise implemented as part of Cloud-Analyst, a Cloud-Sim toolkit
extension. A graphical user interface is available for Cloud-Analyst as well. In Cloud-
Sim, VMs are simulated and deployed with various hardware features. Regarding the
simulation results analysis and modeling, the main focus of this article is to assess the role
of meta-heuristic algorithms to help the three-layer CFC architecture improve the process
of analyzing data, storing data, and managing them in a proper time with the least possible
latency. Therefore, the modeling process first comes around the task division among the
layers as explained before which happens in the Cloud-Sim toolkit. Any further modeling
would come around the optimization algorithms and how they can analyze big data, solve
the problem considering the technical limits, and get to the optimal solution with the least
computational time and highest accuracy. It is clear that modeling can expand to many
more details up to communication channels, the communication traffic layers, etc., which
are out of the scope of this paper. A comprehensive analysis and comparison is made
among the different algorithms which are explained in the rest of this study.
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4.1. Response Time Validation

Figure 2 depicts the response time of user clusters with PSO, DE, GWO, and HGWDE
algorithms. As can be seen from Figure 2, PSO, DE, and GWO have much longer response
times than HGWDE. Optimal response times were achieved for each user cluster at the
same time. The fog is reduced by HGWDE’s efficient allocation of resources. Using
simulated annealing, HGWDE finds the optimal possible solution for all jobs and plans
requests efficiently. As soon as a job arrives, the load balancer determines the VM’s memory,
utilization, energy requirement, and speed. In addition, according to the variables, jobs
are allocated to the VM with the highest priority, which keeps the procedure moving
quickly. The outcomes show that it is considerably better than PSO, DE, and GWO in
terms of load balancing. Based on the outcomes, it can be concluded that odds and GWO
have similar results. PSO outperformed the odds and GWO [29,30]. Table 3 illustrates
the summary of the response times of each method. The HGWDE algorithm outperforms
various algorithms.

Table 3. Overview of response time for each algorithm.

Algorithms HGWDE PSO DE GWO

Max. (ms) 87.3 584.7 581.4 577.1

Min. (ms) 38.7 41.8 42.6 42.6

Average (ms) 63 116 144.1 143.6

A PSO reaction takes 116.01 ms, a DE reaction takes 144.10 ms, a GWO reaction takes
143.60 ms, and an HGWDE reaction takes 63.02 ms, according to Figure 3.
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Figure 3. Average response time for clusters.

4.2. Processing Time Validation

Figure 4 depicts the processing time of user clusters with the PSO, DE, GWO, and
HGWDE algorithms. It can be seen from Figure 4 that the processing time for the PSO, DE,
and GWO exceeds that for the HGWDE. Optimal processing times were achieved for each
user cluster at the same time.
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Figure 4. Comparing processing time of various algorithms.

In HGWDE, many agents, known as particles, work together to optimize the fog’s load.
A deterministic and stochastic component helps the particles find the optimal solutions.
It also performs better because it has fewer coefficients to tune than other optimization
techniques. With each iteration, a particle gets nearer to the final ideal solution.

According to Figure 5 and Table 4, the average processing time for the PSO is 66.33 ms,
for DE is 94.59 ms, for GWO is 93.95 ms, and for HGWDE is 13.39 ms.
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Table 4. Overview of processing time for each algorithm.

Algorithms HGWDE PSO DE GWO

Max. (ms) 26.1 531.6 530.5 530.3

Min. (ms) 0.2 0.3 0.6 1.1

Average (ms) 13.4 66.3 94.6 93.9

4.3. Price and Costs Validation

The VMC is shown in Figure 6. The VMC for the user clusters with the PSO, DE, GWO,
and HGWDE algorithms is shown in Figure 7. Figure 7 shows that the price of the PSO,
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DE, and HGWDE exceeds that of the GWO. Optimal prices were achieved for each user
cluster at the same time.
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Based on the outcomes, GWO provides a more cost-effective load-balancing algorithm
in comparison to PSO, DE, and HGWDE. GWO and DE methods have similar outcomes,
according to the results. With the DE approach, the PSO and GWO performed better.
Table 5 provides a summary of the prices associated with the earlier described algorithms.

Table 5. Overview of price for each algorithm.

Algorithms HGWDE PSO DE GWO

Overall price (USD) 1071.3 1071.2 1070.9 1070.8

Information transfer
price (USD) 121.3 121.3 121.3 121.3

VM price (USD) 950 949.9 949.6 949.5
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According to Figure 8, the average VMC for PSO is 949.9$, for DE is 949.5$, for GWO
is 949.5$, and for HGWDE is 950$. According to Figure 9, the average price for PSO is
1071.9$, for DE is 1070.9$, for GWO is 1070.8$, and for HGWDE is 1071.3$.
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Simulations indicate that HGWDE performs better than the PSO, GWO, and DE
algorithms. As a result of combining PSO’s superior features with simulated annealing,
HGWDE exhibits superior efficiency. HGWDE provides the optimal global and GWO
provides local solutions. Response time, processing time, running time, and price of the
GWO were slightly higher because of its slow convergence. Local optima may prevent
GWO from determining the global optimal solution. As a way to meet GWO limitations in
the future, ABC fitness could be added to the algorithm, resulting in faster reaction times,
processing times, costs, and execution times as a result of its higher convergence rate.
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5. Conclusions

This paper presents an intelligent and optimal structure for a CFC-driven environment
integrated with SG. There are three layers in the scheme: a cloud, a fog, and a consumer.
The cloud layer consists of cloud servers, the fog layer consists of fog servers and VMs, and
the end-user layer contains buildings, which will cover a number of home consumptions. A
novel scheme using improved DE and GWO algorithms, called HGWDE, was proposed to
reduce the latency and enhance the model efficiency. In HGWDE, the inertia weight is used
to regulate search space sizing so that the optimal solution can be found. A comparison
is made among HGWDE, PSO, DE, and GWO. There is a slight advantage for GWO in
terms of price performance, but the difference is not significant. The simulation results
clearly show the high performance and capabilities of the proposed model for managing
smart grids. Moreover, it was seen that the successful performance of an SG relies on big
data transaction management and analysis which is made possible only through a fast,
precise, and reliable architecture. The proposed CFC is a necessity for the optimal and
successful performance of the SG considering the big data transactions happening within
the system. The simulation results clearly advocate the necessity of smart and intelligent
optimization algorithms embedded within the CFC, which is proposed by HGWDE in this
paper. Not only the accuracy of the proposed hybrid algorithm is validated through several
comparisons made for the optimal scheduling of the SG, but also very little computational
effort is needed to show its fitting role for CFC architecture. The authors would address the
effect of the proposed cyber-layer based on metrics and measures in future works.
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Nomenclature

T Task group Xi,j Population
m Count of fogs Xp Location of the target
v Number of virtual machines

→
r1 and

→
r2 Randomly selected vectors between [0, 1]

n Count of VMs α Best search agent
m Count of fogs β 2nd best optimal solution
x Count of consumers on fog F1 δ 3rd best optimal solution
u Fixed factor

→
xα,

→
xβ and

→
xδ Optimal solutions achieved in the tth iteration

β Per GB transferring price Dα Position of the α search agent
Pij Length of task Dβ Position of the β search agent
Ai Task specified for every request Dδ Position of the δ search agent
ArrivalTime The time when the task began F Scaling factor
FinishTime The time when the task execution is finished v Mutant vectors
DelayTime Delay time from customer transmitting the

request till the task began to execute Max. iter Maximal number of iterations
CostDT Cost of DT POP Whole population
CostVM Cost of VM h Whole time intervals
CostMG Cost of MG CR Crossover factor
VMfinal time The final time of VM u Mutant vector
VMInitialTime Start time of VM µ Test vector
DataUsed Transmitted data which is used to execute x Target vector
TotalTime The overall time of VM D All counts of devices
Pij Length of task A and C Fitness coefficients
Kminimizw Minimizing response time and processing X Location of the wolf for the tth iteration
EXCvm1 (F1) Working time of performing the group of tasks

on fog F1 on VM1 a Graded from two to zero in all iterations
F1 Group of clusters of consumers PT Processing time
StartTime The start time of VM execution RT Time duration from when a request of uses is sent

to fog and when a response has been obtained
FinishTime The finish time of VM execution VM Virtual machines
lj and uj Lower and upper bounds
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