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Abstract: One of the most critical stages for developing groundwater resources for drinking water
use is assessing the water quality. The use of a Water Quality Index (WQI) is considered an effective
method of evaluating water quality. The objective of this research was to evaluate the performance
of six multiple artificial intelligence techniques, i.e., linear regression (stepwise), support vector
regression SVM (linear and polynomial kernels), Gaussian process regression (GPR), Fit binary tree,
and artificial neural network ANN (Bayesian) to predict the WQI in Jizan, Southern Saudi Arabia. A
total of 145 groundwater samples were collected from shallow dug wells and boreholes tapping the
phreatic aquifer. The WQI was calculated from 11 physicochemical parameters (pH, TDS, Ca2+, Mg2+,
Na+, K+, Cl−, SO4

2−, HCO3
−, NO3

−, and TH). The spatial distribution results showed that higher
values of Cl− and SO4

2− were recorded in the places close to the coastline, indicating the occurrence
of seawater intrusion and salinisation. Seven wells had a WQI of greater than 300, indicating that
the water was unfit for consumption. The results showed that the GPR, linear regression (stepwise),
and ANN models performed best during the training and testing stages, with a high correlation of
1.00 and low errors. The stepwise fitting model indicated that pH, K+, and NO3

− were the most
significant variables, while HCO3

− was a non-significant variable for the WQI. The GPR, stepwise
regression, and ANN models performed best during the training and testing stages, with a high
correlation and low errors. In contrast, the SVM and Fit binary tree models performed the worst in the
training and testing phases. Based on subset regression analysis, the optimum input combination for
WQI model prediction was determined as these eight input combinations with high R2 (0.975–1.00)
and high Adj-R2 (0.974–1.00). The resultant WQI model significantly contributes to sustainable
groundwater resource management in arid areas and generates improved prediction precision with
fewer input parameters.

Keywords: water quality index; artificial intelligence; support vector machine; Gaussian process
regression; stepwise regression

1. Introduction

Groundwater plays an essential role in the overall use and management of water
resources. The demand for groundwater for municipal, agricultural, and industrial use
has grown gradually during the past decades, especially in arid regions like Saudi Arabia,
where groundwater is the primary source of water. In Saudi Arabia, groundwater con-
tributes to nearly 79% of the total water supply, and around 90% is consumed in agricultural

Water 2023, 15, 2448. https://doi.org/10.3390/w15132448 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15132448
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-7086-0004
https://orcid.org/0000-0003-1443-6385
https://orcid.org/0000-0001-5958-2621
https://orcid.org/0000-0001-9249-6231
https://orcid.org/0000-0002-5506-9502
https://doi.org/10.3390/w15132448
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15132448?type=check_update&version=1


Water 2023, 15, 2448 2 of 24

activity. Many cities, towns, and villages rely exclusively on wells and natural springs for
their municipal water [1,2].

Groundwater quality is determined by the natural and physical state of the water-rock
interactions and by the changes induced by human activities [3]. Groundwater contamina-
tion is generally due to urbanisation, industrialisation, and agriculture that has gradually
developed over the years without considering environmental consequences [4]. Water
quality assessments aim to characterise the chemical, physical, and biological conditions
of groundwater and identify the source of any possible contamination that causes water
quality degradation [5]. Generally, groundwater quality parameters are compared with
permissible levels for a particular use to help indicate contamination sources [6–8]. The
assessment of groundwater quality depends mainly on laboratory investigations carried
out through the measurement of water quality variables, followed by a comparison of the
obtained concentrations with the standards and guidelines [9]. Applied methodologies
for water quality assessment often combine all the variables and present a final value as a
quality index providing meaningful summaries of water quality data useful to technical
and policy individuals and the public interested in water quality [10].

Geographical information systems (GIS) can be a great complementary tool for creating
and developing spatial representations of water quality assessments [8,11]. Gunduz and
Simsek [12] and Usali and Ismail [13] applied a GIS-integrated technique to assess irrigation
water quality in respectively, Turkey and Malaysia. They concluded that water quality
parameters could be produced in the form of a map using model-based GIS techniques and
considered this product as the most suitable method for groundwater potential prediction
zoning.

The application of a Water Quality Index (WQI) is considered an effective method
for evaluating water quality [14]. A WQI is a premium method for understanding and
summarising large numbers of water quality data by integrating complex information
and expressions to represent a combined effect of the variables influencing water quality.
Thus, a WQI enables effective monitoring and evaluation of groundwater quality. Over
the last few decades, WQIs have been widely used for surface water and groundwater
quality assessments worldwide [15,16]. There are many water quality indices, such as the
Weighted Arithmetic Water Quality Index (WAWQI), National Sanitation Foundation Water
Quality Index (NSFWQI), Canadian Council of Ministers of the Environment Water Quality
Index (CCMEWQI), and Oregon Water Quality Index (OWQI). National and international
organisations have formulated these indices dependent on a number of water quality
parameters relative to the specific requirements of a given area [17,18]. Water quality
indices have been shown to demonstrate temporal and spatial differences in water quality,
even at small concentrations, in an accurate and timely manner [19].

There is a current rise in the use of artificial intelligence (AI) techniques to estimate
WQIs [20–24]. Groundwater quality can be understood and monitored using artificial
neural networks (ANNs) and used to predict water quality with great success [25–27]. Also,
other computational intelligence techniques, such as genetic algorithms (GA), support
vector machine (SVM), Fit binary Tree, and Gaussian process regression (GPR), have
attracted growing interest in WQI prediction studies [28,29]. The non-linear structure of
computational intelligence techniques and their ability to anticipate complex occurrences,
handle massive datasets of varying sizes, and accommodate missing data are all advantages.
Additionally, artificial intelligence approaches have been shown to be extremely capable of
forecasting water quality [26,27,30–36].

Gazzaz et al. [30] applied a neural network model for calculating a WQI for the Kinta
River, Malaysia. The model’s WQI predictions were highly correlated with measured
WQI values (r = 0.977). El Bilali and Taleb [31] used eight machine learning (ML) models:
artificial neural network (ANN), multiple linear regression (MLR), decision tree, Random
Forest (RF), support vector machine (SVM), k-nearest neighbour (kNN), stochastic gradient
descent (SGD), and adaptive boosting (AdaBoost) to forecast ten irrigation water quality
(IWQ) parameters in the Bouregreg watershed, Morocco. The findings of the machine
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learning models showed that they are cost-effective tools for predicting irrigation water
quality. Kulisz et al. [33] developed an ANN model using five parameters (EC, pH, Ca, Mg,
and K) to forecast a groundwater WQI in Syczyn, Poland. It was concluded that the ANN
tools predicted the WQI at a desirable level of accuracy (r = 0.9992). Kouadri et al. (2021)
used eight artificial intelligence algorithms: MLR, RF, M5P model tree, random subspace
(RSS), additive regression (AR), ANN, SVR, and locally weighted linear regression (LWLR)
to predict a WQI in Illizi region, southeast Algeria. The MLR model had a higher level of
accuracy when compared to other models. Gupta et al. [32] employed machine learning
algorithms to evaluate a WQI in India’s Mid Gangetic Region. They concluded that machine
learning models are a suitable alternative for groundwater water quality evaluation and
may be applied swiftly utilising a data-driven approach. Setshedi et al. [26] employed an
ANN to build the best model for forecasting water quality metrics using data from three
district municipalities in the Eastern Cape Province, South Africa. The findings revealed
that the ANN model is a valuable and reliable tool for optimising the observational network
by identifying key monitoring sites and accurately forecasting the quality of river water
variables. Mokhtar et al. [27] applied three artificial intelligence (AI) and four multiple
regression models to forecast six irrigation water quality criteria. The findings indicated
that these models could be used to make quick decisions about irrigation water quality.

To the best of our knowledge, no research has been published that evaluates the
performance of artificial intelligence approaches to predict WQIs in the area of Jazan and
Tihama plains in the southwestern part of the Red Sea coast of Saudi Arabia. The choice
of the study area takes into consideration its importance to national development in the
Kingdom. The study area and its surroundings are considered one of the most promising
areas in agricultural and industrial development. Thus, the evaluation of the Water Quality
Index in the study area could be useful to help planners and decision-makers to protect
groundwater resources from deterioration.

Hence, the goal of this research is to (i) test a number of advanced artificial intelligence
techniques in their capacity to estimate a WQI using 11 physicochemical parameters
(pH, TDS, Ca2+, Mg2+, Na+, K+, Cl−, SO4

2−, HCO3
−, NO3

−, and TH) collected from
145 groundwater wells in Jizan, Saudi Arabia, and (ii) to select the statistically optimal
artificial intelligence model in predicting a WQI. The following steps were taken to achieve
this goal. Firstly, the statistical analysis and correlation coefficients for the physicochemical
parameters were determined. Secondly, ArcGIS was used to create maps of the spatial
distribution of groundwater quality metrics. Thirdly, the Weighted Arithmetic Water
Quality Index (proposed by Horton [37]) was used to calculate the WQI. Fourthly, to predict
the WQI, multiple artificial intelligence techniques were used (linear regression (stepwise),
SVM (linear and polynomial kernels), Gaussian process regression (GPR), Fit binary tree,
and ANN (Bayesian)). Finally, the best subset regression analysis was performed to
determine the best input combinations for the WQI model. This study presents two
essential findings, which are as follows: (1) Creating a single-line linear equation that can
be easily applied by water users and decision makers when all parameters are available
(11 inputs); (2) when data are limited, we used the best subset regression model to extract
the optimal input parameters to the ML model for WQ prediction. As a result of this
research, two future plans/strategies for water quality simulations will be developed.

2. Materials and Methods
2.1. Study Area Description

The Jizan study area is located in the southwest corner of Saudi Arabia, directly north
of the border with Yemen. It is located between longitude 41◦56′18′′ E and 43◦15′58′′ E and
latitude 16◦23′8′′ N and 17◦53′56′′ N (Figure 1). The study area covers about 10,753 km2.
Jazan City is located on the Red Sea coast and serves a large agricultural heartland with
a population of 319,119 as of 2021. Based on climate data for Jazan from 1985 to 2010
(Figure 2), Jazan has a hot desert climate with an average annual temperature of more
than 30 ◦C. The weather is extremely hot all year, with daily lows averaging over 25 ◦C
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and highs averaging over 35 ◦C even in the coldest month. The average evaporation
rate is 2000 mm/year (Source: Jeddah Regional Climate Center [38]. The southwestern
region of Saudi Arabia is rich in rainfall compared to other areas of the Kingdom of Saudi
Arabia, with average annual precipitation in the range of 400–700 mm/year [39]. The
watersheds collect these precipitations that exclusively occur during the winter season from
the adjoining hills and channel the collected runoff toward the Red Sea as surface runoff
and/or infiltration into the near-surface aquifers [40,41]. The importance of the study area
for national and economic development was a driving goal for this research.
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The study area spans the western margin of the Proterozoic Arabian Shield and the
eastern margin of the Cenozoic Red Sea basin. The Cenozoic rocks are represented by
the clastic sedimentary succession underlying the black basaltic sheet of lava flows. The
Quaternary deposits cover about half of the Jazan area in the wadi beds and the coastal
plain. They consist of interbedded clay and sands, silts, cobbles, and gravels of wadi beds
with variable thicknesses from one place to another. The thickness of the alluvial sediments
ranges from 10 m towards the foothills to more than 100 m distant from the highlands in
the southwest parts [2,42].
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2.2. Dataset Collection

A total of 145 groundwater samples were collected and chemically analysed from
both shallow dug wells and boreholes tapping the phreatic aquifer (Figure 1). Collected
water samples were analysed for major cations (Ca2+, Mg2+, Na+, K+) and anions (HCO3

−,
SO4

2, Cl−, CO3
2−) by following standard methods suggested by APHA American Public

Health Association (APHA) [43]. Table 1 displays descriptive statistics for physicochemical
variables of the groundwater samples and the maximum permissible limits for various
parameters, according to the WHO [44]. The inverse distance weighted (IDW) interpolation
in GIS was used to map the spatial distribution of the chemical water parameters.

Table 1. Descriptive statistics for physicochemical variables and WHO standards for drinking water.

Element Min. Max. Average Standard
Deviation

WHO
Guidelines [44]

pH 6.3 8.7 7.7 0.3 7
TDS (mg/L) 128.0 8320.0 1709.6 1293.0 1000
TH (mg/L) 90.6 3676.6 640.8 526.7 500

Ca2+ (mg/L) 23.5 831.7 157.7 131.6 200
Mg2+ (mg/L) 4.4 388.8 60.0 55.9 30
Na+ (mg/L) 1.6 1291.4 307.6 276.3 200
K+ (mg/L) 1.2 188.5 12.4 27.6 12
Cl− (mg/L) 12.8 3669.1 571.6 602.3 250

HCO3
− (mg/L) 9.2 518.1 217.5 89.4 350

SO4
2− (mg/L) 7.2 1098.5 319.8 221.9 350

NO3
− (mg/L) 0.00 34.1 1.8 4.4 50

2.3. Water Quality Index (WQI)

This study uses eleven water quality parameters to calculate a WQI based on the
World Health Organization’s recommended drinking water quality standards (WHO) [44].
The WQI was analysed using the physicochemical parameters of pH, TDS, Ca2+, Mg2+,
Na+, K+, Cl−, SO4

2−, HCO3
−, NO3

−, and TH. The weighted arithmetic WQI (WAWQI),
proposed by Horton [37], was used to assess the water quality.

WAWQI = ∑n
i=1 WiQi (1)
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where Wi is the relative weight of each parameter (Equation (2)), and Qi (Equation (3)) is
the quality rate scale assigned to each parameter by dividing the parameter concentration
of the water sample by its respective standard as per the WHO guidelines [44] (Table 1).

Wi =
wi

∑n
i=1 wi

(2)

Qi =
Ci
Si

(3)

where wi is the weight of each parameter on a scale of one to five, indicating their relative
relevance for drinking water quality, n is the number of parameters, Ci and Si are respec-
tively the concentration of parameter i, and the standard value of parameter i. Table 2
shows the weights for the various water parameters [33]. Table 3 shows the classification of
water quality according to the WAWQI type and range.

Table 2. Physicochemical parameters’ weights and relative weights [33].

Parameters Weight (wi) Relative Weight (Wi)

pH 4 0.100
TDS 5 0.125
TH 3 0.075

Ca2+ 3 0.075
Mg2+ 3 0.075
Na+ 4 0.100
K+ 2 0.050
Cl− 5 0.125

HCO3
− 1 0.025

SO4
2− 5 0.125

NO3
− 5 0.125

Table 3. Classification of water quality according to the WQI type and range [45].

WAWQI Water Type

<50 Excellent
50–100 Good

100.1–200 Poor
200.1–300 Very poor

>300.1 Unsuitable

2.4. Machine Learning Methods
2.4.1. Multiple Regression

The input parameters of the ANN model were determined using the multiple linear
regression model [46]. The purpose of multiple linear regression analysis is to use known
independent variables to predict the value of a single dependent variable. The weights
of each predictor value indicate how big of an impact it has on the total projection. The
independent variables are water quality measures (X1, X2,..., Xn) for the dependent WAWQI
in this study (Y).

Y = a0 + a1X1 + a2X2 + a3X3 + · · ·+ aiXi + · · ·+ anXn (4)

where Xi: is the dependent variable i; n is the number of the dependent variables, ai is the
ith coefficient of the dependent variable Xi, a0 is the constant term of the model.

2.4.2. Artificial Neural Network (ANN)

ANNs were used to predict the WAWQI using MATLAB’s Neural Network library
(MathWorks, Natick, MA, USA). The ANN model’s input, hidden, and output layers are all
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separate layers, and each layer contains different types of neurons. The input parameters
are entered into the network and stored in input neurons, while the calculated outcomes
are attributed in the output layer by output neurons. The hidden layer acts as a mediator
to connect the input and output layers [47]. There are many different types of ANNs;
one of the most common is the Bayesian regularisation back propagation (BRBP), which
is the type applied in this research. The BRBP is a network training function that uses
Levenberg Marquardt optimisation to update weight and bias variables. It finds the best
mix of squared errors and weights to construct a network that generalises well [48,49].

The input parameters of the ANN model in this work were 11 input neurons, which
included physicochemical parameters such as pH, TDS, Ca2+, Mg2+, Na+, K+, Cl−, SO4

2−,
HCO3

−, NO3
−, and TH, while the output neurons were the WAWQI (Figure 3). In the

hidden layer, nine neurons were used. Moreover, 75% of the dataset was allocated for
training the models, and the remaining were considered for testing and validating the
models.
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2.4.3. Support Vector Machines (SVM)

SVM analysis is a common machine-learning tool for regression analysis and classifica-
tion [50]. Because it uses kernel functions, SVM regression is classified as a non-parametric
approach. The SVM model is used to improve accuracy on low to medium-dimensional
data sets. SVM regression is used to find the linear function for training data x of N
observations with observed response values y.

f (x) = y =

[
w
b

]T[x
1

]
= wTx + b x, b ∈ RN+1 (5)

where the parameters w and b are the gradient and the intercept, respectively, and ε
represents the tolerance margin, as shown in Figure 4.
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The kernel function determines the non-linear transformation applied to the data
before the SVM is trained. In this paper, linear and polynomial kernel functions are used.
The memory usage for cubic SVM is higher than linear SVM [52]. The Machine Learning
Toolbox in MATLAB provides the following linear and polynomial kernel functions:

Linear : G
(
xi, xj

)
= x′i xj (6)

Polynomial : G
(
xi, xj

)
= (1 + x ′ixj

)q
, where q is in the set {2, 3, 4, . . .} (7)

The Gram matrix is an n-by-n matrix with entries gi,j = G(xi,xj). Each element gi,j
represents the inner product of the predictors as transformed by ϕ. However, no need to
know ϕ; the Gram matrix can be directly constructed using the kernel function. Non-linear
SVM uses this method to determine the best function f(x) in the altered predictor space.
In this paper, x represents the input vector (11 physicochemical parameters), f(x) refers to
WAWQI, and in the polynomial kernel function, q was set as 3 (cubic).

2.4.4. Fit Binary Tree

A binary search tree (BST), also known as an ordered or sorted binary tree, is a rooted
binary tree data structure in which each internal node stores a value that is higher than all
keys in the node’s left subtree but less than those in the node’s right subtree. The temporal
complexity of operations on the binary search tree is related to the tree’s height. Binary
search trees provide a binary search for quick data lookup, addition, and removal and
may be used to construct dynamic sets and lookup tables. Because the nodes in a BST
are arranged so that each comparison skips around half of the remaining tree, the lookup
performance is proportional to that of the binary logarithm. In BST, the left sub-tree has
elements less than the nodes element, and the right sub-tree has elements greater than the
nodes element. A data structure called a BST makes it easy to keep track of a sorted list of
numbers. Because each tree node can only have two children, it is known as a binary tree.
Because it may be used to search for the presence of a number in O(log(n)) time, it is known
as a search tree. BST is a node-based binary tree data structure that has the following
properties: The left sub-tree of a node contains only nodes with keys lesser than the node’s
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key; The right sub-tree of a node contains only nodes with keys greater than the node’s key;
The left and right sub-tree each must also be a binary search tree; there must be no duplicate
nodes. Data representation is carried out in the ordered format, and BST does not allow
duplicate values. The performance of a binary search tree is determined by the sequence in
which the nodes are inserted into the tree; various binary search tree versions may be made
with assured worst-case performance. The fundamental operations are search, traverse,
insert, and delete. BSTs with assured worst-case complexity outperform an unsorted array,
which would need a linear search time. The following pseudocode recursively implements
the BST search method (Algorithm 1).

Algorithm 1. Pseudocode recursively for the BST search method.

Tree-Search(x, key)
if x = NIL or key = x.key then

return x
if key < x.key then

return Tree-Search(x.left, key)
else

return Tree-Search(x.right, key)
end if

The recursive procedure continues until a NIL is reached or the observed and simu-
lated values are in good agreement.

2.4.5. Gaussian Process Regression (GPR)

The GPR mathematical model is a non-parametric kernel-based probabilistic model [53].
It is important in the field of machine learning programming. The essential understanding
of GPR is that the learning sample tracks the past probabilities of the Gaussian process
regression. It is based on calculating the consistent subsequent probability and is built
using the Bayesian linear regression model. GPR uses the kernel to define the covariance of
a prior distribution across the target functions, and the observed training information is
used to explain a likelihood function. Based on the Bayes theorem, a (Gaussian) posterior
circulation across goal functions is explained, and its mean is used for data prediction. GPR
was originally proposed as a ‘principled, practically, and probabilistically based approach
to kernel-making’ [53]. The benefit of GPR over many other methods is that it smoothly
integrates hyper-parameter estimates, model training, and risk evaluations; the results are
less subjectively impacted and more understandable as a consequence. Gaussian processes
(GP) are based on the assumption that the combined dispersion of model output probability
is Gaussian [54].

Polynomial kernel (poly kernel) is a kernel feature that is commonly employed with
the GPR in the initial variables of a function space to develop non-linear models. The
polynomial kernel emerges automatically at the defined characteristics of the input samples
to acquire their likeness, as well as combinations of them. In the context of regression
analysis, such groups are referred to as interactive features. The enclosed polynomial kernel
feature space is similar to a polynomial regression, but it is an educated sum of parameters
that do not have a combinative blow-up. When the features’ input data is binary (boolean),
the features are linked to logical input function conjunctions [55].

The polynomial kernel is well-defined as follows:

K(x, Y) =
(

xT , y + C
)d

(8)

where x and y are vectors in the input space, i.e., vectors of features estimated from workout
or trial samples, and C ≥ 0 is an unlimited parameter balancing the approach of higher-
order vs. lower-order polynomial formulations. When C equals zero, the kernel is said to
be homogenous.
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2.5. Evaluation Indicators

Five statistical indicators were used to assess the performance of the linear regression,
ANN, and SVM models: mean error (ME), mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE), coefficient of correlation (R), and
R-squared. The following equations were used to determine these indicators:

ME =
1
N

N

∑
i=1

(Yi −Y∗i ) (9)

MAE =
1
N

N

∑
i=1
|Yi −Y∗i | (10)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Yi −Y∗i

)2 (11)

MAPE =
1
N

N

∑
i=1

∣∣Yi −Y∗i
∣∣

Y∗i
× 100 (12)

R =
∑N

I=i
(
Yi −Y

)(
Y∗i −Y∗

)√
∑N

i=1
(
Yi −Y

)2
∑N

i=1
(
Y∗i −Y∗

)2
(13)

where N is the number of measurements, Yi is the measured value for each parameter, Y*

is the estimated value for each parameter, Y is the mean of the measured values of the Y
variables, and Y∗ is the mean of the estimated values of Y* variables.

3. Results and Discussion
3.1. Hydrogeological Aspects

The hydrogeological conditions have been studied in the Jazan area, where the ground-
water is stored in both the alluvial deposits of the wadi systems and the clastic coarse
members of the Cretaceous–Tertiary sedimentary succession [56]. The alluvial aquifer is
composed of the Quaternary wadi deposits that enhance seawater intrusion in the coastal
aquifer [2,57]. The aquifer’s transmissivity ranges from 540 to 5400 m2/day, with an
average of 2190 m2/day, and specific yield ranges between 0.001 and 0.006, increasing
towards west directions, indicating good productivity. The storativity coefficient ranges
between 0.01 and 0.25, with an average of 0.13 increasing toward the west direction [58].
Uncontrolled pumping in many locations has caused a cone of depression with the inland
movement of the seawater fronts. The main recharge components of the aquifer are local
rainfall infiltration that exclusively occurs during floods in the winter season. The shallow
unconfined aquifer is subject to over-exploitation from many scattered wells in the area.
Discharge of the aquifer includes groundwater pumping from wells to provide an adequate
water supply for agricultural and residential areas and evapotranspiration losses in places
where the water table is close to the ground surface [2].

Figure 5 shows the hydrogeological conditions ascertained from the fieldwork, includ-
ing groundwater level compared with the mean sea level (m.asl) and depth of groundwater
in the study area. Groundwater occurs at shallow depths, where groundwater levels vary
from 10 to 33 m below the ground surface (Figure 5b). The piezometric gradient is inclined
towards the west and southwest direction; it varies from 0.005 in the upper parts of the
wadi to 0.001 at the beginning of the coastal plain [2]. Generally, the groundwater flow
is from the east and northeast to the west and southwest toward the sea (Figure 5a); this
might be due to the positive hydraulic gradient set up by the balance between recharge
inland and discharge toward the sea. However, excessive fresh groundwater pumping
in many areas causes a modification of the natural flow systems (reversing the hydraulic
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gradients) and, thus, induces seawater intrusion. However, few areas showed characteristic
cones of depression.

Water 2023, 15, x FOR PEER REVIEW 11 of 26 
 

 

evapotranspiration losses in places where the water table is close to the ground surface 
[2]. 

Figure 5 shows the hydrogeological conditions ascertained from the fieldwork, in-
cluding groundwater level compared with the mean sea level (m.asl) and depth of 
groundwater in the study area. Groundwater occurs at shallow depths, where ground-
water levels vary from 10 to 33 m below the ground surface (Figure 5b). The piezometric 
gradient is inclined towards the west and southwest direction; it varies from 0.005 in the 
upper parts of the wadi to 0.001 at the beginning of the coastal plain [2]. Generally, the 
groundwater flow is from the east and northeast to the west and southwest toward the 
sea (Figure 5a); this might be due to the positive hydraulic gradient set up by the balance 
between recharge inland and discharge toward the sea. However, excessive fresh 
groundwater pumping in many areas causes a modification of the natural flow systems 
(reversing the hydraulic gradients) and, thus, induces seawater intrusion. However, few 
areas showed characteristic cones of depression. 

  

(a) (b) 

Figure 5. (a) Groundwater level (m.asl), (b) depth to groundwater in the study area. 

3.2. Statistical Analysis 
Table 4 presents the descriptive statistics for the 145 water quality samples. Moreo-

ver, the correlation matrix is useful since it independently illustrates each parameter’s 
importance and its effect on the hydrochemical relationships. If (r) values in Pearson’s 
correlation matrix (Table 5) are +1 or −1, they represent a complete correlation between 
two variables, i.e., functional dependence. If the values are near zero, there is no signifi-
cant interaction between the two variables at the p < 0.05 level. 

  

Figure 5. (a) Groundwater level (m.asl), (b) depth to groundwater in the study area.

3.2. Statistical Analysis

Table 4 presents the descriptive statistics for the 145 water quality samples. Moreover,
the correlation matrix is useful since it independently illustrates each parameter’s impor-
tance and its effect on the hydrochemical relationships. If (r) values in Pearson’s correlation
matrix (Table 5) are +1 or −1, they represent a complete correlation between two variables,
i.e., functional dependence. If the values are near zero, there is no significant interaction
between the two variables at the p < 0.05 level.

Table 4. Descriptive statistics for all input and output variables.

Variable Mean SE Mean StDev Minimum Q1 Median Q3 Maximum

pH 7.66 0.03 0.31 6.33 7.48 7.67 7.82 8.68
TDS 1710 108 1298 128 803 1408 2128 8320
TH 640.8 43.9 528.5 90.6 303.4 473.2 864.0 3676.6

Ca2+ 157.7 11.0 132.0 23.4 73.5 116.6 193.0 831.7
Mg2+ 60.02 4.66 56.08 4.37 27.03 39.00 83.11 388.80
Na+ 307.6 23.0 277.3 1.6 116.4 242.1 365.1 1291.3
K+ 12.44 2.30 27.68 1.17 3.52 5.47 7.62 188.46
Cl− 571.6 50.2 604.4 12.8 173.4 427.9 691.6 3669.1

HCO3
− 217.45 7.45 89.69 9.15 151.94 206.25 266.05 518.06

SO4
2– 319.8 18.5 222.7 7.2 141.2 287.2 427.5 1098.4

NO3
− 1.837 0.363 4.374 0.000 0.330 0.800 1.465 34.140

WAWQI 125.41 7.26 87.40 20.30 64.61 99.46 161.33 592.31

SE Mean: standard error of mean, St Dev: standard deviation, Q1: first quartile, Median: middle number, Q3:
third quartile.
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Table 5. The Pearson correlation coefficient of the variables, values of R > 0.5, are shown in bold.

pH TDS TH Ca2+ Mg2+ Na+ K+ Cl− HCO3− SO4
2– NO3−

pH 1
TDS −0.098 1
TH −0.203 0.873 1

Ca2+ −0.198 0.837 0.961 1
Mg2+ −0.182 0.803 0.918 0.771 1
Na+ 0.014 0.906 0.586 0.567 0.533 1
K+ −0.004 −0.045 0.003 −0.004 0.012 −0.108 1
Cl− −0.053 0.977 0.847 0.818 0.770 0.891 −0.056 1

HCO3
− −0.220 0.007 0.021 0.011 0.033 −0.004 0.045 −0.102 1

SO4
2– −0.140 0.753 0.675 0.629 0.648 0.668 0.008 0.610 0.091 1

NO3
− −0.273 0.152 0.261 0.289 0.185 0.030 0.009 0.091 0.235 0.253 1

3.3. Chemical Analysis, Spatial Distribution, and Correlation Coefficients

The results of the chemical analysis indicated that the dominant cations are Na+,
followed by Ca2+ and Mg2+, while the dominant anions are Cl− followed by SO4

2− and
HCO3

−, with a minor contribution of NO3
−. Cations and anions reflect sodium chloride

water type (Table 1). The pH of the groundwater ranges between 6.33 and 8.68, with an
average of 7.66 indicating more or less neutral groundwater that is generally suitable for
drinking. TDS is an important parameter for assessing salinity hazards and suitability
for drinking and irrigation. The TDS ranges from 128 mg/L in the boreholes located
further inland to 8320 mg/L close to the coastline, with an average of 1709 mg/L; thus, a
wide range of variation was detected (Figure 6). The higher TDS values are recorded in
groundwater wells near the Red Sea coast, indicating significant groundwater salinisation
due to seawater intrusion. This seawater intrusion in the coastal aquifer of Jazan was
confirmed by Abdalla [42], Abdalla et al. [2], Al-Bassam and Hussein [57].

Water 2023, 15, x FOR PEER REVIEW 13 of 26 
 

 

 
Figure 6. Total dissolved solids (TDS) zonation map for the study area. 

The spatial distribution of the major cations (K+, Na+, Mg2+, Ca2+) and major anions 
(SO42–, Cl−, HCO3−, NO3−) is shown in Figures 7 and 8, respectively. 

  
(a) (b) 

Figure 6. Total dissolved solids (TDS) zonation map for the study area.



Water 2023, 15, 2448 13 of 24

The increase of Ca2+ and Mg2+ concentrations with the increasing salinity could
indicate reverse ion exchange in the aquifer. High Cl− and SO4

2− concentrations were
recorded in places close to the coastline and indicate seawater intrusion.

The spatial distribution of the major cations (K+, Na+, Mg2+, Ca2+) and major anions
(SO4

2–, Cl−, HCO3
−, NO3

−) is shown in Figures 7 and 8, respectively.
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3.4. Water Quality Index Distribution and Classification

The calculated WAWQI shows that 15 wells have a score of less than 50, indicating
excellent water quality, according to Kumar et al. [45] (Table 3). The WAWQI of 58 wells
ranges from 50.1 to 100, indicating good quality water. Figure 9 depicts the WQI classifica-
tion: 52 wells have a WQI of 100.1–200, indicating water of poor quality, and 13 wells have
a WQI of 200.1–300, indicating water of extremely poor quality. Finally, seven wells have
a WQI of greater than 300, indicating that the water is unfit for consumption. The spatial
distribution of the WQI over the region is depicted using inverse distance weighted (IDW)
interpolation in Figure 10.



Water 2023, 15, 2448 15 of 24

 

 
 

 

 
Water 2023, 15, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/water 

 

Figure 9. Classification of water quality according to the WAWQI. 

 

Figure 9. Classification of water quality according to the WAWQI.

Water 2023, 15, x FOR PEER REVIEW 16 of 26 
 

 

 
Figure 10. WAWQIs spatial distribution in the study area. 

3.5. Evaluation of Data-Driven Models in WQ Prediction 
The data were fitted using stepwise regression for the linear regression model, 

which produced a model that closely matched the observed and predicted WAWQI val-
ues. The input data were first structured as a dataset array, and the response data 
(WAWQI) were then arranged as a column vector. Each row of input data represents one 
observation. The regression model is then developed. The stepwise fit model begins with 
a single model, such as a constant, and then adds or subtracts terms one by one. Then, in 
a greedy manner, it selects an ideal parameter each time until it can no longer improve. 
The data should then be checked for outliers. The model coefficients obtained from the 
linear regression model are presented in Table 6. The model findings for this case study 
show that pH, K+, and NO3− are the most significant variables and HCO3− is considered an 
insignificant variable. The model appears as in Equation (14). R2 = 1 indicates that the 
data fit the model well. The MSE is 0.003, and the RMSE is 0.0023. Figure 11 shows the 
comparison of predicted and measured WAWQI. 

  

Figure 10. WAWQIs spatial distribution in the study area.



Water 2023, 15, 2448 16 of 24

3.5. Evaluation of Data-Driven Models in WQ Prediction

The data were fitted using stepwise regression for the linear regression model, which
produced a model that closely matched the observed and predicted WAWQI values. The
input data were first structured as a dataset array, and the response data (WAWQI) were
then arranged as a column vector. Each row of input data represents one observation. The
regression model is then developed. The stepwise fit model begins with a single model,
such as a constant, and then adds or subtracts terms one by one. Then, in a greedy manner,
it selects an ideal parameter each time until it can no longer improve. The data should then
be checked for outliers. The model coefficients obtained from the linear regression model
are presented in Table 6. The model findings for this case study show that pH, K+, and
NO3

− are the most significant variables and HCO3
− is considered an insignificant variable.

The model appears as in Equation (14). R2 = 1 indicates that the data fit the model well.
The MSE is 0.003, and the RMSE is 0.0023. Figure 11 shows the comparison of predicted
and measured WAWQI.

WAWQI = −0.0057308 + 1.4292 pH + 0.069523 TH− 0.098639 Ca2+ + 0.025649 Mg2++

0.050002 Na+ + 0.41667 K+ + 0.050032 Cl− + 0.0071646 HCO3
− + 0.03574 SO4

2− + 0.24998 NO3
− (14)

Table 6. Model coefficients from multiple regressions.

Estimate SE p Value

Intercept −0.005731 0.0070781 0.41958
pH 1.4292 0.0008888 <0.00000
TDS 0.012481 1.18 × 10−5 <0.00000
TH 0.069523 0.018668 0.0002884

Ca2+ −0.098639 0.046613 0.036195
Mg2+ 0.025649 0.076817 0.73898
Na+ 0.050002 1.91 × 10−5 <0.00000
K+ 0.41667 1.09 × 10−5 0
Cl− 0.050032 1.73 × 10−5 <0.00000

HCO3
− 0.007165 1.02 × 10−5 <0.00000

SO4
2– 0.03574 1.30 × 10−5 <0.00000

NO3
− 0.24998 6.28 × 10−5 0
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The best result for the ANN modelling was obtained for the network with nine neurons
after 19 iterations, while the best validation result was displayed for the network after 13
iterations (Figure 12).
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Figure 12. ANN modelling validation with a best performance MSE of 0.048016 at iteration 13.

The ME, MAE, RMSE, MAPE, regression factor R, and R2 were used to validate the
applied models’ performance (Table 7). The scatterplots of the predicted and calculated
WAWQI for the applied models in the training stage (right) and testing stage (left) are
shown in Figure 13.

Water 2023, 15, x FOR PEER REVIEW 19 of 26 
 

 

Table 7. The performance indices of the developed models for the WAWQI during the training and 
testing stages. 

Model/Indices ME MAE RMSE MAPE % R R2 

Fit binary tree 
Training 0.00 6.066 10.085 4.920 0.9884 0.9942 
Testing 0.00 7.723 10.222 8.772 0.9701 0.9849 

SVM (linear) 
Training 1.920 3.388 3.825 3.380 0.9988 0.9994 
Testing 3.185 4.469 4.688 5.642 0.9976 0.9988 

SVM (polynomial 
kernel) 

Training −0.234 6.424 8.144 5.453 0.9953 0.9976 
Testing −1.078 8.302 10.040 9.343 0.9753 0.9876 

Gaussian process 
regression (GPR) 

Training 0.00 0.1935 0.2552 0.234 1.00 1.00 
Testing 0.00 0.2529 0.326 0.391 1.00 1.00 

Linear regression 
(stepwise) 

Training 0.00 0.0023 0.0028 0.0025 1.00 1.00 
Testing 0.00 0.0024 0.0029 0.0014 1.00 1.00 

ANN 
Training 0.088 0.088 0.0884 0.0969 1.00 1.00 
Testing 0.074 0.074 0.075 0.0982 1.00 1.00 

 

  

  

  

Figure 13. Cont.



Water 2023, 15, 2448 18 of 24
Water 2023, 15, x FOR PEER REVIEW 20 of 26 
 

 

  

  

  
Figure 13. Predicted vs. calculated WAWQI for the applied models in the training stage (right) and 
testing stage (left). 

3.6. Best Subset Regression for Selecting the Most Important Parameters 
Feature selection is one of the most important stages in a soft computing model to 

forecast and predict phenomena with many input variables. There are several approaches 
to specify the best combinations among all possible, including best subset regression, 
mutual information, and forward stepwise selection. The best subset regression analysis 
was performed in the current study to determine the best input combinations for the 
WAWQI model. For this purpose, six statistical criteria, including MSE, determination 
coefficients (R2), adjusted R2, Mallows’ Cp, Akaike’s AIC, and Amemiya’s prediction cri-
terion (PC), were computed, and the results are shown in Table 8. As can be seen, the 
eight bold input combinations have the lowest values of Amemiya’s PC (from 0.00 to 
0.027) among all input combinations. These eight input combinations have a high R2 
(from 0.975 to 1.00) and high Adj-R2 (from 0.974 to 1.00) and were identified as the best 
input combination for the prediction of the WAWQI model. It is noteworthy that a total of 
145 datasets were randomly split into two training and testing subsets. Moreover, 75% of 

Figure 13. Predicted vs. calculated WAWQI for the applied models in the training stage (right) and
testing stage (left).

Table 7. The performance indices of the developed models for the WAWQI during the training and
testing stages.

Model/Indices ME MAE RMSE MAPE % R R2

Fit binary tree Training 0.00 6.066 10.085 4.920 0.9884 0.9942
Testing 0.00 7.723 10.222 8.772 0.9701 0.9849

SVM (linear)
Training 1.920 3.388 3.825 3.380 0.9988 0.9994
Testing 3.185 4.469 4.688 5.642 0.9976 0.9988

SVM (polynomial kernel) Training −0.234 6.424 8.144 5.453 0.9953 0.9976
Testing −1.078 8.302 10.040 9.343 0.9753 0.9876

Gaussian process
regression (GPR)

Training 0.00 0.1935 0.2552 0.234 1.00 1.00
Testing 0.00 0.2529 0.326 0.391 1.00 1.00

Linear regression
(stepwise)

Training 0.00 0.0023 0.0028 0.0025 1.00 1.00
Testing 0.00 0.0024 0.0029 0.0014 1.00 1.00

ANN
Training 0.088 0.088 0.0884 0.0969 1.00 1.00
Testing 0.074 0.074 0.075 0.0982 1.00 1.00

The GPR, linear regression (stepwise), and ANN models all worked perfectly in the
training and testing phases, as shown in Table 7. In both phases, these models had a high
correlation, nearly to one, and small statistical errors. The linear regression (stepwise)
model produced the best results, with MAE = 0.0023, RMSE = 0.0028, MAPE = 0.0025%,
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R = 1.0, and R2 = 1.0. The ANN model came in second with MAE = 0.088, RMSE = 0.0884,
MAPE = 0.0969%, R = 1.0, and R2 = 1.0. At the same time, the GPR model came in third
with MAE = 0.194, RMSE = 0.255, MAPE = 0.234%, R = 1.0, and R2 = 1.0. This was followed
by the SVM (Linear) model with MAE = 3.39, RMSE = 3.83, MAPE = 3.38%, R = 0.9988, and
R2 = 0.9994. The SVM (Gaussian kernel) and Fit binary tree models performed the worst
in the training and testing phases of the prediction procedure. For the SVM (polynomial
kernel) model, the MAE, RMSE, MAPE, R, and R2 were 6.42, 8.14, 5.45%, 0.9953, and 0.9976,
respectively. For the Fit binary tree, the MAE, RMSE, MAPE, R, and R2 were 6.07, 10.09,
4.92%, 0.9884, and 0.9942, respectively (Table 7).

Overall results showed that the proposed methods generated satisfactory outputs for
estimating WAWQI close to observed data. The results obtained are highly satisfactory com-
pared with the findings from Sakaa et al. [59], who showed that a combination of all input
parameters attained a best predictive performance of R2 testing = 0.82, RMSE testing = 5.17,
while a couple of five input parameters, such as pH, EC, TDS, T, and saturation, achieved
the second-best predictive precision (R2 testing = 0.81, RMSE testing = 5.55). In addition,
the current findings are in agreement with the results of Mokhtar et al. [27], who used SVM,
extreme gradient boosting, Random Forest and stepwise regression, principal components
regression, partial least squares regression, and ordinary least squares regression for WQI
modelling and stated that all models used with values less than 0.1 show good prediction
ability for all indices. These findings were extremely acceptable and agreed with those sug-
gested by Elbeltagi et al. [60], who applied additive regression (AR), M5P tree model (M5P),
random subspace (RSS), and SVM in WQI modelling and found that AR outperformed the
other data-driven models (R2 = 0.9993, MAE = 0.5243, RMSE = 0.06356, RAE% = 3.8449,
and RRSE% = 3.9925). The AR was offered as an optimal model with good outcomes due to
improved prediction precision with the fewest input parameters. Moreover, eight artificial
intelligence algorithms, e.g., multi-linear regression (MLR), random forest (RF), M5P tree
(M5P), random subspace (RSS), additive regression (AR), artificial neural network (ANN),
support vector regression (SVR), and locally weighted linear regression (LWLR) have been
applied by Kouadri et al. [35]. Their results stated that the MLR model performed better
than the other models, whereas the RF model performed better. Also, the model results
coincide with Kouadri et al. [36], who implemented long short-term memory (LSTM),
multi-linear regression (MLR), and ANN and stated that the results are highly accurately
predicted using ANN and MLR models compared to LSTM model. These models also
generated more favourable outcomes than those achieved by Iqbal et al. [61], who used
the WASP8 for water quality simulations. Their results clarified that Pearson correlation
coefficient values are around 0.66, 0.68, and 0.58, respectively.

3.6. Best Subset Regression for Selecting the Most Important Parameters

Feature selection is one of the most important stages in a soft computing model to
forecast and predict phenomena with many input variables. There are several approaches to
specify the best combinations among all possible, including best subset regression, mutual
information, and forward stepwise selection. The best subset regression analysis was
performed in the current study to determine the best input combinations for the WAWQI
model. For this purpose, six statistical criteria, including MSE, determination coefficients
(R2), adjusted R2, Mallows’ Cp, Akaike’s AIC, and Amemiya’s prediction criterion (PC),
were computed, and the results are shown in Table 8. As can be seen, the eight bold input
combinations have the lowest values of Amemiya’s PC (from 0.00 to 0.027) among all input
combinations. These eight input combinations have a high R2 (from 0.975 to 1.00) and
high Adj-R2 (from 0.974 to 1.00) and were identified as the best input combination for the
prediction of the WAWQI model. It is noteworthy that a total of 145 datasets were randomly
split into two training and testing subsets. Moreover, 75% of the datasets were allocated
for training the models, and the remaining were considered for testing and validating the
models.
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Table 8. The best subset regression analysis for determining the best input combinations to
model WQI.

No. of
Variables Variables MSE R2 Adjusted

R2
Akaike’s

AIC
Schwarz’s

SBC
Amemiya’s

PC

1 NO3 7467.34 0.02 0.023 1295.139 1301.092 0.984
2 SO4/NO3 3356.68 0.56 0.561 1180.181 1189.112 0.445
3 HCO3/SO4/NO3 3342.15 0.57 0.563 1180.527 1192.434 0.446
4 Cl/HCO3/SO4/NO3 197.359 0.975 0.974 771.240 786.124 0.027
5 K/Cl/HCO3/SO4/NO3 60.957 0.992 0.992 601.848 619.708 0.008
6 Na/K/Cl/HCO3/SO4/NO3 17.220 0.998 0.998 419.503 440.340 0.002
7 Mg/Na/K/Cl/HCO3/SO4/NO3 1.773 1.000 1.000 90.825 114.639 0.000
8 Ca/Mg/Na/K/Cl/HCO3/SO4/NO3 0.184 1.000 1.000 −236.474 −209.684 0.000
9 TH/Ca/Na/K/Cl/HCO3/SO4/NO3 0.184 1.000 1.000 −236.474 −209.684 0.000

10 TDS/TH/Ca/Na/K/Cl/HCO3/SO4/NO3 0.161 1.000 1.000 −255.097 −225.330 0.000
11 pH/TDS/TH/Ca/Na/K/Cl/HCO3/SO4/NO3 0.000 1.000 1.000 0.000 0.000 0.000

The best models for the selection criteria are displayed in bold.

4. Conclusions and Outlook

This study analysed the ability of six different AI techniques and regressions, such
as linear regression (stepwise), support vector regression SVM (linear and polynomial
kernels), Gaussian process regression (GPR), Fit binary tree, and artificial neural network
ANN (Bayesian) for forecasting a WQI based on 11 physicochemical parameters (pH, TDS,
Ca2+, Mg2+, Na+, K+, Cl−, SO4

2−, HCO3
−, NO3

−, and TH) collected from 145 groundwater
wells in Jizan, Saudi Arabia.

The outcome of the resultant WQI model clearly identified (forecasted and predicted)
the best input combination for the prediction of the WAWQI model. This might contribute
significantly to the knowledge and understanding of the groundwater quality within the
study area and its impact on any agricultural investments and sustainable development,
as the study area has high importance to national and regional economic development
especially agricultural and industrial activities.

In addition, ArcGIS was used to create maps of the spatial distribution of groundwater
quality parameters. The best subset regression analysis was used to find the optimum input
combinations for the WQI model.

The following findings have been obtained:

- Higher levels of Cl− and SO4
2− were found near the coast, which is indicative of

seawater intrusion and serves as a proxy for salinisation. Furthermore, seven wells
had a WAWQI of more than 300, suggesting that the water is unsafe for human
consumption.

- The results of the stepwise fit model revealed that pH, K+, and NO3
− are the most

important variables, while HCO3
− is a non-significant variable. The best results

were obtained from the simulated ANN modeling for the nine-neuron network after
19 iterations, whereas the best validation performance was 0.048016 at iteration 13.

- The GPR, linear regression (Stepwise), and ANN models worked flawlessly during
the training and testing stages, with a high correlation of 1 and low statistical errors.

- The linear regression (stepwise) model generated the best results, with MAE = 0.0023,
RMSE = 0.0028, and R = 1.0. This good performance is due to its special mechanism
with repeated regressions, each time deleting the weakest associated variable until the
observed and measured values fully match. The ANN model came in second with
MAE = 0.088, RMSE = 0.0884, and R = 1.0. The GPR model finished in third with
MAE = 0.194, RMSE = 0.255, and R = 1.0. The SVM (Linear) model was next, with
MAE = 3.39, RMSE = 3.83, R = 0.9988.

- The SVM (polynomial kernel) and Fit binary tree models performed the worst during
the training and testing phases of the prediction procedure.

- The optimum input combination for WAWQI model prediction was the eight input
combinations with high R2 (from 0.975 to 1.00) and high Adj-R2 (from 0.974 to 1.00).
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These findings are of importance to water planners in terms of WQI for enhancing
sustainable groundwater resource management policies.

In conclusion, the best subset regression analysis is useful, and when only a portion of
the relevant data are available, we can use the best subset regression model to determine
which input parameters will best match the ML model for WQ prediction.

This study recommends not using SVM (polynomial kernel) and Fit binary tree models
because of performing the worst during the training and testing phases of the prediction
procedure. It can be recommended, in future works, standalone and hybrid artificial
intelligence models for predicting WQIs in several regions under different conditions
should be developed to recommend which model is most suitable for all these regions
based on limited input variables. Future research can also incorporate depth to groundwater
variation data into AI/ML methods to investigate its effects on groundwater quality. It is
also recommended that seawater intrusion be controlled in the study area by implementing
one of the following techniques: decreasing pumping rates, hydraulic barriers, artificial
recharge using treated wastewater [62–64], using a freshwater surface recharge canal [65],
cutoff walls [66,67], and brackish water pumping [68].
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