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Abstract: This paper focuses on the load imbalance problem in System Wide Information
Management (SWIM) task scheduling. In order to meet the quality requirements of users for task
completion, we studied large-scale network information system task scheduling methods. Combined
with the traditional ant colony optimization (ACO) algorithm, using the hardware performance
quality index and load standard deviation function of SWIM resource nodes to update the pheromone,
a SWIM ant colony task scheduling algorithm based on load balancing (ACTS-LB) is presented in
this paper. The experimental simulation results show that the ACTS-LB algorithm performance is
better than the traditional min-min algorithm, ACO algorithm and particle swarm optimization
(PSO) algorithm. It not only reduces the task execution time and improves the utilization of system
resources, but also can maintain SWIM in a more load balanced state.

Keywords: System Wide Information Management; ant colony optimization algorithm; hardware
performance quality index; load standard deviation function; load balancing

1. Introduction

In 1997, EUROCONTROL proposed the System Wide Information Management (SWIM) concept
to the Federal Aviation Administration [1]. The International Civil Aviation Organization accepted this
concept in 2002 [2]. The System Wide Information Management is a large-scale network system with
high integration, which integrates and manages internal resources. SWIM, as an information sharing
platform, provides a unified data transmission and exchange mechanism for different subsystems of
civil aviation businesses. In order to achieve interoperability and consistency among the relevant units
of civil aviation, as well as reduce the difficulty of integrated dispatching, this system enables data to
be processed and integrated among independent systems. The basic idea of SWIM is to allow all air
traffic participants, such as airports, air traffic control, airlines and other related civil aviation units,
to share and exchange the latest information. Moreover, it ensures that information can be shared
safely, effectively and in a timely manner. Thus, for accurate and timely cooperative decision-making,
SWIM can greatly improve the predictability and effectiveness of decisions and meet the needs of
civil aviation in terms of efficient and coordinated operation. The comparison of the traditional civil
aviation mesh communication network and the SWIM bus communication structure is shown in
Figure 1 [3].
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Figure 1. Traditional mesh communication structure (left) and System Wide Information 
Management (SWIM) bus communication structure (right) comparison chart. 

In order to improve SWIM resource utilization and sharing rate, it is necessary to solve the 
problem of system task scheduling. Because of the distribution, heterogeneity and autonomy of 
resources in a SWIM environment, SWIM task scheduling is more complex and difficult. As an 
algorithm for solving combinatorial optimization problems, the ant colony algorithm has the 
characteristics of parallelism and strong robustness. It can quickly obtain high-quality solutions and 
is very suitable for solving SWIM task scheduling problems. 

Although the existing improved ant colony algorithm can improve the efficiency of task 
scheduling, it does not significantly improve the system load imbalance. This paper summarizes the 
existing network task scheduling technology in combination with SWIM's own characteristics, on 
the basis of the classical ant colony algorithm, focusing on solving the problem of unbalanced 
resource load of service nodes in task scheduling. According to the hardware performance and load 
situation of service node update pheromones, the SWIM ant colony task scheduling algorithm based 
on load balancing (ACTS-LB) is proposed. This ACTS-LB algorithm can reduce task execution time 
and improve system load balancing, thus ensuring that the user's task scheduling needs can be met 
as much as possible. 

The remainder of the paper is structured as follows. We give some related works in Section 2. 
We introduce SWIM load balancing requirements and related definitions in Section 3. Section 4 
presents the details of the ACTS-LB algorithm. We give the simulation results and analysis in 
Section 5 and conclude this paper in Section 6. 

2. Related Work 

At present, experts and scholars both at home and abroad have conducted much research on 
task scheduling in large-scale network systems, such as cloud computing, grid and other network 
systems. Among them, the min-min algorithm, max-min algorithm and other task scheduling 
algorithms are the early classic methods. There are also exact algorithms to solve the task scheduling 
problems, such as branch-and-bound algorithms, linear programming and cross-entropy methods. 
The heuristic algorithms were used to solve optimization problems, such as genetic algorithm (GA), 
simulated annealing (SA), ant colony (AC) algorithm, particle swarm optimization (PSO) and greedy 
algorithm. These algorithms have different characteristics, which are based on the idea of optimizing 
minimizing scheduling objectives. They have been applied in the task scheduling of these network 
systems and have become the reference object for subsequent research on scheduling algorithms.  

In [4], the authors proposed a new approach for solving the shift minimization personnel task 
scheduling problem. These properties are used to develop a new branch and bound scheme, which 
is used in conjunction with two column generation based approaches and a heuristic algorithm to 
create an efficient solution procedure. In [5], the authors presented a novel distributed 
implementation of multiple hypothesis tracking (MHT). Based on hash-tree distributed content 
storing approach to enable fast operations on local trees and also allow sharing of hypotheses 
between local and remote nodes. In [6], the authors proposed a general algorithm for fast estimation 
of probability of error of linear block codes on BSC channels based on the importance sampling and 
the cross-entropy method for rare-events that can be employed for any hard-decision decoder. 

Figure 1. Traditional mesh communication structure (left) and System Wide Information Management
(SWIM) bus communication structure (right) comparison chart.

In order to improve SWIM resource utilization and sharing rate, it is necessary to solve the problem
of system task scheduling. Because of the distribution, heterogeneity and autonomy of resources in a
SWIM environment, SWIM task scheduling is more complex and difficult. As an algorithm for solving
combinatorial optimization problems, the ant colony algorithm has the characteristics of parallelism
and strong robustness. It can quickly obtain high-quality solutions and is very suitable for solving
SWIM task scheduling problems.

Although the existing improved ant colony algorithm can improve the efficiency of task
scheduling, it does not significantly improve the system load imbalance. This paper summarizes
the existing network task scheduling technology in combination with SWIM’s own characteristics,
on the basis of the classical ant colony algorithm, focusing on solving the problem of unbalanced
resource load of service nodes in task scheduling. According to the hardware performance and load
situation of service node update pheromones, the SWIM ant colony task scheduling algorithm based
on load balancing (ACTS-LB) is proposed. This ACTS-LB algorithm can reduce task execution time
and improve system load balancing, thus ensuring that the user’s task scheduling needs can be met as
much as possible.

The remainder of the paper is structured as follows. We give some related works in Section 2.
We introduce SWIM load balancing requirements and related definitions in Section 3. Section 4 presents
the details of the ACTS-LB algorithm. We give the simulation results and analysis in Section 5 and
conclude this paper in Section 6.

2. Related Work

At present, experts and scholars both at home and abroad have conducted much research on task
scheduling in large-scale network systems, such as cloud computing, grid and other network systems.
Among them, the min-min algorithm, max-min algorithm and other task scheduling algorithms are
the early classic methods. There are also exact algorithms to solve the task scheduling problems,
such as branch-and-bound algorithms, linear programming and cross-entropy methods. The heuristic
algorithms were used to solve optimization problems, such as genetic algorithm (GA), simulated
annealing (SA), ant colony (AC) algorithm, particle swarm optimization (PSO) and greedy algorithm.
These algorithms have different characteristics, which are based on the idea of optimizing minimizing
scheduling objectives. They have been applied in the task scheduling of these network systems and
have become the reference object for subsequent research on scheduling algorithms.

In [4], the authors proposed a new approach for solving the shift minimization personnel task
scheduling problem. These properties are used to develop a new branch and bound scheme, which is
used in conjunction with two column generation based approaches and a heuristic algorithm to create
an efficient solution procedure. In [5], the authors presented a novel distributed implementation
of multiple hypothesis tracking (MHT). Based on hash-tree distributed content storing approach to
enable fast operations on local trees and also allow sharing of hypotheses between local and remote
nodes. In [6], the authors proposed a general algorithm for fast estimation of probability of error
of linear block codes on BSC channels based on the importance sampling and the cross-entropy
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method for rare-events that can be employed for any hard-decision decoder. When optimal decoding
is used the algorithm reduces to a single simulation run that can estimate, with a given accuracy,
performances for a whole range of sufficiently high signal-to-noise ratios. In [7], a multi-objective task
scheduling algorithm was proposed based on the fusion of a genetic algorithm and a particle swarm
algorithm to improve the global search ability and convergence speed. In [8], this paper introduced
an optimized algorithm for task scheduling based on genetic simulated annealing algorithm in cloud
computing and its implementation. Algorithm considers the QoS requirements of different type
tasks, the QoS parameters are dealt with dimensionless. In addition, a hybrid algorithm based on
ant colony optimization (ACO) and Cuckoo was used to reduce task execution time, as proposed
by RG Babukarthik [9]. In [10], the authors proposed a new heuristic algorithm combined with
the particle swarm optimization (PSO) algorithm. It has the characteristics of strong optimization
search ability, fast convergence speed and high solving quality, providing a new direction for solving
task scheduling problems in a cloud computing environment. In [11], the authors comprehensively
considered the characteristics of tasks and virtual machine resources in the cloud environment and
proposed a task scheduling strategy that improves the greedy algorithm to improve the overall
scheduling efficiency of the system in the cloud computing environment. These algorithms have good
performance in processing task scheduling, but they seldom confer benefits from the perspective of
system load balancing.

In the research of task scheduling algorithms aimed at load balancing, Arul Xavier and others
proposed a cloud computing load balancing task aware scheduling algorithm for the task scheduling
problems in various heterogeneous virtual machines [12]. In [13], by analyzing and comparing some
cluster load balancing algorithms, a task load balancing scheduling algorithm based on ant colony
optimization (WLB-ACO) was proposed. The algorithm task completion efficiency is good, but the
task scheduling quality is difficult to guarantee. In [14], the authors presented a particle swarm
optimization with the random forest classifier algorithm, which is used to solve the load balancing
problem of virtual machines. In order to balance the utilization of virtual machine resources, the total
task working time on a virtual machine is taken as the optimization objective. However, this method
relies too much on intermediate nodes. In [15], a cloud computing resource scheduling method based
on a parallel genetic algorithm was proposed. This method can reduce the overall execution time
of scheduling tasks to a certain extent, but it easily falls into local solutions. In [16], the authors
introduced the concept of virtual machine relative fitness according to the performance of virtual
machine resources in a cloud environment, which makes it possible for virtual machine resources
with a high virtual machine relative fitness to obtain greater variation and can thus speed up the
convergence of the algorithm. The comparison of the related work references are shown in Table 1.
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Table 1. The comparison of the relevant work references.

Serial
Number

Reference
Number Author Algorithm Name Advantages Disadvantages

1 [4] Baatar, D Proposed a new approach for solving the shift
minimization personnel task scheduling problem.

Create an efficient solution
procedure.

Do not confer benefits from
the perspective of system

load balancing.

2 [5] Domenico C Presented a novel distributed implementation of
Multiple Hypothesis Tracking (MHT).

Can enable fast operations on local
trees and also allow sharing of
hypotheses between local and

remote nodes.

Do not confer benefits from
the perspective of system

load balancing.

3 [6] Romano, G Proposed a general algorithm for fast estimation
of probability.

Can reduce to a single simulation
run that can estimate.

Do not confer benefits from
the perspective of system

load balancing.

4 [7] Liu, C.
Presented a multi-objective task scheduling
algorithm based on the fusion of a genetic
algorithm and a particle swarm algorithm.

It can improve the global search
ability and convergence speed.

Do not confer benefits from
the perspective of system

load balancing.

5 [8] Guoning, G

Presented an optimized algorithm for task
scheduling based on genetic simulated annealing

algorithm in cloud computing and its
implementation.

Algorithm considers the QoS
requirements of different type

tasks.

Do not confer benefits from
the perspective of system

load balancing.

6 [9] Babukarthik, R.G. Proposed a hybrid algorithm based on ant colony
optimization (ACO) and Cuckoo.

It was used to reduce task
execution time.

Do not confer benefits from
the perspective of system

load balancing.

7 [10] Tong, Z.
Proposed a new heuristic algorithm combined

with the particle swarm optimization (PSO)
algorithm

It has the characteristics of strong
optimization search ability, fast

convergence speed.

Do not confer benefits from
the perspective of system

load balancing.

8 [11] Wang, X. Proposed a task scheduling strategy that improves
the greedy algorithm.

It can improve the overall
scheduling efficiency.

Do not confer benefits from
the perspective of system

load balancing.

9 [12] V. M, Arul Xavier.
Proposed an algorithm for the task scheduling

problems in various heterogeneous virtual
machines.

In the research of task scheduling
algorithms aimed at load

balancing.

The task scheduling is not
efficient.
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Table 1. Cont.

Serial
Number

Reference
Number Author Algorithm Name Advantages Disadvantages

10 [13] Zhao, M.
Proposed a task load balancing scheduling

algorithm based on ant colony optimization
(WLB-ACO).

The algorithm task completion
efficiency is good.

The task scheduling quality is
difficult to guarantee.

11 [14] Jiang, W. Presented a particle swarm optimization with the
random forest classifier algorithm.

In order to balance the utilization
of virtual machine resources.

This method relies too much
on intermediate nodes.

12 [15] Chen, J. Presented a resource scheduling method based on
a parallel genetic algorithm.

It can reduce the overall execution
time of scheduling tasks to a

certain extent.

It easily falls into local
solutions.

13 [16] Ren, J. Introduced the concept of virtual machine relative
fitness. It can obtain greater variation. It speeds up the convergence

of the algorithm.
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On the basis of the existing research results, this paper analyzes and refers to a large number of
network task scheduling algorithms in distributed and heterogeneous environments. Combined with
the characteristics of SWIM, the adopted ant colony algorithm is improved. We propose a SWIM ant
colony task scheduling algorithm based on load balancing (ACTS-LB). The simulation experiment
results show that the performance of the ACTS-LB algorithm is better than that of the traditional
min-min algorithm, ACO algorithm and PSO algorithm. The specific contributions of this study are
as follows:

(1) The ACTS-LB algorithm reduces the task scheduling completion time and improves SWIM
resource utilization;

(2) It can ensure that SWIM has better load balancing performance;
(3) It is of great significance to promote the SWIM application for civil aviation

industry development.

3. SWIM Load Balancing Requirements and Related Definitions

3.1. SWIM Load Balancing Requirements

SWIM is a large-scale network system with high integration, which integrates and manages
internal resources. In order to improve the utilization rate of system information and the sharing
rate of resources, it is necessary to solve the problem of system task scheduling load balancing and
find suitable nodes to deal with user needs. This makes SWIM load balancing and task scheduling
more complicated and difficult. The selection of a resource node with a smaller load to complete user
requirements is a very challenging task.

The SWIM infrastructure has a huge amount of computing and storage resources. Existing and
future civil aviation applications require these resources to have the ability to perform large-scale,
real-time interactions. This can result in a huge load on the data center, and it is easy to produce
load imbalance. Different from load balancing in small database systems, SWIM—as a large-scale
data center network—needs to respond to a high throughput of concurrent requests. Resource task
scheduling and allocation become key, which puts forward higher requirements for load balancing
methods [17].

(1) Large-scale information network systems have a huge amount of data resources, so a traditional
load balancer cannot meet the application requirements. It is necessary to design a new load
balancing method.

(2) Although the complex load balancing algorithm can achieve a good balancing effect, it occupies
too much of the system’s own resources. Especially in the case of a large number of system resource
nodes, there will be risks of algorithm dead-cycle or paralysis. Therefore, it is also necessary to design
a lightweight load balancing algorithm that can achieve a good load balancing effect and has low
algorithm complexity.

(3) The load balancing method must work under conditions of a large amount of data, in the form
of concurrent requests, as well as satisfy the requirement of reasonable load allocation in the case of
resource competition.

3.2. Relevant Definitions

(1) System total resource set S =
{

s1, s2 · · · sj · · · sm
}

, where the system consists of m resource
nodes and sj is the system resource nodes;

(2) System total scheduling task T = {t1, t2 · · · ti · · · tn}, including n scheduled tasks, where ti is
the system scheduling tasks;

(3) Expected time to compute (ETC), ETC =


et11 · · · et1m
... · · · etij · · ·

...
etn1 · · · etnm

, where etij is the expected

completion time of scheduling task ti on resource node sj;
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(4) Tabu is the search table.
The mathematical symbols in the formula of this paper are shown in Table 2.

Table 2. The mathematical symbols notations.

Serial Number Symbol Notation

1 Pk
ij(t) The transition probability value

2 τij(t) The pheromone value
3 ηij(t) The heuristic function
4 α The information heuristic factor
5 β The expect heuristic factor
6 Mip(sj) The computing power
7 Bandwidth(sj) The communication bandwidth
8 Per f ormance(sj) The hardware performance
9 LBj The load balancing value

10 C(sj) The CPU utilization rate
11 M(sj) The memory usage
12 B(sj) The bandwidth occupancy
13 LA The average value of the load
14 LS The load standard deviation
15 µ The information residual factor
16 ∆τij The pheromone increment value

4. Ant Colony Optimization Algorithm Based on Load Balancing

4.1. Ant Colony Optimization Algorithm Analysis

Marco Dorigo first proposed an ant colony optimization algorithm in 1991 to achieve global
optimization by simulating ant foraging behavior [18]. Suppose that Pk

ij(t) is the transition probability
value of ant k from resource node i to resource node j at time t, using this value to select the next task
to schedule. It is expressed by Equation (1).

Pk
ij(t) =

 [τij(t)]
α ∗ [ηij(t)]

β
/

n
∑

i=1
[τij(t)]

α ∗ [ηij(t)]
β , j ∈ A

0, Others
(1)

In Equation (1), τij(t) is the pheromone value for transferring resource node i to resource node j
at time t; ηij(t) is the heuristic function for transferring resource node i to resource node j at time t;
α is the information heuristic factor, which represents the relative importance of scheduling order; β is
the expect heuristic factor, which represents the importance of heuristic information in ant selection
scheduling sequence. The larger the value of β, the more likely the ants are to choose the scheduling
sequence autonomously. Set A as the task that ant k can choose to perform in the next step.

According to Equation (1), the two key factors affecting the selection of resource nodes are
τij(t) and ηij(t). The improvement of these two factors is the difficulty and emphasis of the algorithm
research. The ACTS-LB algorithm proposed in this paper is based on the standard ant colony algorithm
to make corresponding improvements to τij(t), and to update pheromone rules according to the node
resource hardware performance and load balancing value.

4.2. Ant Colony Optimization Task Scheduling Algorithm Rule

In the actual SWIM, in order to achieve effective load balancing, the hardware performance of the
node resources must be considered. First, reasonably assign tasks to each node according to the node
processing capacity. The hardware performance is represented by two key indicators—computing
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power and system communication bandwidth of resource nodes. The hardware performance can be
expressed by Equation (2).

Per f ormance(sj) = ω1 ∗Mip(sj) + ω2 ∗ Bandwith(sj). (2)

In Equation (2), Mip(sj) represents the computing power of resource node sj, Bandwidth(sj)

represents the communication bandwidth of resource node sj, and ω1 and ω2 are constants.
In SWIM, the indicators of impact on resource nodes load are mainly composed of CPU utilization,

memory utilization and system bandwidth occupancy. The load balancing value of SWIM resource
nodes can be expressed by Equation (3).

LBj = δ1 ∗ C(sj) + δ2 ∗M(sj) + δ3 ∗ B(sj). (3)

In Equation (3), LBj represents the load balancing value of resource node sj; C(sj) represents the
CPU utilization rate of resource node sj; M(sj) represents the memory usage of resource node sj; B(sj)

represents the bandwidth occupancy of resource node sj; the coefficients δ1, δ2 and δ3 are constants,
representing the weights of the three items, and δ1 + δ2 + δ3 = 1.

The average value of the load of all resource nodes in SWIM is expressed by Equation (4).

LAj =
m

∑
j=1

LBj

/
m . (4)

Then the resource node load standard deviation is expressed by Equation (5).

LSj =

√√√√ 1
m

m

∑
j=1

(
LBj − LAj

)2. (5)

By calculating the resource node load standard deviation LS in SWIM, it can reflect the system
load balance degree. The larger the value of LS, the more unbalanced the system load. The smaller the
value of LS, the more balanced the system load.

The ant colony algorithm pheromone update is expressed by Equation (6).

τij(t + n) = (1− µ)τij(t) + ∆τij. (6)

In Equation (6), µ is the information residual factor, 1 − µ is the pheromone volatilization
coefficient, which is employed to avoid the pheromone infinite accumulation. The µ value range
is limited to 0 < µ < 1. τij(t + n) is the pheromone concentration value on the path (i, j) at time t + n;
∆τij is the pheromone increment value on the selected path (i, j), the initial time is ∆τ0 = 0.

This paper uses the resource node hardware performance parameters and the system average
load difference to update the pheromone τij, as expressed by Equation (7).

∆τij =
m

∑
k=1

∆τk
ij (7)

∆τk
ij = Per f ormance(sj) ∗ (1− LSj) = [ω1 ∗Mip(sj) + ω2 ∗ Bandwith(sj)] ∗ (1− LSj) (8)

The heuristic function ηij in ant colony algorithm can be expressed by Equation (9).

ηij = 1/etij (9)

In order to maximize the utility, we must also consider the completion time factor of all tasks and
try to minimize the task completion time. So, the expected completion time etij is used to calculate the
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heuristic function of the ant colony algorithm. The smaller the expected completion time, the larger the
value of ηij and the higher the value of Pk

ij(t). Thus, the degree of expectation that an ant will transfer
from task ti to node sj is improved.

The pheromone update calculation in Equation (6) and heuristic function calculation in
Equation (9) are substituted into Equation (1) to obtain the probability value that task ti is scheduled to
resource node sj after the optimization of the ant colony algorithm. The computational complexity of
the improved ACO algorithm presented in this paper is expressed as O(NCmax ∗ n3), where NCmax is
the number of cycles and n is the total number of tasks.

4.3. Ant Colony Task Scheduling Algorithm Optimization Process

The main idea is to select the best order of task scheduling through the ant colony algorithm,
in which the scheduler can be regarded as an ant and the task scheduling process is compared with the
ant foraging process. The pheromone is updated according to the hardware performance parameters of
the system resource node and the system average load difference, and the expected time to complete all
tasks is at a minimum. So, the expected completion time is used to calculate the heuristic function of the
ant colony algorithm. Finally, a resource node with high pheromone concentration (high performance
and low load) and minimum completion time is selected to handle the assigned task.

The research content of SWIM task scheduling is to map each task to resource set S in task set
T, and to improve the task scheduling performance of the system on the premise of ensuring load
balancing. The specific steps of the ant colony optimization task scheduling algorithm for SWIM based
on load balancing are as follows. The flow chart of the algorithm is shown in Figure 2.
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Figure 2. The flow chart of the ant colony optimization task scheduling algorithm based on
load balancing.

Step 1: First, initialize the parameters in the algorithm. There are n tasks, m resources, the number
of ants is q, the maximum number of cycles is tmax, the initial time t is set to 0 (it can be assumed
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that there are n air flight planning missions and m navigation information resources in SWIM in this
scenario).

Step 2: Make t = t + 1. If t ≤ tmax, after initializing the search table, all ants search the path from
the initial position and stop searching when all tasks enter the search table.

Step 3: The hardware performance and load balance difference of the resource nodes are obtained
by calculations, and the transferred probability Pk

ij(t) of each resource node is calculated by Equation (1),

using Pk
ij(t) to select the perform task resource node.

Step 4: Update the search table and add the scheduling task to the search table. Use Tabu to
record the set of tasks that ant k is currently passing through. Do not repeatedly select the path that
has already passed as the next path.

Step 5: Update the pheromone of the ant colony algorithm according to Equation (6) and save the
selected ant information with the best scheduling result.

Step 6: Repeat the above steps until t > tmax, when the algorithm ends [19].

5. Experiment and Results Analysis

In the experiment, we referred to the SWIM structure that is already deployed by an air traffic
administration of civil aviation, and we used the network simulation tool—NS-3 to verify the algorithm
performance. The SWIM local task scheduling structure is shown in Figure 3.Future Internet 2019, 11, x FOR PEER REVIEW 11 of 19 
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5.1. Experimental Environment

The simulation experiment designed a topology model with one scheduler, four routers, six servers
and eight clients. The node 1 is the scheduler, nodes 2–5 are the routers, nodes 6–11 are the servers,
and nodes 12–19 are the clients. The link bandwidth between the client and the router, between the
router and the scheduler, and between the router and the server is 150 Mbps, and the one-way delay of
10 ms. The simulation experiment test topology is shown in Figure 4.
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5.2. Experimental Parameter Settings

For the selection of parameters α, β and µ in the ant colony algorithm, there is no general method
to determine their optimal combination. It should be noted that these parameters have a great impact
on the performance of the ant colony algorithm. The smaller the value of µ, the smaller the influence
of the previously searched path on the current search, making the algorithm difficult to converge.
The larger the value of µ, the greater the influence of the previous search path on the current search, but
this also increases the risk of falling into a local optimum. So, the µ value is generally set at 0.5. In the
parameter selection experiment, the α and β values were set as µ = 0.5 and µ = 0.6. The simulation
program was cycled 1000 times, the best result was selected as one experiment, taking the average
value of 100 experiments. The parameters are substituted into the algorithm for the simulation test.
The simulation experiment data are shown in Table 3.

Table 3. Parameter combination test results.

Serial Number µ α β Optimal Path Running Time (S)

1 0.5 1.0112 2.7375 568.10969 39.98
2 0.5 1.0351 2.6856 568.19446 40.37
3 0.5 1.0323 2.7685 568.19446 40.56
4 0.5 1.0289 2.7386 568.10969 40.33
5 0.5 1.0156 2.7235 568.10969 40.25
6 0.5 4.3589 1.5195 568.19446 41.79
7 0.5 5.2368 2.4978 568.10969 41.65
8 0.5 5.3646 2.5568 568.10969 41.15
9 0.5 6.3567 4.2556 568.19446 42.48

10 0.5 6.3551 4.2550 568.19446 42.68
11 0.6 1.0253 2.7526 568.10969 39.86
12 0.6 1.0362 2.6898 568.19446 40.29
13 0.6 1.0387 2.7365 568.19446 40.53
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Table 3. Cont.

Serial Number µ α β Optimal Path Running Time (S)

14 0.6 1.0236 2.7472 568.10969 40.25
15 0.6 1.0187 2.7356 568.10969 40.27
16 0.6 4.3789 1.5387 568.19446 41.58
17 0.6 5.2468 2.4998 568.10969 41.31
18 0.6 5.3846 2.5368 568.10969 41.02
19 0.6 6.3985 4.2673 568.19446 42.29
20 0.6 6.3653 4.2672 568.19446 42.37

From Table 3, we can see that the optimal path is 568.10969, the running time is 39.86 s, µ = 0.6,
α = 1.0253 and β = 2.7526. After the comparative study and multiple experiments, the parameters in
this paper simulation experiment were set to α = 1.0, β = 2.7 and µ = 0.6. In the experiment, we found
that when the same parameters were used for experiments of different scales, the results obtained
were different. The weight parameters of the resource node load impact indicator in SWIM were set to
δ1 = 0.4, δ2 = 0.3 and δ3 = 0.3. The population size was 50, and the maximum number of iterations was
150. The simulation experiment test parameters are shown in Table 4.

Table 4. Simulation experiment test parameters.

Parameter
Name α β µ Bandwidth Delay δ1 δ2 δ3

Population
Size NCmax

Parameter value 1.0 2.7 0.6 150 Mbps 10 ms 0.4 0.3 0.3 50 150

5.3. Experimental Results and Analysis

In order to verify the effectiveness of the ACTS-LB algorithm designed in this paper, we tested
the method using the same parameter configuration conditions but in two different situations: (1) The
service nodes number is fixed, but scheduling tasks number is changed; (2) The scheduling tasks
number is fixed, but the resource nodes number is changed. This was compared with the classic
min-min algorithm [20], the ACO algorithm [21] and the PSO algorithm [10] in terms of transmission
delay, task execution time and system load deviation value.

Experiment 1: The transmission delay comparison.
(1) Set the number of service nodes at m = 20 and the number of scheduling tasks at 10 < n < 200.
(2) Set the number of scheduling tasks at n = 100 and the number of service nodes at 5 < m < 50.
In the above two cases, by running the simulation software NS-3, the time delay data of the

path was obtained by measuring different iterations of the ACTS-LB algorithm, min-min algorithm,
ACO algorithm and PSO algorithm in the path finding process. The trace file obtained was counted
and analyzed by the statistical analysis tool Wireshark. We obtained the total time delay value of the
path after each iteration for each of the four algorithms, and the average value of each algorithm was
obtained after each iteration was run 1000 times. The result was processed by MATLAB. The results
are shown in Figures 5 and 6.
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It can be seen from the experimental results in Figures 5 and 6 that, at the beginning of ant colony
routing, the four algorithms have large fluctuations in the total transmission delay of the path and
have the same performance. After 100 iterations, the ACO algorithm basically leveled off and no
longer changed, indicating that the ACO algorithm falls into premature convergence after the 100th
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iteration and could no longer search for a better path. When the number of tasks increased in the
later period, the transmission delay variation of the min-min algorithm and PSO algorithm were
not obvious. The ACTS-LB algorithm expanded the path space due to the optimized updating of
pheromones, and the ants disturbed other paths so that the obtained paths were evenly distributed
in the path space, ensuring that the ants had a stronger search ability and could find better quality
transmission paths. Thus, it can be seen that the ACTS-LB algorithm can effectively solve the premature
convergence problem of the ACO algorithm, providing ants with a stronger search ability and obtaining
a better-quality path set.

Experiment 2: The task execution time span comparison.
(1) Set the number of service nodes at m = 20 and the number of scheduling tasks at 10 < n < 200.
(2) Set the number of scheduling tasks at n = 100 and the number of service nodes at 5 < m < 50.
In the above two cases, the task execution time of the ACTS-LB algorithm, min-min algorithm,

ACO algorithm and PSO algorithm were tested in the context of task scheduling. The experimental
results were sorted according to the data in NS-3. The four algorithms were executed 1000 times and
averaged. The results of the task execution time span are shown in Figures 7 and 8.Future Internet 2019, 11, x FOR PEER REVIEW 15 of 19 
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It can be seen from the experimental results in Figure 7 that, in the initial stage of task scheduling,
the task execution time of the ACTS-LB algorithm, min-min algorithm, ACO algorithm and PSO
algorithm are basically the same. However, the task execution time of the ACTS-LB algorithm becomes
smaller than that of the other three algorithms as the number of tasks increases. From the experimental
results in Figure 8, it can also be seen that when the number service nodes increased, the ACTS-LB
algorithm execution task scheduling time was less than that of the min-min algorithm, ACO algorithm
and PSO algorithm. This shows that the method of calculating heuristic function by using expected
execution time in the ACTS-LB algorithm plays an effective role in shortening the task execution time,
and ants tend to choose the path with high pheromone concentration and minimum completion time.
It can be concluded that the ACTS-LB algorithm can improve task execution efficiency and enable ants
to have a stronger task scheduling ability.

Experiment 3: The system load deviation comparison.
(1) Set the number of service nodes at m = 20 and the number of scheduling tasks at 10 < n < 200.
(2) Set the number of scheduling tasks at n = 100 and the number of service nodes at 5 < m < 50.
In this paper, the load deviation value (LDV) of SWIM resource nodes is proposed as a reference

standard for evaluating load balancing in task scheduling. The LDV definition can be expressed by
Equation (10).

LDV =
LBmax − LBmin

LA
(10)

The definition of the SWIM resource nodes load value LB is the same as in Equation (3); LBmax and
LBmin are the maximum and minimum values of LB, respectively; LA is the average of all resource node
loads. According to the experimental results, the load deviation values of the resource nodes during
the task scheduling of the four algorithms were obtained. The results are shown in Figures 9 and 10.
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It can be seen from Figures 9 and 10, the LDV value of the ACTS-LB algorithm is smaller than
that of the min-min algorithm, ACO algorithm and PSO algorithm, and the transformation becomes
slower as the number of tasks increases. This is because in the ACTS-LB algorithm, pheromones are
updated according to the hardware quality and the load balancing of node resources, so ants tend
to aim for resource nodes with high pheromone concentrations (high performance and low load of
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resource nodes) when selecting the next task processing target node. It can be concluded that the
ACTS-LB algorithm with LDV as the reference standard can achieve the goal of load balancing and
improve the overall performance of task scheduling.

5.4. ACTS-LB Algorithm Shortcomings

The ACTS-LB algorithm, however, can still be further improved, which requires further
optimization and in-depth study in the following aspects:

(1) Because the ant colony algorithm has a slow convergence rate in the initial stage, it can easily
fall into the local optimum. Therefore, the ACTS-LB algorithm also has some shortcomings. In the
subsequent algorithm improvement, we will draw on other heuristic algorithm advantages, such as
the simulated annealing (SA) algorithm and genetic algorithm, etc. The comprehensive application
of these algorithms’ different characteristics, and the fact that their advantages and disadvantages
complement each other, will aid us in improving the algorithm’s overall task scheduling performance.

(2) The ant colony algorithm parameter setting is very important. If it is not set properly, it will
slow down the solving speed and affect the quality of the results. In the next SWIM task scheduling
study, we will consider the task dynamics and the service quality of the system. We plan to dynamically
adjust the corresponding parameters in the algorithm and study the impact of ant colony parameters
and local search methods on the overall performance of the system, so as to continuously improve and
perfect the task scheduling strategy.

6. Conclusions

In this paper, we proposed the SWIM ant colony optimization task scheduling algorithm
based on load balancing (ACTS-LB). By improved the traditional ant colony optimization algorithm,
the hardware performance quality index and load standard deviation function of resource nodes in
SWIM were comprehensively adopted to improve the pheromone updating strategy of the algorithm.
The ACTS-LB algorithm improved the defect that pheromone updating can easily fall into the local
optimum and ensures that the system’s load balancing requirements were maximized while the
scheduling task was effectively completed. The experimental simulation using NS-3 showed that the
ACTS-LB algorithm performs better than the classic min-min algorithm, ACO algorithm and PSO
algorithm, as it can maintain SWIM in a balanced load state and improved the efficiency of system task
scheduling and execution. However, in this paper, we presented the ACTS-LB algorithm, which was
tested only in a simulated SWIM environment. The algorithm had not yet been tested in an actual
SWIM application environment and the experimental results were not convincing. Next, in order to
further verify the validity of the proposed ACTS-LB algorithm, we will try to simulate the algorithm
in a real SWIM environment.
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