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Abstract: In this paper, an application of the recently developed Grasshopper Optimization Algorithm
(GOA) for calculation of switching angles for Selective Harmonic Elimination (SHE) PWM in
low-frequency voltage source inverter is proposed. The algorithm is based on insect behavior in the
food foraging swarm of grasshoppers. The characteristic feature of GOA is the movement of agents
is based on the position of all agents in the swarm. This method represents a higher probability of
convergence than Particle Swarm Optimization (PSO) Modifications of GOA have been examined
regarding their effect on the algorithm’s convergence. The proposed modifications were based on the
following techniques: Grey Wolf Optimizer (GWO), Natural Selection (NS), Adaptive Grasshopper
Optimization Algorithm (AGOA), and Opposite Based Learning (OBL). The performance of GOA
and its modifications were compared with well-known PSO. Areas, where GOA is superior to PSO in
terms of probability of convergence, have been shown. The efficiency of the GOA algorithm applied
for solving the SHE problem was confirmed by measurements in the laboratory.

Keywords: grasshopper optimization algorithm (GOA); particle swarm optimization (PSO); voltage
source inverter (VSI); selective harmonics elimination PWM (SHEPWM)

1. Introduction

The Selective Harmonic Elimination (SHE) and Selective Harmonic Mitigation (SHM) [1,2] has
been described for the first time in the 1960s in [3] and disseminated by Patel and Hoft [4,5]. Since that
time SHE has been introduced in a number of industrial applications where power electronics was
proposed [6]. The challenge is progress in the development of techniques for solving SHE/SHM
non-linear transcendental equations

Since the early days, iterative techniques such as Newton–Raphson (N–R) [4,5], Gauss–Newton
have been employed to solve these equations. The convergence of these methods depends on the initial
guess, which is a complex problem and in many cases is not successful. This disadvantage encourages
researchers to develop more effective techniques. Thus, Chaison et al. in [7] proposed the method
based on the conversion of transcendental equations into an equivalent set of polynomials. The high
degree of polynomial requires specialized software to compute it. The combination of Groebner’s bases
and symmetric polynomials was applied to solve the mentioned polynomials [8]. However, it generates
ambiguous solutions which make it less useful. The main disadvantage of iterative techniques is they
do not find an optimum solution.

The development of evolutionary algorithms opens new opportunities in the field of solving SHE
equations [9]. These algorithms present numerous benefits such as independence from an initial guess,
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utilization of simple algebra, lower computational costs, formulation of multi-constrained problems.
One of the most popular evolutionary algorithms is Particle Swarm Optimization (PSO) proposed
for finding switching angles for PWM VSI inverter to eliminate low order voltage harmonic [10]
and to optimize dc-link current harmonics [11]. The application of numerous algorithms are
proposed for SHE in the literature: Imperial Colonial Algorithm (ICA) [12], Genetic Algorithm [13],
Ant Colony Algorithm [14], bee optimization technique (BA) [15], Bacterial Foraging Algorithm [16],
Firefly Algorithm (FA) [17], Shuffled Frog Leaping (SFL) algorithm [18], Backtracking Search Algorithm
(BSA) and Differential Search Algorithm (DSA) [9], Whale Optimization Algorithm (WOA) [19].
The use of the Grasshopper Optimization Algorithm (GOA) for SHE has not been studied so far.

The GOA is an algorithm recently developed and introduced by Saremi et al. [20] in 2017. In recent
two years, the GOA gained great attention in many research fields due to its high efficiency of solving
a different kind of optimization problems. It was tested for constrained and unconstrained test
functions with promising results [21]. The GOA was proposed for solving multi-objective optimization
problems [22] modified by the application of Opposition-Based Learning (OBL) [23]. Modifications
of GOA to improve its performance are has been developed and studied: Adaptive GOA (AGOA),
Grey Wolf Optimizer (GWO) and Natural Selection (NS) [24], Gaussian mutation, and Leavy- flight
strategy [25].

The efficiency of GOA has been compared with existing evolutionary algorithms utilized for
different optimization problems. In [26] GOA adaptation for energy loss reduction and voltage
stability factor was proposed and compared with PSO, Gravitational Search Algorithm (GSA),
and Artificial Bee Colony (BA) algorithms. In [27], the comparison of GOA with PSO and WOA
(Wale Optimization Algorithm) was used to optimize the PI controller parameters in the microgrid.
Since the first presentation, GOA has found its implementation in numerous industrial applications
such as optimization of the parameters of proton membrane fuel cells (PEMFC) [28], the stability of
microgrid applications [29] and energy management [30], medicine [31], the technology of image
processing [32], and financial issues [25] as well.

In this paper, the recently developed GOA is applied to eliminate low-order voltage harmonics
(5th, 7th, 11th, and 13th) in low-frequency VSI based drive. The hypothesis to prove is that GOA
represents a higher probability of convergence than PSO applied for SHE problem with similar
computation effort. Results for GOA and modified GOA are compared with PSO. The main criterion
of comparison is the probability of convergence. The following modification of GOA are examined:
Natural Selection (NS), Adaptive GOA (AGOA), Opposite Based Learning (OBL), and Grey Wolf
Optimizer (GWO). Experimental results are presented to validate simulation analysis.

The rapid development of controllers for high and medium power converters provides an
opportunity for the application of modulation techniques; a decade ago, they used to be known as
difficult to use. This type of modulation is SHE-PWM. When it was invented its applicability was very
low and nowadays it competes with the most advanced and popular modulations [33]. Its application
is studied for grid connectors [34] and railway vehicles [35] as well. Moreover, the separation of a
modulator from the controller brings the possibility of implementation of the SHE-PWM with space
vector modulation (SVPWM) [36]. Authors of this paper claim that for railway vehicles the most
efficient is hybrid modulation studied in [37] where SHE-PWM and SVPWM are used interchangeably
and the choice depends on the operating conditions. This solution is the most reasonable and allows to
utilize the advantages of both techniques: dynamics of SVPWM and harmonics control of SHE-PWM.

The attention focused on SHE-PWM stimulates research towards increment of efficiency in the
calculation of switching angles. In [38] the comprehensive review of SHE-PWM focused on various
aspects, is presented. One of the mentioned aspects is the utilization of optimization-based techniques
for solving SHE equations and they were divided into four groups: Genetic Algorithms (GA) Particle
Swarm Optimization (PSO) Differential Evolution (DE) and Hybrid. According to the “no free lunch”
theorem applied to the bio-inspired optimization algorithms [39], there is the most suitable solver for a
specific optimization task. Solving SHE equations developed for voltage source inverter is a task of
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variable complexity that depends on assumptions like the number of switching angles, modulation
index, dead times between switching, switching frequency, and others. Thus, there is a possibility that
for different optimization region different algorithm is most suitable. Thus, every recently developed
algorithm should be evaluated towards application for solving SHE-PWM equations. In this paper,
the authors present the study for the application of the GOA algorithm. The novelty of this study is
proof that there is a range of SHE problems where the GOA algorithm gives a higher possibility of
convergence with lower computational effort than widely used and appreciated PSO. Results presented
in this paper encourage further research to discover the full potential of the GOA algorithm regarding
the presented problem by comparing it with a wider representation of bio-inspired algorithms.

The problem undertaken in the study is considered as a single criteria optimization problem.
SHE problem could be considered as a multi-objective optimization problem as each harmonic value
as a function of optimization variables could be considered as a separate objective function. However,
all considered harmonics in the problem of SHE should be eliminated for the same optimization
variables, therefore the desirable optimization solution is a utopian solution from the point of view of
the multi-optimization approach [40]. Accordingly, the optimization functions have been aggregated
to a single optimization variable by means of the dedicated relationship proposed in the article.

2. VSI Model with SHE Control

2.1. Drive’s Parameters

The main goal of this work is to study the convergence of GOA applied for the calculation of
switching angles for SHE-PWM for a low-frequency VSI drive with an induction motor. Therefore,
to prove the validity of results obtained by the examined algorithm, the VSI drive was modeled
in MATBAL/SIMULINK and verified in the laboratory. Parameters of utilized induction motor for
experiments are presented in Table 1.

Table 1. Parameters of drive’s mode.

Symbol Parameter Value

Pn Rated power 2, 5 kW
In Rated phase current 3.9 A
Vn Rated voltage rms 230/400 V
- Winding’s connection star

nn Rated rotation speed 1465 rpm
Ls Stator’s leakage inductance 0.0108 H
Rs Stator’s resistance 2.8465 Ω
Lr Rotor’s leakage inductance 0.0106 H
Rr Rotor’s resistance 2.7359 Ω
Lm Core losses inductance 0.27597 H

Rm_n Core losses resistance 1231 Ω

Figure 1a. illustrates the topology of the VSI utilized for the purpose of this work. Figure 1b
shows an equivalent circuit of a single phase of the motor applied in the SIMULINK model. Inverter’s
transistors were controlled by binary switching function (SF(ωt)) formed by switching angles (α)
defined as angular “moments” of transistors state change (Figure 2). Switching angles are delivered by
solving equations presented in this section.



Energies 2020, 13, 6426 4 of 16Energies 2020, 13, x FOR PEER REVIEW 4 of 17 

 

  

(a) (b) 

Figure 1. Analytical schema of the considered 3 phase 2-level inverter with load (IM—Model of an 
induction motor) (a) inverter schema (b) equivalent circuit of one phase of induction motor (sn—Slip 
for n-th harmonic). 

 

Figure 2. Waveform of switching function SF with quarter-wave symmetry and N switching angles. 

2.2. SHE-PWM 

In the great number of cases of SHE-PWM application, it is used in electric drives to eliminate 
low order harmonics, while amplitudes of high order harmonics are reduced by input filters. SHE 
equations are based on the Fourier series expansion of the inverter output voltage waveform: 

𝑉 𝜔𝑡 = 𝑎 + 𝑎 𝑠𝑖𝑛 𝑛𝜔𝑡 + 𝑏 𝑐𝑜𝑠 𝑛𝜔𝑡  (1)

where ω is an angular frequency of fundamental component, n is a harmonic order, and an, bn are 
Fourier coefficients. For quarter-wave symmetry, only coefficient an for the odd n coefficient 
represents the non-zero value: 

𝑎 = 4𝑈𝑛𝜋 −1 − 2 −1) 𝑐𝑜𝑠(𝑛 ⋅ 𝛼 ) ;   𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛0                                           ;    𝑓𝑜𝑟 𝑒𝑣𝑒𝑛   𝑛      (2)

 𝑏 = 0  ;   𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛0  ;   𝑓𝑜𝑟 𝑒𝑣𝑒𝑛  𝑛                                                (3)

where UDC is DC-link voltage and n is the number of switching angles per a quarter-period. In this 
paper, fluctuation and ripplers of DC-link voltage were not of concern. 

Assuming the odd quarter-wave symmetry of inverter output voltage, triple harmonics are 
canceled. The symmetry of the system brings cancelation of even harmonics as well. For n = 5 
switching angles in quarter-period, 5 non-linear equations can be formulated (4) to satisfy 
fundamental component (V1) and eliminate 5th, 7th, 11th, and 13th harmonics: 

Figure 1. Analytical schema of the considered 3 phase 2-level inverter with load (IM—Model of an
induction motor) (a) inverter schema (b) equivalent circuit of one phase of induction motor (sn—Slip
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2.2. SHE-PWM

In the great number of cases of SHE-PWM application, it is used in electric drives to eliminate low
order harmonics, while amplitudes of high order harmonics are reduced by input filters. SHE equations
are based on the Fourier series expansion of the inverter output voltage waveform:

V(ωt) = a0 +
∞∑

n=1

[ansin(nωt) + bncos(nωt)] (1)

where ω is an angular frequency of fundamental component, n is a harmonic order, and an, bn are
Fourier coefficients. For quarter-wave symmetry, only coefficient an for the odd n coefficient represents
the non-zero value:

an =


4UDC

nπ

[
−1− 2

N∑
i=1

(
−1)icos(n · αi

)]
; f or odd n

0 ; f or even n
(2)

bn =

{
0 ; f or odd n
0 ; f or even n

(3)

where UDC is DC-link voltage and n is the number of switching angles per a quarter-period. In this
paper, fluctuation and ripplers of DC-link voltage were not of concern.

Assuming the odd quarter-wave symmetry of inverter output voltage, triple harmonics are
canceled. The symmetry of the system brings cancelation of even harmonics as well. For n = 5
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switching angles in quarter-period, 5 non-linear equations can be formulated (4) to satisfy fundamental
component (V1) and eliminate 5th, 7th, 11th, and 13th harmonics:

4
π [−1 + 2cos(α1) − 2cos(α2) + 2cos(α3) − . . .

. . . 2cos(α4) + 2cos(α5)] = M1
4

5π [−1 + 2cos(5α1) − 2cos(5α2) + 2cos(5α3) − . . .
. . . 2cos(5α4) + 2cos(5α5)] = 0

4
7π [−1 + 2cos(7α1) − 2cos(7α2) + 2cos(7α3) − . . .

. . . 2cos(7α4) + 2cos(7α5)] = 0
4

11π [−1 + 2cos(11α1) − 2cos(11α2) + 2cos(11α3) − . . .
. . . 2cos(11α4) + 2cos(11α5)] = 0

4
13π [−1 + 2cos(13α1) − 2cos(13α2) + 2cos(13α3) − . . .

. . . 2cos(13α4) + 2cos(13α5)] = 0

(4)

where M1 is for modulation index:

V1 = M1
UDC

2
; f or M1〈0,

4
π
〉 (5)

In this case the fundamental voltage component (V1) is defined as the amplitude of phase voltage
of the motor in the star connection of the windings. The main goal of this paper is to adopt GOA for
solving Equation (4) to determine switching angles for SHE-PWM end examine its convergence.

3. Formulation of The Optimization Problem

To solve SHE Equation (4) using an optimization algorithm, the fitness function must be formulated.
For n = 5 switching angles and four harmonics eliminated the fitness function is described by following
equation with constraints:

Minimize, f f it(α1,α2,α3,α4,α5)

= σ1 ·
(
V1 −V∗1

)2
+ σ5·(V5)

2 + σ7·(V7)
2 + σ11·(V11)

2 + σ13·(V13)
2 (6)

subject to : 0 < α1 < α2 < α3 < α4 < α5 <
π
2

where: V1, V5, V7, V11, V13 are fundamental component and 5th, 7th, 11th and 13th voltage harmonics
(p.u.) respectively, σx are penalty weights for the optimization process.

Thus, the aim is to apply an optimization algorithm to minimize fitness function (6) to achieve
declared fundamental component (V∗1) and harmonics elimination. The fundamental component is
minimized with the highest weigh (penalty value) that equals σ1 = 100. Thus, every 1% of difference
between an actual value and the desired one will increase fitness function by 100. Harmonics are
minimized with penalty weight σ5 = σ7 = σ11 = σ12 = 10 One of the essential assumptions of every
optimization algorithm is the STOP criterion based on the maximum number of iterations and the
minimum value of the fitness function. In this paper, the minimum value of the fitness function
assumed to be the success is ffit_STOP = 0.0001. Regarding the necessity of implementation of dead-times
in industrial applications (in this paper dt = 5 × 10−6 s), a lower value of the fitness function will not be
recognized as higher quality performance. To prove this statement, sample results obtained by GOA
with tolerance 1 × 10−3 (Figure 3a) were compared with the results obtained with tolerance 1 × 10−10

(Figure 3b). Figure 3 shows that decreasing the parameter of tolerance does not guarantee better
efficiency of eliminated harmonics, only significantly increases computation time. Thus, tolerance
1 × 10−3 was assumed to be sufficient. More results will be presented in Section 5.
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4. Grasshopper Optimization Algorithm (GOA)

GOA was developed and introduced by Saremi, Mirjalili, and Lewis in [20]. The first proposed
application was for structural optimization to find the optimal shape of a three-bar truss, a 52-bar
truss, and a Cantilever beam. In this paper, the authors present the application of GOA to solve
SHE equations. The proposed algorithm mathematically models the behavior of grasshopper swarm
foraging for food to survive. Their individual behavior and social interactions lead the swarm to the
optimal solution. The mathematical model of grasshopper behavior is based on a formula for the
position of each grasshopper described by the following equation:

Xi = Si + Gi + Ai (7)

where Xi is the position of the i-th grasshopper, Si is the social interaction between agents in the
swarm, Gi is the gravity force acting on the i-th grasshopper, and Ai models the wind effect. However,
due to specifics of the problems analyzed in this work effect of gravity and wind were omitted.
Thus, only social interactions were taken into account.

Si =

Np∑
j = 1
j , i

s
(
d∗i j

)
·

→

di j (8)

where d∗i j is the normalized distance between the i-th and j-th grasshopper, s(d∗i j) is the function of

social forces and
→

di j is an unitary vector from i-th to j-th grasshopper.
If absolute value of the distance between the i-th and j-th agent is formulated as:

di j =
∣∣∣xi − x j

∣∣∣ (9)

thus, the normalized value is defined as

d∗i j = 2 + rem
(
di j, 2

)
(10)
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where rem
(
di j, 2

)
is the remainder after division of di j by 2. Distance normalization allows for the

value of the distance to be kept close to the value of 2 what gives the best effect with the s-function.

Unitary vector
→

di j is defined with the following correlation:
→

di j = 1; f or xi − x j > 0
→

di j = −1; f or xi − x j ≤ 0
(11)

Thus,
→

di j can be defined by the following formula:

→

di j =
xi − x j∣∣∣xi − x j

∣∣∣ (12)

A characteristic feature of GOA is a comfort zone shrinking with the iteration number. The Comfort
zone is the circle around the best agent. Inside the comfort zone, other agents are being repulsed from
the leader and outside the comfort zone, they are being attracted to it. This behavior keeps a balance
between exploration and exploitation. The decreasing coefficient c models variation of the comfort
zone by changing value typically from 1 to some small number. Regarding the above considerations,
Equation (7) for the d-dimensional problem can be expanded as follows:

Xd
i = c


Np∑

j = 1
j , i

c ·
ubd
− lbd

2
s
(
dd∗

i j

) xd
i − xd

j∣∣∣∣xd
i − xd

j

∣∣∣∣


+ Gbestd (13)

where ubd is for upper bound of the d-th dimension, lbd is for lower bound of the d-th dimension, Gbestd

is for the global best result in the d-th dimension, s is for s—Function which describes the strength of
the interaction between agents and is formulated with the following formula:

s
(
dd∗

i j

)
= F· e(−

d∗i j
L )
− e(−d∗i j) (14)

where F and L are coefficients with suggested values 0.5 and 1.5 respectively. Variation of these
coefficients will be analyzed in further sections, regarding its influence on the probability of convergence
of the algorithm.

Equation (13) reveals the most significant rule of GOA. The position of agents in every iteration
is determined with respect to the position of all other agents in the swarm. For instance, in the PSO
algorithm position of agents is determined regarding only two vectors: personal best and global best
position. That is the reason why GOA requires a lower population to keep the same computational
effort. Moreover, an increment of the swarm population may result in lower convergence.

To apply the GOA algorithm for solving SHE Equation (4) the Xd
i must be correlated with the

i-th vector of switching angles [α1 α2 α3 α4 α5]i Thus, in this case, the problem is 5 dimensional. In the
following subsections, the modifications of GOA are proposed and tested in section V.

4.1. GOA with GWO Module

Grey Wolf Optimizer is a meta-heuristic algorithm inspired by the behavior of grey wolves and
mathematically described by Mirjalili et al. in [41]. The GWO is well studied and can be treated
as an independent algorithm. However, its main feature can be implemented in other algorithms.
The specifics of the GWO is based on the determination of the three best global solutions called alpha,
beta, and gamma. Positions of all particles in the swarm will be updated with respect to the position of
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the three best global Ta, Tb, Tc. Thus, to combine GOA and GWO, formula (13) will be modified to the
following form [24]:

Xd
i = c


Np∑

j = 1
j , i

c ·
ubd
− lbd

2
s
(
dd∗

i j

) xd
i − xd

j∣∣∣∣xd
i − xd

j

∣∣∣∣


+

Td
A + Td

B + Td
C

3
(15)

4.2. GOA with NS Module

The theory of Natural Selection is based on the random elimination of agents from the swarm
with a certain probability P with respect to their fitness value. The better result has a higher chance to
survive. Thus, NS requires a classification of the agents then the algorithm calculates P for each agent.
To adopt NS for the SHE problem the following formula for P for the i-th agent was developed:

Pi = Pmin +

[
(Pmax − Pmin) ·

( f f it_i

f f it_swarm

)]
(16)

where Pmin is the minimum assumed probability of survival assigned for the weakest agent; Pmax is
the maximum assumed probability of survival assigned for the best agent; f f it_i is the fitness of the i-th
agent; f f it_swarm is the mean value of fitness functions of all agents in the swarm.

The roulette is performed for every single agent regarding its probability of survival. The eliminated
agents are replaced by new random solutions.

4.3. Adaptive GOA

Adaptive Grasshopper Optimization Algorithm (AGOA) is based on a dynamic adaptation of the
c coefficient regarding the Evolutionary Rate (ER) of the swarm of grasshoppers. ER is defined as the
ratio between the number of agents whose fitness was improved in the previous iteration to the total
number of agents in the swarm Np. Thus, c for AGOA is defined by the following formula:

c(ite) =
(
cmax − ite

cmax − cmax

tmax

)
FER (ite) (17)

where FER (ite) is the dynamic adjustment function defined by the following correlation:

FER (ite + 1) =


FER (ite)

F0
; f or ER < 15%

FER (ite); f or ER ∈ 〈15%; 30%〉
FER (ite)·F0 ; f or ER > 30%

(18)

where F0 is a constant larger than 1. Thus, AGOA presents a dynamic change of comfort zone with a
decreasing trend.

4.4. GOA with OBL Module

Opposite Based Learning is a technique of swarm algorithms modification based on the statement
that the opposite solution to the developed one might bring better result. Thus, every solution (agent)
should be reversed and its fitness should be evaluated. If the fitness of the reversed solution is better
than the original, the agent will be replaced. Opposite value

...
Xd

i can be calculated as follows:

...
Xd

i = ubd + lbd
−Xd

i ; (19)

f or i = 1, 2, . . . , Np; d = 1, 2, . . . , N
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However, the application of this technique to SHE brings issues regarding the feasibility of
calculated solutions. As switching angles are restricted to be sorted according to their feasibility,
Equation (19) will reverse their order and make them not feasible. To implement OBL to solve the SHE
problem opposite solution

...
Xd

i must be reordered to respect restriction: 0 < α1 < α2 < α3 < α4 < α5 <
π
2 .

5. Simulation Tests and Comparative Study

In this section, a simulation analysis of GOA algorithm performance is presented. Moreover,
a comparative study between GOA and modified GOA (NS, AGOA, GWO, and OBL) is carried out.
The optimization process has been carried out with the following assumptions:

• STOP criterion of the optimization process is obtained when reaching the assumed maximum
number of iterations or the value of the fitness function is below the assumed tolerance 1 × 10−4

• Every modification module is tested separately. The combination of all modules in one algorithm
is not tested. The reason is an increment of computation effort for multi-module algorithm what
makes it difficult to compare with single module modifications,

• Swarm population (Np) and maximum number of iterations (max_ite) for comparative study
is established regarding similar computational effort (elapsed time of optimization) for
compared algorithms.

Figure 4 shows the flow chart of the developed GOA algorithm for SHE with marked modification
modules. However, as was mentioned above, only one module is active at the time.
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5.1. Comparison between GOA and PSO

The comparative study between GOA and PSO was carried out for n = 5 switching angles in a
quarter-period, modulation index M1 = 0.9, and fundamental frequency ff = 50 Hz what gives 550 Hz
switching frequency. In this work 5th, 7th, 11th, and 13th harmonics are eliminated permanently.
Figure 5 presents the trajectories of particles during the optimization process with GOA and PSO
algorithms, respectively. The GOA algorithm is characterized by a short time of exploration and a
long period of exploitation while the PSO algorithm provides a very high intensity of exploration.
Figure 6 shows that PSO needs a higher number of iterations to converge comparing with GOA and
its modifications.
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In the following part of this section, the convergence of GOA and PSO has been compared.
The various combinations of parameters were tested. For every set of both GOA and PSO, 100 runs
were calculated. For each series of runs, the number of runs that reaches ffit below 1 × 10−4 was
recorded as the success. The variation of the following parameters was studied: maximum number of
iterations (max_ite), size of the population (Np), PSO parameters C1 and C2, and GOA parameters
used in s-function (L and F). Thus, all results have been presented in Figure 6 where the probability of
convergence is compared. The value of population size for PSO and GOA was adjusted to keep similar
computation times for both.

The best performance of GOA was recorded for settings: Np = 40 max_ite = 300, L = 1.5 and F = 0.5.
For the aforementioned setting, GOA achieved 27% convergence (time of computation 101 s). The PSO
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achieved the best performance for: Np = 250, max_ite = 300, C1 = 1 and C2 = 0.5. Thus, GOA presents
better performance than PSO regarding higher convergence for lower population size. Results presented
in Figure 6 proves that for the SHE problem the GOA presents a significantly higher probability of
convergence than the PSO algorithm. The most interesting result was achieved by using the GOA
algorithm for population 40 and 300 iterations (the second-highest for this algorithm) where the
probability of convergence was 28%. This result proves that the GOA algorithm can be very efficient
for low population set up which reduces its computational effort. The highest recorded probability of
convergence of PSO during the experiment was 15% (time of computation 260 s). The GOA algorithm
gives a better result faster. The computation effort is extremely significant during the application of the
optimization task for the task. In this paper, coefficients of the compared algorithm were selected in
such a way to keep comparable computation time. The parameters which are affecting computation
time are population size Np and the maximum number of iteration max_ite. Results presented in
Figure 6 can be divided into 9 SETS regarding Np and max_ite. Table 2 presents computation time for
the PSO and GOA performed on a computer with processor Intel Core i7-8557U. Results from Table 2
are presented in Figure 7. The parameters Np and max_ite were selected to keep similar computation
time for GOA and PSO for one SET. The GOA in every iteration calculates the position of every agent
(grasshopper) related to every agent in the swarm, PSO calculates the only position of the agent related
to the position of the pest particle. That is why GOA needs higher computational effort than PSO for
the same Np. Thus, to make it comparable the Np for GOA was reduced in every SET.

Table 2. Sets of coefficients with computation time (100 runs).

PSO GOA

No. Max_Ite Np Time [s] Max_Ite Np Time [s]

SET 1 300 70 99 300 40 101
SET 2 300 130 169 300 60 163
SET 3 300 250 260 300 80 261
SET 4 500 70 165 500 40 152
SET 5 500 130 310 500 60 277
SET 6 500 250 470 500 80 438
SET 7 700 70 245 700 40 264
SET 8 700 130 412 700 60 385
SET 9 700 250 637 700 80 687
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Figure 8 shows the switching angles calculated by PSO and not modified GOA as the function of
modulation index M1.
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5.2. Comparative Study between PSO, GOA, and Modified GOA

In this subsection, the convergence of GOA with modifications and PSO algorithms has been carried
out. Assumptions from section V A and Table 3 are valid in this section. However, the comparison has
been conducted for a wider range of modulation index M1 = 0.4 ÷ 1.1.

Table 3. Parameters for all analysis.

Algorithm Coefficients Value

GOA cmin 1 × 10−6

cmax 1
GOA + NS Pmin 0.3

Pmax 0.95
AGOA F0 1.05

PSO C1 2
C2 2

wmin 1 × 10−3

wmax 1

The comparative study reveals that the most efficient with the highest probability of convergence
is the GOA algorithm modified by adding the OBL module (Figure 9). The convergence of the studied
algorithm was decreasing with an increase of M1 because higher modulation index requires smaller
spaces between switching angles and reduce the feasibility of developed solutions. For M1 in the range
from 0.7 to 0.8 modification based on NS presented very good performance as well. Figure 10 presents
the examination of fitness value (ffit) as the function of the iteration number. The conclusion is that
GOA-based algorithms present significantly faster convergence than PSO.
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6. Experimental Results

The applied GOA algorithm has been experimentally verified. Switching angles calculated by
the GOA algorithm were implemented into the laboratory stand (Figure 11) developed according to
Figure 1. Parameters of the induction motor applied in the laboratory stand are presented in Table 1.
The inverter control by switching angles input was provided by DSpace card 1104. Switching angles
were applied as the look-up table for off-line control. Verification was conducted for two operating
points with the same fundamental frequency ff = 50 Hz, and different M1 = 0.9 and 1.0, respectively.
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Figure 11. Laboratory stands for experimental tests.

In Figures 12 and 13 it can be noticed that amplitudes of 5th, 7th, 11th, and 13th harmonics in
the output voltage have been eliminated and the GOA algorithm has successfully minimized the
goal function.
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7. Conclusions

In this paper, the authors investigated a novel application of a recently developed GOA algorithm,
for the calculation of switching angles in SHE-PWM inverter modulation. The main goal of this
paper was to examine the probability of convergence introduced by GOA applied for solving the SHE
problem. Modifications of the GOA algorithm have been implemented and compared with the PSO
algorithm. The GOA algorithm is based on the behavior of a swarm of grasshoppers and the most
characteristic feature is that the movement of agents depends not only on the position related to the
position of the best agent (best global solution) but it depends on the position related to the other
agents as well. Thus, the results prove that the GOA algorithm requires a lower population size to
converge with computation effort similar to PSO. The most interesting outcome of this study is that
the GOA algorithm with OBL elements proves its superiority over the PSO algorithm regarding the
probability of convergence for similar computational effort (lower population of particles). The second
most efficient combination was the GOA algorithm with NS modification. GOA presents the highest
advantage over PSO in the range of modulation index from 0.5 to 1.0. In this range, the convergence
of PSO was dramatically reduced (below 5% in the worst case), and meanwhile, the probability of
convergence of GOA was between 20 and 80%. The performed measurement experiments proved
that the SHE-PWM waveform optimized by the GOA algorithm provided elimination of the chosen
harmonics in the inverter’s output voltage. In the nearest future, authors will focus their attention on
the application of the GOA algorithm for optimization of waveforms generated by multilevel inverters
and its applicability in traction drive solutions.
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