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* Correspondence: hubert_szczepaniuk@sggw.edu.pl

Abstract: The digital transformation of the energy sector toward the Smart Grid paradigm, intelligent
energy management, and distributed energy integration poses new requirements for computer science.
Issues related to the automation of power grid management, multidimensional analysis of data
generated in Smart Grids, and optimization of decision-making processes require urgent solutions.
The article aims to analyze the use of selected artificial intelligence (AI) algorithms to support the
abovementioned issues. In particular, machine learning methods, metaheuristic algorithms, and
intelligent fuzzy inference systems were analyzed. Examples of the analyzed algorithms were tested
in crucial domains of the energy sector. The study analyzed cybersecurity, Smart Grid management,
energy saving, power loss minimization, fault diagnosis, and renewable energy sources. For each
domain of the energy sector, specific engineering problems were defined, for which the use of artificial
intelligence algorithms was analyzed. Research results indicate that AI algorithms can improve the
processes of energy generation, distribution, storage, consumption, and trading. Based on conducted
analyses, we defined open research challenges for the practical application of AI algorithms in critical
domains of the energy sector.

Keywords: artificial intelligence; cybersecurity; machine learning; metaheuristic; fuzzy inference
systems; genetic algorithms; artificial neural networks; energy sector; Smart Grid

1. Introduction

The digital transformation of the energy sector is a fact. Progressive technological
changes mean that existing architectures of energy systems and current business models in
the energy sector are heading towards digital transformation, e.g., [1,2]. However, the goal
of the ongoing changes cannot be digitization per se. Modern computer science offers a rich
array of technologies that represent an opportunity to improve efficiency in key domains
of the energy sector related to energy generation, distribution, storage, consumption, and
trade, e.g., [3–11]. Implementing the Internet of Things, Cyber-Physical Systems (CPSs),
and embedded systems in the energy sector has contributed to developing the new Smart
Grid paradigm.

Smart Grid represents next-generation power systems that combine existing energy
infrastructure with information and telecommunications technologies [12]. The primary
added value of a Smart Grid compared to classic power grids is the possibility of two-way
energy flow and data exchange in the form of communication signals [13]. Smart Grid
is closely related to intelligent energy management and, thus, to the need to automate
control, monitoring, and decision-making processes. The literature indicates that intelligent
management systems in the energy sector require solving many problems regarding, among
others, optimizing energy efficiency, preventing energy losses, analyzing customer demand
profiles, and forecasting production costs and energy prices [13].

From a computer science perspective, the Smart Grid paradigm provides an environ-
ment for implementing artificial intelligence (AI) to support energy systems management,
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e.g., [14–19]. However, since the energy sector is an element of critical infrastructure, the
presented Smart Grid assumptions pose special requirements within computer science.
The implementation of IT solutions must support energy security, infrastructure stability,
and continuity of energy systems, often under real-time regime conditions. Meeting the
objectives mentioned above requires the implementation of a multi-layered and multi-
agent architecture that integrates distributed sensor networks, transmission media, data
processing services, a business layer, and energy infrastructure. In addition, the ongoing
transformation toward a data-driven energy industry means that energy systems generate
data sets with complex, heterogeneous structures. Moreover, the unique nature of the data
generated by energy systems, which, on the one hand, require a real-time response and,
on the other hand, meet the attributes of Big Data, makes classic data analysis methods
insufficient. As a result, data generated by energy systems require innovative processing
methods to automate decision-making processes. For example, Shahzad et al. [20] demon-
strated that it is possible to develop an effective method for optimizing a hybrid renewable
energy system based on data. In particular, the research showed that effective planning
of the location, type, and size of distributed generation (DG) units is possible using real
data [20]. Due to the importance and complexity of the presented issues, there is an urgent
need for research on the use of AI methods to support the energy sector.

AI methods and techniques are becoming crucial in optimizing and automating Smart
Grid management using data generated in energy systems. The latest research proves the
effectiveness of AI in engineering applications, particularly in the energy sector. In this
regard, Elsheikh [21] published key research results on using AI to optimize the design
of bistable structures in the context of energy harvesting. In another paper, Moustafa
et al. [22] presented an artificial neural network model for efficiently predicting thermal
performance of a tubular solar still. An exemplary application of specific AI algorithms
in solving engineering problems was presented by Khoshaim et al. [23]. The research
concerned the application of a gray wolf optimizer and the multilayer perceptron model to
predict selected mechanical and microstructural properties of a friction-treated aluminum
alloy [23]. Another important study by Alsaiari et al. [24] integrated an artificial neural
network with an optimizer of artificial rabbits to predict water productivity for selected
photovoltaic structures. A detailed analysis of the use of artificial neural networks to model
solar energy systems can be found in a comprehensive review by Elsheikh et al. [25]. The
review indicated that different types of artificial neural networks are effective techniques
for optimizing and predicting the performance of solar devices [25].

The presented brief overview of the latest research results indicates the significant
potential of AI algorithms in solving engineering problems in the power industry.

The contribution of this article concerns IT systems supporting Smart Grid manage-
ment using AI algorithms. The paper aims to analyze the applications of selected AI
algorithms for supporting the energy sector in cybersecurity, automation of power grid
management, multidimensional analysis of data generated in Smart Grids, and optimiza-
tion of decision-making processes. In particular, machine learning methods, metaheuristic
algorithms, and intelligent fuzzy inference systems were analyzed. Examples of the an-
alyzed AI algorithms were confronted with critical domains of the energy sector. The
research covered, among others, cybersecurity, Smart Grid management, energy saving,
minimizing power losses, fault diagnosis, and renewable energy sources.

It should be noted that AI algorithms and areas of the energy sector were selected
so that this article will be interesting to as many readers as possible. Considering this,
machine learning, metaheuristics, and fuzzy reasoning represent the key AI areas covered
in the paper. Similarly, the domains of the energy sector represent the leading research
areas undertaken in the latest publications. Based on the conducted analyses, open research
challenges for the effective use of AI algorithms in the energy sector were defined.

The next sections of this article are organized as follows. Section 2 discusses the
methodology adopted in the article. Section 3 covers an overview of AI algorithms, particu-
larly machine learning, metaheuristics, and fuzzy inference systems. Section 4 examines
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how AI algorithms can support key domains of the energy sector. Section 4 defines the
open research challenges. The paper ends with conclusions that include a summary of
the research.

2. Materials and Methods

The article analyzes engineering and technical research in computer science and
security sciences. Selected AI algorithms used in the energy sector are the subject of the
study. The research aims to analyze the applications of AI algorithms to support the energy
sector in cybersecurity, management automation, multidimensional data analysis, and
optimization of decision-making processes.

This article’s contribution to the theory and practice of computer science and security
science is to address the five research questions (RQs) defined below:

RQ1: What AI algorithms are used in the energy sector?
RQ2: In which areas of the energy sector are AI algorithms applied?
RQ3: How can the cybersecurity of the energy sector be supported using AI algorithms?
RQ4: How can AI algorithms support energy saving, Smart Grid management, fault

detection, load prediction, and renewable energy?
RQ5: What are the open research challenges related to using AI algorithms in the

energy sector?
Scopus, MDPI, IEEE, and ACM databases were used to select the literature necessary

for the study. During the literature search, various combinations of keywords related to
specific AI algorithms and functional domains of the energy sector were used. It should be
noted that energy sectors and AI constitute an extensive research area. It was not possible
to cover all possible fields related to the energy sector and AI in one study. Therefore, we
analyzed selected domains of both the energy sector and AI that are crucial to the research
questions. Regarding AI algorithms, the study considered the following:

• machine learning,
• metaheuristic algorithms,
• fuzzy inference systems.

The above-mentioned types of algorithms were examined with respect to the
following areas:

• cybersecurity of intelligent energy management systems,
• energy saving,
• Smart Grid management,
• fault diagnosis in energy systems,
• electricity load forecasting,
• renewable energy.

Section 4 defines four to seven specific engineering problems for each of the areas
listed above. We analyzed the application of selected AI algorithms for defined problems.
Sections 3 and 4 address the defined RQs.

3. Overview of AI Algorithms

In order to identify the applications of AI algorithms in the energy sector, it is essential
to define their basic typology. AI can be studied in an interdisciplinary manner, but this
article focuses primarily on the perspective of computer science. AI algorithms are an
essential part of computer science and contain a wide range of technologies and scientific
concepts. Essentially, AI presupposes the ability of computer systems to make inferences
modeled on human logic and intelligence. Latah and Tokre [26] emphasize that AI covers
many subfields, particularly knowledge representation, reasoning, planning, decision-
making, optimization, metaheuristics, and machine learning.

The general concept of AI requires computer science to develop specific algorithms in
selected programming languages to implement the assumptions presented above. Thus,
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different algorithms that perform AI tasks can be distinguished. This study includes
machine learning, metaheuristics, and fuzzy inference algorithms.

3.1. Machine Learning

Machine learning (ML) algorithms are a crucial part of AI. ML is defined differently
in the literature depending on the scientific field. From a computer science perspective,
Alpaydin [27] (p. 3) defines ML as “programming computers to optimize a performance
criterion using example data or past experience”. ML can also be considered from the
perspective of data science, a related discipline. In this view, ML can be defined as “a
method that draws implications from existing data by using mathematical and statistical
methods, and makes predictions about the unknown with these implications” [28] (p. 5).

The effectiveness of ML algorithms depends on the type and quality of input data.
ML is not a single set of techniques, algorithms, or predictive models. There are many
classifications of ML algorithms, techniques, and models in the literature. Synthesizing the
literature in terms of input data and type of algorithm used, the following ML techniques
can be distinguished [26,29,30]:

• supervised learning,
• unsupervised learning,
• semi-supervised learning,
• reinforcement learning.

Supervised learning techniques are based on provided patterns and examples. As a
general rule, supervised learning algorithms require labeled data to be available during
training [31]. Supervised learning requires more processed data than other algorithms
because the input data needs additional information to represent the data output classes [32].
Relying on labeled data makes supervised learning more accurate than unsupervised
learning. An additional advantage is the ability to estimate or map the results to a new
sample [33]. The disadvantages relate to the need to label the data, which requires time
and expert knowledge.

Unsupervised learning assumes that the computer system has no learning examples
and independently searches for relationships, dependencies, and patterns in the input
data. It should be noted that, although unsupervised learning reduces the need for labeled
samples, it still faces problems with low detection accuracy [34]. Clustering algorithms are
fundamental solutions in unsupervised learning techniques. The advantage of unsuper-
vised learning is that there is no need to label the data, which simplifies input preparation.
The disadvantages relate to the inability to estimate or map the results of a new sample [33].
Another limitation of unsupervised learning is that it performs only classification tasks [33].

Semi-supervised learning techniques are a hybrid combination of the two concepts
presented above. The computer system handles both labeled and unlabeled data. The
concept aims to develop better learning models than techniques separately based on labeled
and unlabeled data. However, the hybrid use of the two types of data does not guarantee
higher algorithm performance. Unlabeled data is useful if it contains information for
predicting labels that is not contained in the labeled data or cannot be easily extracted from
the labeled data [35].

In addition to the ML techniques mentioned above, there is reinforcement learning
(RL). RL involves learning to map situations to actions to maximize a numerical reward
signal [36]. This assumption means that the computer system receives a defined set of rules
and, based on them, observes the occurring effects. The learning process is based on a set of
reinforcements from the environment [26]. RL issues can be formalized based on the theory
of dynamical systems, particularly optimal control of Markov decision processes [36].

At the programming level, the presented ML techniques use various algorithms. The
key types of ML algorithms for use in the power industry are analyzed below.
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3.1.1. Decision Trees

Decision trees (DTs) are widely used in statistics and can be designed for ML [37].
DT algorithms are widely used to solve various classification problems. DTs are decision
algorithms that use a model similar to a tree structure to generate output data [38]. The
training process generates a decision tree based on a dataset with labeled examples to
predict new unlabeled data instances [39]. The advantage of DTs is their ability to handle
different types of input. In particular, input data can be both discrete and continuous [26].
DTs have some limitations. For example, specific algorithms such as ID3, C4.5, and CART
can, in some cases, generate very large, complex, and difficult-to-understand trees [40].

3.1.2. Artificial Neural Networks

In general, Artificial Neural Networks (ANNs) assume the mapping of a biological
neural network system to a mathematical model. An ANN consists of interconnected basic
units based on the concept of artificial neurons. The use of ANNs to perform a specific
task consists of the parallel activation of many artificial neurons that can be organized into
any topological architecture [41]. ANNs are used in the energy sector to forecast electricity
consumption as well as to predict load in buildings [30]. There are many different types
of ANNs that allow for programmatic implementation. Among others, the following can
be distinguished: multi-layer perceptron neural network, wavelet neural network, radial
basis function, and Elman neural network [25].

3.1.3. Deep Learning

Deep learning (DL) uses the previously presented concept of ANNs. DL algorithms
implement a multi-layered learning model. In engineering terms, DL uses a layered cascade
of nonlinear computing modules in which the input of each subsequent layer is based on the
output from the previous layer to identify and convert attributes [42]. DL algorithms cover
a wide range of solutions. Synthesizing the literature on the subject, the following types of
algorithms can be distinguished: convolutional neural network (CNN), long short-term
memory network (LSTM), deep neural network (DNN), recurrent neural network (RNN),
deep belief network (DBN), generative adversarial network (GAN), deep reinforcement
learning (DRL), and Q-learning Reinforcement [43,44].

3.1.4. Support Vector Machines

A support vector machine (SVM) is commonly used to implement models that enable
the separation and grouping of objects based on identified specific characteristics. SVMs
are a group of algorithms used for learning two-class discriminant functions based on
provided training examples [45]. SVM algorithms use structural risk minimization, which
means minimizing the upper limit of the generalization error instead of minimizing the
learning error, as in other ML algorithms [46].

3.1.5. K-Means Clustering Algorithms

K-Means clustering algorithms are popular methods used in unsupervised ML and
data mining for clustering and pattern recognition. In the basic premise, the algorithm uses
Euclidean distance as the metric and considers the K classes in the dataset, averaging the
distances by returning the initial centroid, with each class also described by a centroid [47].
Various extensions of this method are available in the literature, e.g., [48–50]. The essential
advantage of the algorithm is its low computational complexity, which helps to minimize
the use of computer system resources.

3.1.6. Regression Algorithms

Conceptually, regression is the process of learning relationships between inputs and
continuous outputs from sample data, thus making predictions for new values [51]. The
algorithms of this class are part of supervised ML. Typically, for regression algorithms,
the decision attribute is a real number. The algorithm’s input is a training dataset and a
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set of metaparameters, while the output is a vector of model parameters determined by
minimizing the measurement error on the training data [51]. Many variants of regression
algorithms are used in ML, which can be classified in terms of predictive model and
algorithmic procedure. The discussed algorithms include, among others, linear regression,
logistic regression, generalized regression model, etc. [52].

3.1.7. Self-Organizing Maps

In general, self-organizing maps (SOMs) are unsupervised learning methods and
conceptually refer to ANNs. The algorithm classifies or detects a new input vector based
on learning and mapping as the two main modes [53]. Iteratively, the algorithm changes
the feature weights to provide a basis for classification [54]. The learning process involves
tuning neurons to different input patterns until a winning neuron is determined that
best matches the input vector [55]. The algorithm processes the input data into discrete
low-dimensional data [54]. It is worth noting that the SOM algorithm is resistant to data
disturbances and can map high-dimensional data to low-dimensional ones [56]. The afore-
mentioned features enable the effective use of SOMs in the energy sector. Research results
presented by McLoughlin et al. [57] indicate that SOMs are adequate for characterizing the
load profile of domestic electricity using data from smart metering. In another study, Mot-
lagh et al. [58] demonstrated the effectiveness of SOMs in analyzing household electricity
users’ behavior.

3.1.8. Hidden Markov Model

The hidden Markov model (HMM) concept is based on a statistical model for a
Markov process where the states are unknown. The Markov process is a random process
that satisfies the Markov assumption, i.e., the probability of one state depends only on the
previous state in the random process [59]. The HMM consists of a set of unobserved states
where one state can transition to another, and each state is associated with an observed
set [59]. It should be noted that the HMM uses statistical learning algorithms where the
costs increase exponentially as the amount of data increases [60]. In ML, an algorithm
for expectation maximization can be used to train the HMM as the first instance of the
Baum–Welch algorithm [61].

3.2. Metaheuristics

There is a specific class of computational problems for which it is impossible to
find an optimal solution satisfying all boundary criteria in a reasonable time. Many
methods have been developed to solve such issues, including metaheuristic algorithms.
In general, metaheuristics are used to solve optimization problems where there is no
satisfactory solution using any deterministic method in an acceptable time [62]. Thus,
metaheuristic algorithms can support the optimization of NP-hard problems. On the other
hand, the specificity of metaheuristic algorithms means that they do not guarantee an
optimal solution or finding a solution at all. Other limitations of metaheuristics include
the difficult-to-estimate algorithm execution time and, in some cases, the high demand for
computing resources.

Specific heuristic algorithms are often inspired by nature and are based on certain
principles of physics, biology, or ethology [62]. Among others, there are algorithms inspired
by the theory of evolution, particle swarm optimization, ant colony, gray wolf, bee swarm,
etc. The specificity of metaheuristic algorithms allows for their practical application in
the energy sector. For example, Shahzad et al. [63] published a solid study on planning
modern power systems to deploy DGs in distribution networks using the strawberry
plant propagation algorithm. Another paper by Shahzad et al. [64] presented an effective
method of supporting reactive power using a metaheuristic mine blast algorithm. Moreover,
Bilal et al. [65] demonstrated the particle swarm optimization algorithm’s effectiveness in
minimizing losses in power systems. Metaheuristics include various classes of algorithms.
This study was limited to evolutionary algorithms and swarm intelligence.
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3.2.1. Evolutionary Algorithms

Evolutionary algorithms (EAs) are inspired by selected models of biological evolution
occurring in nature. To elaborate on the general concept, it should be noted that evolution-
ary algorithms include various solutions in computer science. In particular, evolutionary
algorithms are related to the following categories [66]:

• evolutionary programming (EP),
• genetic algorithms (GA),
• evolutionary strategies (ES),
• genetic programming (GP).

The methods mentioned above are based on simulating the evolution of individual
structures through selection, recombination, and mutation reproduction, thus creating
better solutions across individual iterations of the algorithm [62]. Although EP, GA, and ES
were easy to distinguish in the initial phase of their development, they are now significantly
more similar [67]. As Beyer [67] points out, only one distinction is possible: recombination
is not used in EP algorithms, and mutation is the decisive search operator.

One of the leading solutions in EAs is population genetic algorithms (GAs), which are
crucial for this paper. The assumptions of GAs are based on the biological DNA alphabet
and originally represented binary sequences [66]. The essential elements of a genetic
algorithm are chromosome representation, match selection, and a set of operators inspired
by biological processes [68]. GA procedure consists of an initial calculation of the fitness of
each chromosome in a randomly initiated population, after which a single-point crossover
operator is applied to two selected chromosomes to produce offspring (O) [68]. In the next
step, the mutation operator is applied to the produced offspring to generate (O’), which is
placed in the population [68]. The algorithm repeats the procedure iteratively.

3.2.2. Swarm Intelligence

Swarm intelligence consists of algorithms inspired by the collective behavior of insects
and herd animals. Animal herding behavior can be successfully adapted to mathematical
optimization models and computer science in algorithm programming. Swarm intelligence-
based algorithms include many different solutions. The following can be distinguished as
supporting the energy sector:

• particle swarm optimization (PSO),
• bee colony optimization (BCO),
• ant colony optimization (ACO),
• bat algorithm (BA).

PSO is inspired by the flocking behavior of birds trying to find food [69]. PSO solves
continuous nonlinear optimization problems defined in an n-dimensional search space [70].
The algorithm assumes that the swarm consists of stochastically generated particles rep-
resented by velocity and location, and has a memory that stores the best position [26].
The operation of the algorithm starts with the initialization of the population set. Then,
interactively, the connection and velocity of each particle are influenced by individual
and collective knowledge, which controls the movement of particles over the space of
possible solutions in search of the optimal solution until the algorithm’s stopping criterion
is reached [71]. It should be noted that many improvements to the original PSO algorithm
are available in the literature. A comprehensive analysis of PSO algorithms for solar power
systems can be found in a review published by Elsheikh and Abd Elaziz [72].

BCO is inspired by the naturally occurring behavior of bees, which work together
to solve a combinatorial optimization problem [73]. Artificial bees generate partial solu-
tions during the step forward and return to the hive during the step back to participate
in the decision-making process [73]. Many algorithms have been developed following
optimization paradigms inspired by honeybee behavior. Boussaïd et al. [62] published a
comprehensive review of various metaheuristic algorithms.
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ACO algorithms are inspired by the natural ability of ants to find paths between differ-
ent food sources and an anthill. In the natural environment, ants leave so-called pheromone
trails and then choose paths with a high concentration of pheromones. Therefore, the most
optimal paths are reinforced by successive passages of ants. There are many different
variations on ACO algorithms available in the literature. High-performance algorithms
include the rank-based ant system, max-min ant system (MMAS), and ant colony system
(ACS) [74].

BA is a metaheuristic algorithm based on swarm intelligence and is inspired by bats’
ability to echolocate [75,76]. The algorithm iteratively defines and updates each bat’s
position and velocity in the multidimensional search space [77]. Since the presentation of
the original bat algorithm, many changes have been made to adapt it to specific optimization
problems, including the binary bat algorithm (BBA) [78], chaotic bat algorithm (CBA) [77],
island bat algorithm (iBA) [79], and directional bat algorithm (dBA) [76].

It should be noted that Olivas et al. [80] conducted a comparative study of swarm
intelligence algorithms and proposed modifying the algorithms’ main parameters using an
interval type 2 fuzzy logic system. To sum up, the presented features of swarm intelligence
allow for its effective use in various domains of the energy sector, as presented in Section 4.

3.2.3. Gray Wolf Optimization

Gray wolf optimization (GWO) is inspired by a model of selected social relations and
hunting methods in gray wolf packs [81]. The algorithm is based on three primary phases in
the mathematical hunting model: tracking, encircling, and attacking [82]. The mathematical
hunting model assumes that the alpha, beta, and delta optimization solutions have the
best knowledge of the potential location of the victim, so the remaining search agents must
update their positions in the search space [81]. It is worth noting that the applications of
GWO algorithms for controlling and optimizing power flows [83], designing transmission
lines [82], and searching in wireless sensor networks [84] were investigated.

3.2.4. Simulated Annealing Algorithm

The simulated annealing (SA) algorithm is inspired by the material recrystallization
process through heating and cooling [85]. SA finds a solution using a random variation of
the current solution [86]. The worse variant being accepted as the new solution, following
a certain probability that decreases in subsequent steps of the algorithm [86]. The target
function, which is analogous to the energy of the material, is successively minimized by
a fictitious temperature, a controllable parameter of the algorithm [62]. The advantage of
SA algorithms is their compactness, reliability, and reduction of calculation time for single-
and multi-objective optimization problems [87]. On the other hand, it should be noted that
there may be problems for which SA algorithms could not provide optimal or valuable
solutions in a reasonable amount of time [86].

3.3. Fuzzy Inference Systems

Computer science extensively uses classical binary logic, which applies basic logic
operations to manipulate binary variables that can take the values 0 or 1. However, there
are many classes of problems, such as engineering and technical problems, in which
two-valued logic cannot handle situations characterized by heterogeneity and ambiguity.
Zadeh [88] proposed the concept of fuzzy sets and fuzzy logic, which was groundbreaking
for mathematics and computer science. The fuzzy theory assumes that a fuzzy set is
associated with a membership function that determines the degree of membership of an
element in the set [88]. Therefore, a given element may partially belong to the set. In
contrast to classical two-valued logic, fuzzy logic is multi-valued. The concept of fuzzy
logic is used in computer science to implement expert systems. It should be noted that
expert systems are a long-known and well-established concept. Therefore, expert systems
cover many technologies, methods, and algorithms. The key solutions include systems
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based on Boolean logic, framework systems, ANNs, fuzzy expert systems, and hybrid
systems combining many different AI algorithms.

Liao [89] characterized the general procedure for fuzzy inference in the
following steps:

• fuzzification—based on the membership function, the degree of truth for each premise
of the rule is determined;

• aggregation—using the appropriate operators, the degrees of all the premises of the
rule are combined if there is more than one premise of the rule “anded” together;

• inference—based on the assignment of one fuzzy subset to the output variables for the
defined rules, the inference process is carried out using appropriate operators;

• composition—a single fuzzy subset is created for each output variable by combining
all fuzzy subsets assigned to that variable;

• defuzzification—optional step if it is reasonable to convert the fuzzy output to a
crisp number.

The advantage of expert systems is their transformation of expert knowledge into a
set of rules and an inference system. Expert systems work well in solving typical problems
in a given domain. On the other hand, in the case of unusual problems for which there is
no standard solution, expert systems may be useless.

4. AI Algorithms for Engineering Problems in the Energy Sector

Based on the review in Section 3, the effects of applying AI algorithms to selected do-
mains of the energy sector were analyzed. In particular, the study concerned the following
issues: cybersecurity in energy systems, energy saving, Smart Grid management, fault
diagnosis, electricity load forecasting, and renewable energy.

4.1. Cybersecurity

Cybersecurity is a critical factor in the efficiency of the energy sector. It should be em-
phasized that cybersecurity concerns interdisciplinary issues and requires the coordination
of technological, legal, social, procedural, and organizational activities [90]. Cybersecu-
rity is closely related to information security. In the literature, information security is
often defined in the context of key information security attributes [91]. In addition, the
application of the Internet of Things in the energy sector expands the range of possible
vulnerabilities and threats. The latest research shows that ensuring cybersecurity for the
IoT requires a systemic approach involving the management of all system elements [92].
Significant progress has been made recently in using AI, including ML, to support the
security of IT systems. Research shows that various AI techniques can be successfully used
in cybersecurity for the energy sector and related systems. Wang and Govindarasu [93]
pointed out that cybersecurity is a popular topic in computer science but has not received
enough attention in the field of critical infrastructure.

Electrical power systems have essential cybersecurity requirements. Modern power
systems consist of a physical layer and an information (cyber) layer [93]. Based on this
assumption, power systems can be studied from the perspective of CPSs. Wang and
Govindarasu [93] published research on detecting cyber-physical anomalies in power grids
using various ML techniques. The studies mentioned above indicate the effectiveness of
the k-means clustering algorithm in detecting anomalies in power systems. The research
also showed the main challenges for detecting anomalies in CPSs: time efficiency, Big
Data issues, and updating the detection model [93]. Because many factors can disrupt
the generation and consumption of energy in power systems, the analyzed research is a
significant contribution to the cybersecurity of the energy sector.

In another publication, Wang et al. [94] designed a machine learning model that, based
on historical data and log data collected by phasor measurement units, enables the detection
of attacks on the energy system. This study uses a novel model with a random forest (RF)
as the AdaBoost classifier and then a weighted voting method on the prediction results [94].
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The results of the experiment were compared with many other ML algorithms. The research
shows that the proposed method effectively detects cyberattacks in energy systems.

The assumptions of the Energy Internet of Things (eIoT) [95] concept concern the
improvement of management processes for new energy systems. On the other hand, the
complex eIoT architecture generates new vulnerabilities and challenges for cybersecurity in
the energy sector. eIoT systems can be considered within a layered approach; they consist
of many network devices, sensor networks, embedded systems, transmission media, and
data analysis software. Li et al. [96] published an article on the application of ML to selected
aspects of eIoT cybersecurity. The article refers to a solar heating control system based on
eIoT. The research used ML based on the RF method, which assumes the construction of
multiple decision trees. During the experiment stage using XGBoost, a successful attack
was carried out on the established ML model on the IoT platform [96]. The presented
research proves the existence of a new vulnerability for eIoT systems that allows the theft
of AI models generated based on the learning process.

Available research also points to the possibility of using ML to detect energy theft. In
particular, Gunturi and Sarkar [97] published a study using machine learning models to
detect energy theft in smart grids based on customer consumption patterns. The aim of
the study was, among other things, to test the latest ML techniques for identifying energy
theft. The article tested ML classifiers such as adaptive boosting, categorical boosting,
extreme boosting, light boosting, RF, and extra trees [97]. The analyzed studies indicate
the effectiveness of ML classifiers in predicting customers’ real and malicious energy
consumption patterns.

Due to global security in the energy sector, it is crucial to ensure cybersecurity in
monitoring and control systems. Alghassab [98] published significant research findings
in this regard. The referenced publication used the analytic hierarchy process (AHP)
method based on uncertain fuzzy sets and the TOPSIS technique to estimate cybersecurity
assessments for industrial control systems [98]. The research indicates that attacks on
control systems and threats such as zero-day rootkits can be difficult to avoid and detect [98].
The discussed article indicates the need to develop new intrusion detection algorithms for
industrial control systems. The authors also pointed out the potential of ML in this regard.

Said et al. [99] researched the use of the SVM algorithm to counter false data injection
attacks. The research focused on the cybersecurity of peer-to-peer energy transactions for
a Connected Electric Vehicle (CEV) [99]. The research results indicate that the presented
SVM algorithm can increase cybersecurity in the decentralized electricity trading provided
by CEV sellers and buyers [99]. An important conclusion from the discussed research is
that the injection of false data into ML algorithms can significantly decrease performance
or even damage the entire system [99].

Table 1 summarizes the use of AI algorithms to support cybersecurity in the energy sector.

Table 1. Selected applications of AI algorithms in cybersecurity in the energy sector.

Cybersecurity Domains Engineering Problems AI Algorithms References

Detection of
cyber-physical anomalies

Data propagation between generators within
one Balancing Authority and

behavior correlation
k-means clustering Wang and Govindarasu [93]

Detection of cyberattacks and
disturbances in power grids

Prediction based on historical data and logs
collected by phasor measurement units RF, weighted voting method Wang et al. [94]

eIoT cybersecurity Modeling a theft attack on an intelligent
energy management system RF, XGBoost Li et al. [96]

Energy theft detection Modeling energy theft in a Smart Grid ensemble ML Guntury and Sarkar [97]

Cybersecurity of energy systems Analyzing the impact of cybersecurity on
monitoring and control systems

fuzzy-based method of AHP
and TOPSIS Alghassab [98]

Cybersecurity of connected
electric vehicles False data injection detection SVM Said et al. [99]

Source: Based on literature analysis.
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4.2. Energy Saving and Power Loss Reduction

Optimizing energy saving and reducing power loss are crucial challenges in modern
energy systems and translate into both economic and ecological benefits. Extensive research
is currently being conducted on using AI to support energy saving.

Deng et al. [100] presented a model of energy-saving planning using a differential
EA. The proposed model concerns energy saving in industrial robotics via the example of
a palletizing robot. The article analyzes characteristics related to the robot’s work, then
adopts a differential EA to optimize the motion trajectory parameters [100]. The research
results indicate that using the optimization methods presented in the article can reduce
the robot’s energy consumption by 16% [100]. Research findings measurably prove the
effectiveness of AI methods to save energy in industrial robotics.

Zheng et al. [101] investigated applications of the hybrid ant colony algorithm for
energy planning in the manufacturing industry. The issue of permutation flow planning
with batch processing machines is classified in the literature as an NP-hard problem [101].
To solve the posed problem, a mixed integer programming model was defined, as well
as a new multi-criteria algorithm for optimizing a hybrid ant colony [101]. The discussed
research results indicate that the presented algorithm significantly supports finding a
better consensus between production efficiency and energy costs, which is crucial in the
manufacturing industry.

Yuvaraj et al. [102] published research results on various methods of minimizing losses
and regulating voltage in power distribution systems. The bat algorithm and blockchain
technology were used in the discussed studies. The research aimed to reduce power losses
and voltage regulation in radial power distribution systems. The article investigated the
problem of allocation of reactive power compensators in a distribution system to minimize
power losses [102]. The bat algorithm showed a high degree of loss reduction in the test
scenarios [102]. Research findings indicate that the presented method could significantly
support distribution network operators, e.g., in selecting compensation devices and real-
time applications [102].

Wu et al. [103] published a paper on the use of a simulated expression algorithm
to optimize energy consumption path planning. In the article, an energy consumption
model for a UAV transmission tower was constructed, and the model parameters were
optimized [103]. The research findings allowed applying the simulated expression algo-
rithm to plan an energy consumption path for transmission towers that respected energy
consumption constraints [103]. The research shows that an energy-optimal path should be
used during UAV operation with load changes to reduce energy consumption [103].

Machorro-Cano et al. [104] published research results on ML, Big Data, and the Inter-
net of Things in saving energy in smart homes. The publication presents a comprehensive
energy management system for smart homes that supports energy saving. The system
model was presented in a layered approach. Particularly noteworthy is the legitimate
distinction of the security layer, which is responsible, among other things, for data confi-
dentiality. The system uses DTs based on an open implementation of the C4.5 algorithm in
the Java programming language [104]. The experiment shows that the presented system
significantly reduces energy consumption, which is particularly important from the point
of view of individual consumers.

Memon et al. [105] published a paper on the use of AI to save energy in 5G networks.
The study used the recurrent LSTM artificial neural network to extract the packet arrival
time pattern based on network traffic analysis [105]. The research results in the discussed
article indicate that, compared to the LTE-DRX method, the proposed algorithm shows
69% higher energy efficiency on trace 1 and 55% for trace 2 [105]. The presented research
results are crucial for the entire mobile industry in the context of the future development of
next-generation networks.

Zhang et al. [106] published a paper presenting a machine learning algorithm for
responding to energy demand. The paper proposes a model of an HVAC controller inte-
grated with an ML engine for activity recognition. RFs were used in machine learning.
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The purpose of the ML engine is to map sensor events to the activities performed by the
residents of the controlled house [106]. According to the authors, the research results
indicate that using the proposed HVAC controller reduces energy consumption by 5.14%
compared to the classic on/off controller [106]. The research results show the potential of
RF algorithms to support energy saving in HVAC controllers.

Table 2 summarizes the use of AI algorithms to support energy saving and reduction
in power losses in energy infrastructure.

Table 2. Selected applications of AI algorithms for energy saving and power loss reduction.

Energy Saving Domains Engineering Problems AI Algorithms References

Industrial robotics Optimization of the palletizing
robot’s trajectory differential EA Deng et al. [100]

Manufacturing industry Permutation flow planning for
batch machines hybrid ACO Zheng et al. [101]

Reduction in power losses
in electricity distribution

Location optimization for reactive
power compensators BA Yuvaraj et al. [102]

Energy path planning Power consumption problem for
UAV transmission towers simulated expression algorithm Wu et al. [103]

Smart homes Home automation systems DTs Machorro-Cano et al. [104]
Energy efficiency in

5G networks Packet arrival time prediction LSTM Memon et al. [105]

Responding to demand in
energy networks

HVAC controller integration with
ML engine for activity recognition RF Zhang et al. [106]

Source: Based on literature analysis.

4.3. Smart Grid Management

Smart Grid integrates many areas of the energy sector and uses various IT technologies.
The following engineering problems were selected for the study: implementing intelligent
agents controlling the power grid, ensuring grid stability, controlling transformers, real-
time energy management, and supporting local energy communities.

Damjanović et al. [107] published a paper on the use of deep reinforcement ML to
manage the power grid for autonomous power flow control. The paper aimed to implement
an intelligent agent that manages the power grid by changing the topology considering
different system conditions. In particular, the research analyzed network topology re-
configuration actions, i.e., line connection/disconnection and substation configuration
changes [107]. The RL method and the deep Q networks (DQN) algorithm were used
to train the implemented agent [107]. Various scenarios were used in the tests, and the
implemented agent controlled the network for up to a month [107]. The research results
indicate that an autonomous agent can successfully automate power grid management.

Bashir et al. [108] studied applying various ML algorithms to predict the stability of a
Smart Grid. The research focused on comparative analysis of selected algorithms, including
DTs, naive Bayes (NB), SVM, logistic regression, k-nearest neighbor (k-NN), and ANNs.
The comparative experiment was implemented in the Python programming language and
was based on data from a publicly available repository [108]. The dataset used in the study
contained many attributes, including the system’s stability, nominal power consumed and
power produced, price elasticity factor, and the maximum value of the equation root [108].
The experiment results indicate that DTs were the best algorithm for the adopted data
set [108]. The study is crucial to ensuring the reliability of the infrastructure and power
flow in Smart Grids.

Laayati et al. [109] published a vital publication on applying AI to manage trans-
formers. It is worth noting that power transformers are a critical element of the power
grid. The referenced publication presents a comprehensive hybrid solution that supports
the management of intelligent power transformers. The solution integrates transformer
monitoring strategies, ML, and software agents [109]. In particular, the discussed article
presents a multi-layer, multi-agent architecture for diagnosing various health parameters
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of a transformer. An important stage of the paper was a comparative experiment among
selected ML algorithms in terms of predictive model evaluation. The experiment analyzed,
among others, the following algorithms: DTs, RFs, SVM, k-NN, and decision stump [109].
Research findings are crucial for implementing intelligent energy management systems
that automate decision-making in power grids.

Qiu et al. [110] published an article presenting the application of a novel ML method
to manage a multi-energy system in real time. The method aimed to minimize energy costs
and carbon dioxide emissions while meeting operational assumptions [110]. The real-time
automatic energy management problem was described based on the Markov decision
process [110]. Among ML methods, DL with reinforcement, deep deterministic policy
gradient (DDPG), and safety-guided networks were used in the study. The experiment
used a dataset that included real demand scenarios and renewable energies. The research
findings indicate that the presented method enables the recognition of future trends in the
time series for demand and renewable energies [110]. The study is an essential contribution
to the field of Smart Grid management.

Zhou et al. [111] published a paper on intelligent energy community management.
The study specifically addresses the management of home energy storage systems and peer-
to-peer trading [111]. The discussed article uses the Markov decision process to formalize
energy trading. A reinforcement learning algorithm was used to determine the optimal
decision in the Markov decision process (MDP) [111]. The discussed article proposes
using a fuzzy Q-learning algorithm to support decision-making by energy community
participants. The study results indicate that the proposed method is an opportunity to
minimize energy bills in the tested community.

Table 3 summarizes the applications of AI algorithms for selected engineering prob-
lems in Smart Grid management.

Table 3. Selected applications of AI algorithms for Smart Grid management.

Smart Grid Domains Engineering Problems AI Algorithms References

Power flow management Implementing an intelligent agent
controlling the power grid RL, DQN Damjanović et al. [107]

Ensuring Smart Grid stability Predicting Smart Grid stability DT, NB, SVM, logistic
regression, k-NN, ANN Bashir et al. [108]

Transformer management Architecture of multi-agent systems multi-layer solution,
various algorithms Laayati et al. [109]

Multi-energy systems
management

Real-time energy
management automation

LSTM, DDPG,
safety-guided network Qiu et al. [110]

Smart energy community Decision problems in peer-to-peer
energy trading MDP, fuzz Q-learning Zhou et al. [111]

Source: Based on literature analysis.

4.4. Forecasting Electricity Loads

Forecasting electricity loads is essential to supporting the stability of energy systems
and thus strengthening energy security. The following engineering problems concerning
energy load forecasting were selected for the study: regional energy load planning, short-
term planning, load estimation for microgrids, the issue of power generation resource
optimization, and building load forecasting.

Llanos et al. [112] published a paper on microgrid load estimation using SOM. The
research focused on estimating electricity load profiles in isolated communities, assum-
ing power may not always be available [112]. Research findings indicate that SOM can
successfully support the generation of load profiles in microgrids that do not have a contin-
uous power supply [112]. Knowledge of energy demand profiles in microgrids supports
the development of optimal energy supply strategies and the prediction of generating
units’ capacity.
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Ying and Pan [113] presented a fuzzy reasoning system for forecasting regional elec-
tricity loads. The study used a hybrid learning algorithm based on an adaptive neuro-fuzzy
inference system (ANFIS) [113]. In engineering terms, the algorithm integrates the gra-
dient method and the least-squares method to update the parameters of the adaptive
network [113]. The research results indicate that the presented algorithm allows for accu-
rate predictions in terms of regional energy load. The conducted experiments indicate that
the proposed method gives more accurate forecasts than other comparative models [113].

Ibrahim et al. [114] published a paper on applying ML for short-term load forecasting
in Smart Grids. The paper assumes that the main predictors for short-term forecasts are
previous week’s energy load, previous day’s load, and temperature [114]. The article
conducted a case study examining various ML and SL algorithms, including SVR, XGBoost,
AdaBoost, RF, LightGBM, deep-learning regression (DLR), Bi-LSTM, and GRU [114]. The
research shows that the DLR model best predicted the demands for an hour ahead [114]. The
research results presented in the discussed article can significantly support energy planners.

Xu et al. [115] published a study on forecasting energy load in buildings. The study
used a method based on the MV-LSTM multivariate neural network and the Mixture
Attention Mechanism [115]. It should be noted that the purpose of the research in question
was both to develop an effective load forecasting model for residential buildings and to
provide internal interpretations for the model [115]. Therefore, the results generated by the
forecasting model are clear and easy to interpret. The case study results based on real data
indicate that the presented method achieves high prediction accuracy, and the results are
highly interpretable.

Table 4 summarizes the applications of AI algorithms for forecasting energy load.

Table 4. Selected applications of AI algorithms for forecasting energy load.

Prediction Domains Engineering Problems AI Algorithms References

Load estimation for
microgrid planning

Generating load profiles and
dimensioning generating units SOM Llanos et al. [112]

Forecasting regional electric load Adopting an adaptive network-based
fuzzy inference system ANFIS Ying and Pan [113]

Smart Grid Short-term load forecasting

SVR, XGBoost,
AdaBoost, random
forest, LightGBM,

DLR, Bi-LSTM, GRU

Ibrahim et al. [114]

Building load forecasting Load time series prediction multi-variable LSTM Xu et al. [115]

Source: Based on literature analysis.

4.5. Fault Diagnosis in Energy Systems

Fault diagnostics are essential for energy systems’ reliability, efficiency, and stability.
Energy systems have complex cyber-physical architecture that generates the potential for
faults. The following engineering problems concerning fault diagnosis in energy systems
were selected for the study: diagnostics of power transformer and power line faults, and
faults in thermal, hydro, photovoltaic, and wind power plants.

Fei and Zhang [116] studied power transformer fault diagnosis and focused on using
SVM and GA. In the discussed study, the GA was used to fit SVM parameters, which
translates into a better classification. The study also included an experimental part in
which data from several energy companies were used. Research findings show, among
other things, that using a GA improves classification accuracy compared to an SVM with
randomly selected parameters [116].

Illias et al. [117] published a paper on the use of AI algorithms to detect power trans-
former failures. The paper uses a hybrid method based on a modified evolutionary PSO
algorithm with a time-varying acceleration coefficient (MEPSO-TVAC) and ANNs [117].
The study used dissolved gas analysis data from a real power transformer. The test results
indicate that for the adopted comparative parameters, the hybrid combination of the meth-
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ods mentioned above gives a higher percentage of power transformer fault detection than
other methods used for comparison [117]. Due to promising research results, the proposed
algorithm can significantly support diagnostic work in the energy sector.

Jamil et al. [118] published a study on applying ANNs for classification and fault
detection in a three-phase power line system. The study used a feed forward neural
network and back propagation algorithm. The input of the neural network receives a set of
data on three-phase voltages and three-phase currents [118]. The research results indicate
that neural networks are an effective method for both the problem of detection and the
classification of power line faults. The method can be generalized to other types of faults.

Khalid et al. [119] researched the use of ML to detect faults in thermal power plants. In
the case of thermal power plants, a significant problem is the proper estimation of optimal
sensors for effective damage detection [119]. Combinations of various AI methods were
used in the research, including extra-tree classifier (ETC), SVM, k-NN, and naive Bayes
algorithm [119]. The study also included an experiment to evaluate the effectiveness of the
presented method. The experiment was based on a real power plant scenario. The results
indicate that the proposed method reduced the number of sensors by 44% for water wall
pipe leakage and by 55% for turbine engine failure [119]. The research findings are crucial
because reducing redundant sensors contributes to increasing the efficiency of the fault
detection system in thermal power plants.

Michalski et al. [120] published an article on ML methods for diagnostics and fault-
finding in hydropower plants. The article concerns diagnosis of the Kaplan propeller
turbine, which is a crucial component in a hydroelectric generator system. The fault
detection and diagnosis procedure are based on a framework including a Bayesian network
and the moving window principal component analysis method (MWPCA) [120]. The
presented method allowed for observation of the evolution of turbine failure modes and
the obtaining of information about potential failures [120].

Kouadri et al. [121] published a paper on applying HMM for intelligent fault diagnosis
in wind energy systems. The paper focuses on a conversion system with a variable-speed
wind turbine. HMM and principal component analysis (PCA) techniques were used in
the study [121]. The PCA technique was used to precisely extract observations for HMM
algorithms. Three types of faults were considered in the test: short-circuit, open-circuit,
and wear-out [121]. The results show high performance by the PCA-based hidden Markov
models, which were better than the PCA-based SVM method [121].

Livera et al. [122] presented a fault diagnosis system architecture for photovoltaic
systems. The system uses a combination of regression and classification models based
on a tree-oriented extreme gradient boosting algorithm. The aim of the research was,
among others, to develop classification and prognostic models for diagnosing failures in
photovoltaic systems [122]. It is worth noting that the presented method supports several
key areas, including predicting output power, detecting data problems, and detecting
power faults [122]. The results confirm the high efficiency of the presented method, which
enables its application in the production of integrated monitoring systems for photovoltaic
power plants.

Table 5 summarizes the applications of AI algorithms for selected engineering prob-
lems in detecting faults in energy systems.
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Table 5. Applications of AI algorithms for fault detection in energy systems.

Fault Detection Domains Engineering Problems AI Algorithms References

Power transformers
Fault diagnosis based on dissolved

gas data
SVM, GA Fei and Zhang [116]

MEPSO-TVAC, ANN Illias et al. [117]

Electric power lines
Detection and classification of faults

in a three-phase system of
industrial lines

feed-forward neural network,
back propagation algorithm Jamil et al. [118]

Thermal power plants Estimating sensors for fault
diagnosis in boilers and turbines ETC, SVM, k-NN, NB Khalid et al. [119]

Hydropower plants
Diagnosing and detecting damage

in turbines of a hydroelectric
generating set

framework based on Bayesian
network and MWPCA Michalski et al. [120]

Wind power plants Diagnosing a variable-speed wind
turbine failure HMM Kouadri et al. [121]

Photovoltaic power plants Monitoring of a photovoltaic
installation based on data

regression and classification
based on XGBoost Livera et al. [122]

Source: Based on literature analysis.

4.6. Renewable Energy

Renewable energy is crucial for current and future intelligent energy systems. Solar,
wind, hydro, geothermal, and biomass energy were selected for the study.

Cabezón et al. [123] published a paper on the application of ML to forecast energy
production in a solar farm. In the paper, various ML methods were used to achieve the
research goals, including linear regression, k-NN, DTs, extreme gradient boosting, and
light gradient boosting algorithms, as well as various types of neural networks (MLP, ENN,
LSTM) [123]. The aim of the study was a short-term forecast, allowing for the estimation
of the coming hour [123]. The results showed that tree-based extreme gradient boosting
was the most accurate predictive model [123]. It is worth noting that the effectiveness
assessment was carried out using real data from a selected solar farm.

Tu et al. [124] also conducted a study on short-term solar energy forecasting. The
study used a general regression neural network (GRNN) with GWO. In addition, a self-
organizing map algorithm was used in the research, among other things, to define weather
clusters [124]. The results, based on real solar data, showed that the presented method
increased the accuracy of insolation forecasting.

Wan et al. [125] published a study on the application of neural networks in forecasting
wind energy. The study used a multi-view ensemble width-depth neural network (MVEW-
DNN) [125]. The model includes a division into subnets that learn the local view and
subnets dedicated to learning the global view [125]. The proposed method focuses on
improving model performance and reducing computational costs [125]. The results indicate
that the proposed method has high predictive efficiency and can significantly support the
scheduling of wind energy production.

Condemi et al. [126] took up the issue of using selected ML techniques to forecast
production capacity in hydropower plants. The discussed study used machine learning
regression techniques, including multi-layer perceptron (MLP) networks, extreme learning
machines (ELM), and support vector regression algorithms (SVR). Multiple input variables
were included in the research model, including precipitation, snow cover, temperature, and
radiation [126]. It is worth noting that the experiment estimating the monthly capacity of the
hydropower plant was based on real input data [126]. Research findings indicate that using
meteorological parameters provides a basis for implementing efficient predictive models.

Duplyakin et al. [127] published a paper on the use of ML to model the subsurface
performance of geothermal reservoirs. The presented method enabled the translation
of flow rates for active wells into estimated reservoir energy [127]. The ML models in
the study were used, among others, to predict temperature and pressure time series for
individual wells [127]. The discussed article presents a technique that involves processing
simulation data and mapping to coefficients defining curves for modeled time series [127].
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In addition, the results are an essential contribution to the application of ML algorithms in
geothermal reservoir modeling.

The last analyzed renewable energy source is biomass. Wongchai et al. [128] published
research on ML models for biomass estimation. The research concerns the above-ground
biomass of fast-growing trees. The article uses various ML algorithms to verify the fit of
the predictive model to the dataset. In particular, random DT, RF, gradient tree boosting
(GTB), adaptive boosting (AdB), kernel ridge regression (KRR), SVM, and k-NN were
used [128]. The following variables characterizing the examined trees were considered in
the study: breast height (DBH), height, age, and biomass [128]. Research findings indicate
that the RF algorithm has the highest prediction accuracy for the comparison scenarios
performed [128]. The results indicate the high efficiency of selected ML techniques for
estimating above-ground tree biomass.

Table 6 summarizes the applications of AI algorithms for selected engineering prob-
lems in renewable energy.

Table 6. Applications of AI algorithms in renewable energy.

Renewable Energy Domains Engineering Problems AI Algorithms References

Solar energy Short-term forecasting of photovoltaic
energy production

linear techniques, tree-oriented
algorithms, ANN

Cabezón et al.
[123]

GRNN, GWO Tu et al. [124]
Wind energy Short-term forecasting of wind energy MVEW-DNN Wan et al. [125]

Water energy Forecasting production capacity of
hydropower plants ML regression techniques Condemi et al. [126]

Geothermal energy Modeling subsurface performance of a
geothermal reservoir ML for timeseries prediction Duplyakin et al. [127]

Biomass energy Estimator for above-ground biomass
of fast-growing trees DT, RF, GTB, AdB, KRR, SVM, k-NN Wongchai et al. [128]

Source: Based on literature analysis.

5. Open Research Challenges

The conducted analyses allowed for the identification of several open research chal-
lenges regarding cybersecurity and the effectiveness of AI algorithms in the energy sector.
It should be noted that all implemented IT solutions must support the security of energy
systems, which are vital components of critical infrastructure. In the face of digital transfor-
mation, energy security is closely related to ensuring cybersecurity for energy systems. In
this respect, open research challenges are related to the protection and privacy of digital
data generated by end users of energy systems. In particular, when terminal sensors collect
sensitive data on energy consumption profiles, device operation, etc., there is vulnerability
to uncontrolled data leakage. In cybersecurity, a systemic approach to protecting energy
systems is crucial. The undertaken research initiatives should be characterized by inter-
disciplinarity, combining the methodologies of security sciences and computer science.
Thanks to this, it will be possible to holistically prevent, detect and handle cybersecurity
threats in the energy sector, taking into account control and monitoring processes. An
additional open research challenge is a new type of vulnerability, the theft of AI predictive
models developed for specific decision-making problems. Research on new concepts of
light data encryption is therefore crucial due to limitations on the computing power of IoT
and end devices used in energy systems. It is worth noting that many studies indicate that
the human factor is a critical element of cybersecurity. In this regard, safety education has
been widely recognized as an effective method of preventing danger [129]. Recent research
also points to the need to take initiatives to standardize the Internet of Things in terms
of architecture, cybersecurity, programming paradigms, communication standards, and
cybersecurity [130].

Another area for open research challenges is the effectiveness of AI algorithms in the
energy sector. Two key issues are the computational complexity of algorithms and the
preprocessing of data for predictive models. The review showed that some AI methods used
in the energy sector significantly increase computational and memory complexity when
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handling large data sets. Therefore, an open research challenge is to develop optimization
methods that will reduce the time and memory complexity of predictive models for the
energy sector. The issue of computational complexity is also crucial for metaheuristic
algorithms and hybrid solutions, where it is essential to define the criteria for completing
calculations. The key is ensuring a compromise between computational complexity and
algorithm accuracy.

The last point is the preliminary preparation of data for predictive models. Data
orientation in intelligent energy systems means relying on distributed sensor networks that
can record data about different structures and value types. Moreover, in energy systems,
there is a need to process data with a variable, heterogeneous structure. Therefore, the
energy sector needs to solve Big Data issues. Recent research findings indicate that data
models are critical to the efficiency of Big Data processing [131]. On the other hand, some
AI algorithms require data with specific structures and characteristics, e.g., discrete or
continuous data. Therefore, an open research challenge concerns preprocessing energy
sector data for various AI algorithms.

6. Conclusions

The analysis showed that ML, metaheuristics, and fuzzy inference systems can sig-
nificantly improve processes’ efficiency in key energy sector domains. AI supports cyber-
security in detecting cyberattacks and anomalies in power systems. The review showed
the benefits of energy saving in robotics, manufacturing, planning of power consumption
paths for UAV transmission towers, and optimizing energy demand responses, among
others. Critical AI applications in a Smart Grid relate to intelligent agents controlling the
power grid, ensuring power grid stability, controlling smart transformers, and real-time
energy management. AI algorithms effectively support energy load prediction and power
generation resource optimization. In particular, AI algorithms can detect faults in power
transformers, power lines, hydroelectric generators, photovoltaic systems, and wind tur-
bines. Moreover, various AI techniques and methods can significantly improve solar, wind,
hydro, geothermal, and biomass energy.

Research should be continued on the open research challenges identified in Section 5.
In particular, ensuring the protection of energy system users’ data requires urgent research.
It is also essential to prevent the theft of AI models implemented for specific optimization
issues based on real data. The heterogeneous and variable structure of data generated in
Smart Grid requires future research on pre-processing for AI algorithms. It is reasonable to
develop a systematic literature review on a specific algorithm or one selected area of the
energy sector, for example, minimizing power losses.
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Nomenclature

AbB Adaptive boosting
ACO Ant colony optimization
AHP Analytic hierarchy process
AI Artificial intelligence
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ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
BA Bat algorithm
BBA Binary bat algorithm
BCO Bee colony optimization
CBA Chaotic bat algorithm
CEV Connected electric vehicle
CNN Convolutional neural network
CPS Cyber-physical systems
dBA Directional bat algorithm
DBN Deep belief network
DDPG Deep deterministic policy gradient
DG Distributed generation
DL Deep learning
DLR Deep-learning regression
DNN Deep neural network
DQN Deep Q networks
DRL Deep reinforcement learning
DT Decision tree
EA Evolutionary algorithm
eIoT Energy Internet of Things
ELM Extreme learning machines
EP Evolutionary programming
ES Evolutionary strategies
ETC Extra-tree classifier
GA Genetic algorithms
GAN Generative adversarial network
GRNN General regression neural network
GRU Gate recurrent unit
GTB Gradient tree boosting
GWO Gray wolf optimization
HMM Hidden Markov model
HVAC Heating, ventilation, air conditioning
iBA Island bat algorithm
k-NN k-Nearest neighbor
KRR Kernel ridge regression
LSTM Long short-term memory network
MDP Markov decision process
ML Machine learning
MLP Multi-layer perceptron
MVEW-DNN Multi-view ensemble width-depth neural network
MWPCA Moving window principal component analysis method
NB Naive Bayes
PCA Principal component analysis
PSO Particle swarm optimization
RF Random forest
RL Reinforcement learning
RNN Recurrent neural network
RQ Research question
SA Simulated annealing
SOM Self-organizing map
SVM Support vector machine
SVR Support vector regression
TVAC Time-varying acceleration coefficient
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