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Introduction

All biological populations obey the immutable rule that, migration withstand-
ing, the difference between their birth and death rates determines the direction
and size of their growth rate. This relationship provides the foundation for
demography-—the study of populations and the processes that shape them
(Pressat, 1985).

Demography began as the study of human populations and literally means
“description of the people.” The word is derived from the Greek root demos,
meaning “the people,” and was coined by a Belgian, Achille Guillard, in 1855
as demographie (Elements of Human Statistics or- Comparative Demography).
He defined demography as the natural and social history of the human species
or the mathematical knowledge of populations, of their general changes, and
of their physical, civil, intellectual, and moral condition (Shryock et al., 1976).

Although demography is a distinct discipline in its own right, only a few
academic departments or graduate groups exist worldwide that are devoted
exclusively to demography. Aside from census bureau personnel, the vast
majority of researchers or practitioners who use demographic methods are
part of more broadly defined disciplines such as sociology, psychology,
business, and medicine for human populations or ecology, fisheries, wildlife,
forestry, and entomology for plant and animal populations. In principle both
demography as a field and population as an entity can be defined in the
abstract and thus encompass the social as well as the biological sciences.
However, in practice this is not the case. Every field creates definitions that
fits its needs. Social scientists tend to refine versions of Guillard’s original
definition of demography. Hence populations that represent their center of
relevance are almost always human and are typically defined in geopolitical
terms.

Biologists typically define population in Mendelian terms such as “a group
of interbreeding organisms belonging to the same species and occupying a
clearly delimited space at the same time” (Wilson, 1975) or “...a cluster of
individuals with a high probability of mating with each other compared to
their probability of mating with a member of some other population” (Pianka,
1978). In many applied areas of biology the term population often refers to
an entity about which statistical information is desired. For example,
sampling leaves for insect infestation levels is viewed in statistics as sampling
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from a population (i.e., the totality of elements about which information is
desired). Samples from this target “population” will generate a mean and
variance and in turn enable one to test statistical hypotheses. Population in
this sense may be relevant to demographers though it may have little to do
with an interbreeding group of individuals in the biological sense. Thus it i§
often necessary to move back and forth between the concept of a population
as a material aggregate and population as a biologically reproducing entity.
Population is defined here in general terms simply as “a group of individuals
coexisting at a given moment” (Pressat, 1985).

Classical demography is concerned basically with four aspects of popula-
tions (Shryock et al.,, 1976): (1) size-—the number of units (organisms) in the
population; (2) distribution—the arrangement of the population in space at
a given time; (3) structure—the distribution of the population among its sex
and age groupings; and (4) change—the growth or decline of the total
population or one of its structural units. The first three—size, distribution,
and structure— are referred to as population statics, while the last—change—
is referred to as the population dynamics. Hauser and Duncan (1959) regard
the field of demography as consisting of two parts: 1) formal demography—a
narrow scope confined to the study of components of population variation
and change (i.e., births, deaths, and migration); and ii) population studies—a
broader scope concerned with population variables as well as other variables.
In a biological context these other variables may include genetics, behavior,
and other aspects of an organism’s biology. The methodology of demographic
studies includes data collection, demographic analysis, and data interpreta-
tion,

In biology it is often difficult to determine where one field leaves off and
the other begins. But many apply demographic methods or use the concepts
in some way. Ecology is concerned with the interrelationship of organisms
and their surroundings; population biology is often used interchangeably with
ecology but usually implies an emphasis on evolutionary relations; population
ecology is distinct from community ecology in that the former is usually
concerned with the interactions of a few species, while the latter with the
interactions of many; population dynamics implies the study of the mechan-
isms and consequences of population change (usually numbers); population
genetics is less concerned with numbers of individuals in a population
and more concerned with gene frequencies and their rate of change, and
applied ecology is a rubric for areas such as forestry, fisheries, and pest
management.

Demographers conceive the population as the singular object for scientific
analysis and research. However, as Pressat (1970) notes, population is every-
where and nowhere in the sense that many aspects of demography can be
studied simply as component parts of the disciplines considered. He states,
“But to bring together all the theories on population considered as a collection
of individuals subject to process of evolution, has the advantage of throwing
into relief the many interactions which activate a population and the varied
characteristics of that population.”
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FORMALIZATION
Demographic Levels and Traits

The basic unit and starting point for demographic analysis is the individual,
which, according to Willekens (1986), is defined simply as “a single organism
that is a carrier of demographic attributes.” The individual is a natural unit
and need not be contrived like “power” or “community.” The basic attributes
of individuals include a development rate, an age-specific level of reproduc-
tion, and a time of death.

The next demographic level for which traits are considered is that of the
cohort, defined as “a group of same-aged individuals” or, more generally, “a
group who experience the same significant event in a particular time period,
and who can thus be identified as a group for subsequent analysis™ (Pressat,
1985). Cohort attributes are to be distinguished from individual traits in that
they possess a mean and variance and therefore are statistical. These traits
are often expressed in the form of an age schedule.

The age schedule of events in cohorts determines their population traits—
the third demographic level. These traits result from the interplay of cohort
attributes that are, in turn, set by the individuals within the cohort.

The Life Course

A universal constant for all life is chronological age, which is the exact
difference between the time on which the calculation is made and the time
of the individual’s birth. This difference is typically termed exact age and is
to be contrasted with age class, which groups exact ages into periods. The
passage from one stage to another is formally termed an event. The sequence
of events and the duration of intervening stages throughout the life of the
organism is termed its life course.

[tis clear that age is an important dimension of life and grouping individuals
into age classes or at least distinguishing between young and old is useful.
Therefore I denote the age of egg hatch as y (eta), age of pupation as m (pi),
age of eclosion (first day of adulthood) as ¢ (epsilon), age of first reproduction
as a (alpha), age of last reproduction as f (beta), and oldest possible age as
w (omega), Several key intervals can then be defined using this notion and
are summarized in Table 1-1.

This scheme is depicted graphically in Figure 1-1. The notation for adult
traits, particularly «, , and w, is a convention in demography, while the
notation for the preadult is not. In general, age is the characteristic, central
variable in almost all demographic analysis and serves as a surrogate for
more fundamental measures (e.g., physiological state) and duration of exposure
to risk.

Demographic Rates

Demographic rates can be grouped into five categories according either to
the kind of population counted in the denominator or to the kind of events
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Table 1-1.  Summary of Key Intervals in an Insect Life Course

Interval Notation
Preadult
Egg incubation 0-n
Nymphal or larval period n-7
Pupal period n-¢
Adult
Preovipositional period e
Reproductive period a—f}
Postreproductive period fi-
Adult life span -
Total life span 0-w

counted in the numerator (Ross, 1982). These include—

1. Crude rates. This category uses the total population as the denominator.
Thus we may consider crude birth rate (number of births per number in
the population), crude death rate (number of deaths per number in
population), and crude rate of natural increase (difference between crude
birth and death rates). The results are “crude” in that they consider all
individuals rather than by age or sex groupings.

2. Age-specific rates. These are the same as crude rates except with age
restrictions for both numerator and denominator. For example, age-
specific fecundity for an insect 20 days old counts only offspring produced
by females in that age group and counts only females of that age in the
denominator. Thus a schedule of rates is created.

3. Restricted rates. These rates apply to any special sub-group. For example,
in human demography the number of births to married women (rather
than to all women) is termed “marital age-specific fertility rate.” In
insects a restricted rate of this sort could be fecundity rates of females
that produce at least one offspring. This would therefore exclude all
steriles.

4. Rates by topic. These rates apply to each specialized topic in demo-

reproduction reproduction max
birth hatch pupation eclosion (start) (end) age
l Eggl Larva l Pupa l
Il I I |
°on n € a B ®

AGE ——P

Figure 1-1. Generic diagram of an insect life course.
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graphy. For example, reproductive rates may include total fertility rate,
gross reproductive rate, or net reproductive rate.

5. Intrinsic rates. The rates that prevail in a stable population are referred
to as intrinsic rates in that they cannot reflect any accidental or transient
short-term feature of the age distribution. Thus they are considered
“intrinsic” or “true” rates.

ELEMENTARY CHARACTERISTICS OF POPULATIONS

Information on populations is obtained either through a census or through
a survey, the distinction which is far from clear-cut. A census is typically
thought of as a complete canvass of an area; the intent is to enumerate every
individual in the population by direct counting and further, to cross-classify
by age (stage), sex, and so forth. The intent of a survey is to estimate
population characteristics on a sample basis.

Population Size

In concept, the notion of population size is extremely simple since it means
the total number of individuals in the population. However, human demo-
graphers make a distinction between de facto enumeration, which records
where each individual is at the time of the census (i.e., includes military or
migrant workers), and de jure enumeration, which records usual residence
(i.e., only records military personnel at place of residence).

Population Distribution

There are basically three broad spatial measures that characterize a particular
distribution. These are—

1. Number by spatial subdivision. Statistics in this case can be given as 1)
percentage of the total by subdivision, or ii) a rank order from the
subdivision with the highest count to the spatial unit with the lowest.
Depending upon which method is used, comparisons of two census
times will reveal the change in percentage or the change in rank by
spatial location.

2. Measures of central location. The center of a population or the mean
point of the population distributed over an area is defined as the center
of population gravity or of population mass. The formula for the
coordinates of the population center is given by

Kk K
X = Z Psxiz“z Pi (1-1a)

k k
y=2 Py/ X pi (1-1b)



8 APPLIED DEMOGRAPHY FOR BIOLOGISTS

where p; is the number in the population at point i and x; and y; are its
horizontal and vertical coordinates, respectively. Population center can
also be defined in three-dimensional space (e.g., vertical distribution on
plants) by adding the z-coordinate and computing z.

3. Measures of concentration and spacing. The simplest measure of the
degree of dispersion of a population in the xy-plane is known as the
standard distance. This measure bears the same kind of relationship
to the center of the population that the standard deviation of any fre-
quency distribution bears to the arithmetic mean. If x and y are the
coordinates of the population center, then the standard distance, D, is
given by

i {ri{xi_x]z} i: {[i(Yi_Y)z}
D= i=1 3 |—'_1 -
n n

(1-2)

k

where f;is the number of organisms in a particular areaandn = ) f,.
i=1

Population Structure

The structure of a population is the relative frequency of any enumerable or
measurable characteristic, quality, trait, attribute, or variable observed for
individuals (Ryder, 1964). These items could include age, sex, genetic
constitution, weight, length, shape. color, biotype, birth origin, and spatial
distribution. Only age and sex will be covered here since they are the most
common traits by which individuals in populations are decomposed.

Sex ratio (SR) is the principal measure of sex composition and is usually
defined as the number of males per female or

SR =n,/n, (1-3)

where n,, and n; represent the number of males and the number of females,
respectively. The proportion of males (PM) in a population is given by

PM =n,/n; (1-4)

where n; = n,, + n;. This measure expresses males as a fraction of the total
and not as a ratio in the conventional sense. Additional measures of sex
composition in ecology include the primary sex ratio (sex ratio at conception
or birth) and the secondary sex ratio (sex ratio at adulthood or at the end
of parental care).

The simplest kind of analysis of age or stage data is the frequency
distribution of the total population by age or

I‘x = nx."!N (1-5}

where [, is the frequency of individual aged x, n, is the number in the
population at age x, and N is the total number in the population. An age
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pyramid is often used to illustrate the age-by-sex distribution of a popula-
tion.

Population Change (in Size)

If a population numbers N, and N,,, at times t and t + I, respectively,
then the amount of change equals

N, — N,,, =amount of change (1-6a)

which is simply the difference in the population number at the two time
periods. However, the rate of change is given by

N, , /N, = total rate of change (1-6b)

which gives the factor by which the population changed over one time period
relative to the number at time ¢ and

(N,4; — N,/N, = fractional rate of change (1-6¢)

which gives the fraction by which the population changes over one time
period relative to the number at time ¢.

Population Change (in Space)

Population change occurs when migrants move from one area to another
(Shryock and Siegel 1976). Every move is an out-migration with respect to
the area of ogirin and an in-migration with respect to area of destination.
The balance between in-migration and out-migration is termed net migration.
The sum total of migrants moving in one direction or the other is termed
gross in-migration or gross out-migration. The sum total of both in- and
out-migrations is termed turnover. A group of migrants having a common
origin and destination is termed a migration stream. The difference between
a stream and its counterstream is the net stream or net interchange between
two areas. The sum of the stream and the counterstream is called the gross
interchange between the two areas.
Various rates can be expressed arithmetically as

mobility rate = M/P (1-7)

where M denotes the number of movers and P denotes the population at
risk of moving. Other formulae for movement include

in-migration rate = M; = I/P (1-8a)
out-migration rate = M, = O/P (1-8b)
net migration rate = (I — Q)/P (1-8¢c)

where 1 and O denote the number of in-migrants and out-migrants,
respectively.
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Life Tables

GENERAL CONCEPTS

A life table is a detailed description of the mortality of a population giving
the probability of dying and various other statistics at each age (Pressat,
1985). There are two general forms of the life table. The first is the cohort life
table, which provides a longitudinal perspective in that it includes the
mortality experience of a particular cohort from the moment of birth through
consecutive ages until no individuals remain in the original cohort. The
second basic form is the current life table, which is cross-sectional. This table
assumes a hypothetical cohort subject throughout its lifetime to the
age-specific mortality rates prevailing for the actual population over a
specified period. These are often referred to in ecology as time-specific life
tables and are used to construct a synthetic cohort.

Both cohort and current life tables may be either complete or abridged. In
a complete life table the functions are computed for each day of life. An
abridged life table deals with age intervals greater than one day, such as over
a complete stage (e.g., larval period), where precise determination of daily
survival is difficult. The distinction between complete and abridged has to
do with the length of the age interval considered. Both forms of the life table
may be either single decrement or multiple decrement. The first of these lumps
all forms of death into one and the second disaggregates death by cause.

My objective in this chapter is to introduce the basic concepts, notation,
and methods of life table analysis, including complete and abridged tables;
special properties of the life table, such as sensitivity analysis; and the multiple
decrement life table. More advanced treatments of life tables include the works
by Brass (1971), Keyfitz and Frauenthal (1975), Schoen (1975), Batten (1978),
Elandt-Johnson and Johnson (1980), Chiang (1984), Manton and Stallard
(1984), Hakkert (1987), and Pollard (1988).

THE SINGLE DECREMENT LIFE TABLE

Life Table Radix

A radix in mathematics is a number that is arbitrarily made the fundamental
number of a system of numbers. In the life table the radix is the number of
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births at the start of the life table against which the survivors at each age
are compared. More generally it is the initial size of any cohort subjected
to a particular chance of experiencing an event (Pressat, 1985).

In human demography a typical radix is assigned a number such as 100,000.
Thus any number remaining at successive ages can be conveniently expressed
as the number of survivors out of 100,000. In population biology the life
table radix is usually assigned the value of unity, so that subsequent survivors
are expressed as a fraction of the original number. The radix is associated
with the survival column of the life table, denoted 1. This gives the number
of individuals surviving to age x. Historically the radix index is zero (ie.,
newborns are aged zero days at the beginning of the interval).

Life Table Functions

The proportion of a cohort surviving from birth to exact age x is designated
l,. The difference in number of survivors for successive ages x and x + 1 is
designated d,:

dx:lx_]x+1 (2—13)
and the difference in survivorship for ages n days apart is
ndlex_lx*n (z'lb}

Thus the d, and ,d, schedules give the frequency distribution of deaths in
the cohort.
The probability of surviving from age x to x + 1 is designated p,, where

Pr =L 1/l (2-2a)

and more generally the probability of surviving from age x the age x+ n is
designated ,p,, where

nPx = lx+n.ﬂx (2'2b}
Both p, and ,p, are termed period survivorship.
The complements of these survival probabilities, designated q,(=1—p,)

and ,q,(=1— ,p,) are termed period mortality and represent the probability
of dying over these respective periods. Note that

_dx ndx
QK_IK n*ix lx

_I'n ‘_l:Hl _lx lx+n
lx lx
Ly 1

=12t —1— b+n
I, b

:l_px zl_npm

A concept fundamental to life table analysis is the number of days lived
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in an age interval. If we assume that individuals that die in an interval do
so at the midpoint of the interval, then the number of days lived by the
average individual in the cohort f[rom x to x 4+ 1, denoted L,, is given by the
formula
L‘x = (]x T dx) + %dx
= (I, —(d,/2))
_ {lx +_lxi.'l!
2
and for the age interval n-days apart is given as
an = n(lx - %ndx)
=5n(l, +14,) (2-3b)

(2-3a)

If L, gives the number of days lived by the average individual within a
cohort in the interval x to x + I, then the total number of days to be lived
by the average individual within a cohort from age x to the last day of
possible life is

.= Y0, (2-4)

where T, denotes this total. Since there are |, individuals that survive to age
x in the cohort and a total of T, insect-days remaining to these I, individuals,
the number of per capita days of life remaining to the average individual
living at age x is

= Txﬂx (2'5)

The term ¢, denotes the expectation of life at age x. The average age of death
of an individual age x is simply its current age plus the expectation of life
at that age (=x +¢,).

Complete Cohort Life Table

A complete cohort life table is constructed by recording the number of deaths
in an initial cohort of identically aged individuals at each point in time until
all have died. The information is placed in columns according to the number
alive at the beginning of each age interval, denoted K,, and the number of
deaths in the interval, denoted D,. This information is then arranged by age
class in eight columns representing the life table functions. An example of
the data needed for life table construction and the complete cohort life table
are given in Tables 2-1 and 2-2 for the human louse, Pediculus humanus (data
from Evans and Smith, 1952).
The complete life table (Table 2-2) consists of eight columns:

Column 1
Age class. This is the age index and designates the exact age at which the
interval begins relative to the initial cohort. Age class x includes the interval
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Table 2-1. Life Table Construction for the Human Louse, Pediculus humanus, Using Data
from Evans and Smith (1952) and a Hypothetical Cohort of 1000 Newborns

Age Interval Number Alive Number of
Age Class (Days), at Beginning Deaths in
Stage (Days), x xtox+1 of Interval, K,  Age Interval, D,
Egg 0 0-1 1000 14
Ege 1 1-2 986 13
Egg 2 2-3 973 14
Egg 3 3-4 959 14
Egg 4 4-5 945 13
Egg 5 5-6 932 14
Egg 6 6-7 918 14
Egg 7 7-8 904 13
Egg 8 8-9 891 14
Ist instar 9 9-10 877 7
Ist instar 10 10-11 870 6
{st instar 11 =12 864 7
Ist instar 12 12-13 857 6
Ist instar 13 13-14 851 7
2nd instar 14 1415 844 6
2nd instar 15 15-16 838 6
2nd instar 16 1617 832 5
2nd instar 17 17-18 827 4
3rd instar 18 18-19 823 8
3rd instar 19 19-20 815 8
ird instar 20 20-21 807 7
3rd instar 21 21-22 800 7
Adult 22 22-23 793 8
Adult 23 23-24 785 2
Adult 24 24-25 783 20
Adult 25 25-26 763 12
Adult 26 26-27 751 17
Adult 27 27-28 734 24
Adult 28 28-29 710 14
Adult 29 29-30 696 26
Adult 30 30-31 670 32
Adult 31 31-32 638 31
Adult 32 32-33 607 28
Adult 33 33-34 579 44
Adult 34 34-35 535 43
Adult 35 35-36 492 32
Adult 36 16-37 460 44
Adult 37 37-38 416 43
Adult 38 38-39 373 30
Adult 39 39-40 343 30
Adult 40 40-41 313 33
Adult 41 41-42 280 6
Adult 42 42-43 274 28
Adult 43 43-44 246 20
Adult 44 44-45 226 28
Adult 45 45-46 198 28
Adult 46 46-47 170 23
Adult 47 47-48 147 18
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Table 2-1.

Stage
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult
Adult

Table 2-2. Complete Life Table for Pediculus humanus

Age
Class, x
(n

S o e = O

N [ R ST
R - - e - N O T S

Fraction
Living at

Age x, |,

(2)
1.000
986
973
959
945
932
918
904
891
877
870
864
857
851
844
838
832
827
823
815
807

Fraction Fraction Fraction
Surviving Dying Dying in
from x to from x to Interval x
x+1,p, x+1q, tox+14d,
(3) 4 (5)
986 014 014
987 013 013
986 014 014
085 015 014
986 014 013
985 015 014
985 015 014
986 014 013
984 0le 014
992 008 007
993 007 006
992 008 007
993 007 006
992 008 007
993 007 006
993 007 006
994 006 005
995 005 004
2990 010 008
990 010 008
991 009 007

Days Number

15
(Contd.)
Age Interval Number Alive Number of
Age Class (Days), at Beginning Deaths in
(Days), x xtox+1 of Interval, K,  Age Interval, D,
48 48-49 129 20
49 49-50 109 26
50 50-51 83 18
51 51-52 65 21
52 52-53 44 8
53 53-54 36 14
54 54-55 22 12
55 55-56 10 1
56 56-57 9 1
57 57-58 8 1
58 58-39 7 1
59 59-60 6 1
60 60-61 5 1
61 61-62 e 1
62 62-63 3 1
63 63-64 2 1
64 64-65 l 1
65 65-66 0 -

Lived in Days Lived Expecta-

Interval, Beyond
L, Age x, T,
(6) )]

993 32438
980 31.445
966 30.465
952 29.499
939 28.548
925 27.609
911 26.684
898 25,773
884 24.876
874 23.992
867 23118
861 22.251
854 21.391
847 20.537
841 19.689
835 18.848
830 18.013
825 17.184
819 16.359
Bl 15.540
803 14,729

tion of
Life, e,
@

32438
31.891
330
30.761
30.209
29.623
29.068
28.510
27919
27.356
26.572
25.753
24.960
24.132
24.328
22.492
21.650
20.778
19.877
19.067
18.251
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Table 2-2. {(Contd)

Fraction Fraction Fraction Days Number
Fraction Surviving Dying  Dyingin Lived in Days Lived Expecta-

Age Living at from x to from x to Interval x Interval, Beyond tion of
Class, x Agex, 1, x+LlLp, x+1lg, tox+1,d, Ly Agex, T, Lile, e,
(1) 2) (3) 4 (5 (6) (N (8)
21 800 991 009 007 796 13.925 17.406
22 793 990 010 08 789 13,128 16.555
23 .785 997 003 002 784 12.340 15719
24 783 974 026 020 73 11.555 14.758
25 763 984 016 012 757 10.783 14,132
26 751 977 023 017 742 10.026 13350
27 734 967 033 024 722 9.283 12.647
28 710 980 020 014 703 8.561 12,058
29 696 963 037 026 683 7.858 11.290
30 670 952 048 032 654 7.175 10.709
31 638 951 049 031 623 6.521 10.221
32 607 954 046 028 593 5.899 9.717
33 .579 924 076 044 557 5.306 9.163
34 .535 920 2080 043 514 4.749 8.876
35 492 935 065 032 476 4.235 8.608
36 460 904 096 044 438 3.759 8.172
3 416 897 103 043 395 3.321 7.983
38 A713 920 2080 030 358 2927 7.846
39 343 913 087 030 328 2.568 7.488
40 313 895 105 033 297 2.241 7.158
41 280 979 021 006 21 1.944 6.943
42 274 898 102 028 2260 1.667 6.084
43 246 919 081 020 236 1.407 5.720
44 226 876 124 028 212 1171 5.181
45 198 859 141 028 184 0.959 4.843
46 170 865 135 023 159 0.775 4.559
47 147 878 122 018 138 0.616 4.194
48 129 845 155 020 119 0.479 3.709
49 109 761 239 026 096 0.360 3.298
50 {083 783 217 018 074 0.264 3175
51 065 677 323 021 {055 0.189 2915
52 044 818 182 008 040 0.135 3.068
53 036 61t 389 o4 029 0.095 2.639
54 022 455 .545 012 016 0.066 3.000
55 010 900 100 001 010 0.050 5.000
56 009 B89 11 001 008 0.041 4.500
57 008 875 125 001 008 0.032 4.000
58 007 857 143 001 007 0,024 3.500
59 006 833 167 001 006 0.018 3.000
60 005 800 .200 001 005 0.012 2.500
61 004 750 250 001 004 0.008 2.000
62 003 667 333 001 003 0.005 1.500
63 002 500 500 01 002 0.002 1.000
64 2001 000 1.000 001 001 0.001 0.500
65 000 — — 000

1000
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from exact age x to exact age x + 1. For example, age class 0 specifies the
interval from age 0 to age 1.

Column 2

Fraction of the original cohort alive at age x, 1,. The first fraction in this
column, I, is the radix, and each successive number represents the fraction
of survivors at the exact age x from the cohort of size 1, (normalized to 1.0).
For example, 807 individuals in the cohort survived to age 20. Thus .807 of

the original cohort survived to this age since the cohort stated with 1,000
newborn,

Column 3

Proportion of those alive at age x that survive through the interval x to
X+ 1, p,. For example,

Po=1i/lo Py =L/l
=.986/1.000 =.973/.986
=986 =987

Pso =1s1/lso Ps1=ls2/lsy
=.065/.083 =.044/.065
=783 =.677

Column 4

Proportion of those alive at age x that die in the interval x to x + 1, q,, For
example,

(o = 1.000 — p, q; = 1.000 —p,

= 1.000 — .986 = 1.000 — 987
=.014 =.013

qso=1.000—ps; gs; =1.000 —ps;
= 1.000 —.783 = 1.000 —.677
=217 =323

Column 5

Fraction of the original cohort, 1, that die in the age interval x to x+ 1, d,.
Therefore, the d, column represents the frequency distribution of deaths in
the cohort and its sum is unity.

d0=10_]1 dlzll_lz
= 1.000 — .986 =986 — .973
=.014 =.013
dso=|50_151 d51:]51‘“]52
= .083 —.065 =.065 —.044

= 018 =.021
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Column 6
Per capita fraction of interval lived in the age interval x to x+ 1, L,. For
example,

Lo =1o —(1/2)d, Ly=1,—(1/2)d,
= 1.000 — (1/2)(.014) = 986 — (1/2)(.013)
=.993 =.980
Lso =150 —(1/2)dso Lsy =15y — (1/2)ds,
=.083 —(1/2)(.018) =065 — (1/2)(.021)
=.074 =.055

Column 7
Total number of days lived beyond age x,T,. This total is essential to the
computation of life expectancy since it gives the number of insect-days lived
by the cohort after age x uncorrected for the total beginning at age x. For
example,

T0= Z Lx Tl= Z Lx
x=0 x=1
=LQ+L1+“'+L63+L64 =L1+L2+"'+L63+L64
=.993 + 980 + -- +.002 + .001 =.980 4+ .966 + --- +.022 + .001
= 32.438 = 31.445
Tso: Z Lx T51: Z Lx
x=50 x=51
=Lso+ Ls;+ -+ Lgy + Lgs =Ls  +Lsy+ -+ Lgz+ Lea
=.074 + .055 + --- +.002 + .001 =.055+.040 + --- +.022 4+ .001
=.264 =189
Column 8

Expectation of life at age x, e,. This gives the average remaining lifetime for
an individual who survives to the beginning of the indicated age interval.
For example,

eo=To/lo e, =T/l
= 32.438/1.000 = 31.445/.986
= 32438 =31.891
es0 = Tsp/lso sy = Tsy/lsy
=.264/.083 =.189/.065
=3.175 = 2915

A number of relationships emerge from this life table analysis that merit
comment. First, the expectation of life for a newborn louse is over one month.
A louse that survives to one month is expected to live an average of 10 days
more. A two-month-old (60 days) louse lives an average of only 2 more days.



LIFE TABLES 19

Second, around a third of all deaths occur in the first 30 days, but another
third of all deaths occur in the following 10 days (i.e., 30 to 40 days). The
last third of all deaths occur over the last 3 weeks of possible life. Third, the
probability of surviving from age 0 to 35 days is around .50. However, of
all those alive at age 36 the probability of surviving for the next 8 days is
also .50. Fourth, the probability of dying from age x to x + 1 when lice are
under 10 days old is up to 50-fold less than when they are over 50 days old.
For example, the probability of an individual’s dying from age 54 to 55 days
is 54-fold greater than the probability of the same individual’s dying from
age 19 to 20 days.

THE ABRIDGED LIFE TABLE

The complete life table has two disadvantages that can be removed by
constructing an abridged table. First, it is sometimes not possible to monitor
daily mortality of individuals in a cohort over their entire life course. For
example, it is extremely difficult to determine the precise time of death for
cggs and pupae for most insects. Thus the practical solution for determining
cohort mortality for these stages is to note the number entering and the
number surviving through the stage, which will yield period (stage) survival.
Because the duration of each stage is typically greater than one day and two
stages seldom have the same duration, the methodology for constructing the
complete life table is not appropriate. Second, a table of 50 to 100 age groups
with 5 to 7 life table functions (columns) is difficult to fully comprehend and
contains details that are often not of concern. By grouping deaths into larger
intervals it is possible to summarize the information concisely while still
retaining the basic life table format and concepts.

The abridged life table generally contains the same functions as the
complete table. In addition, the duration of each stage is given as n to specify
the age interval over which mortality is assessed. An example of an abridged
life table is given in Table 2-3 for worker honey bees, Apis mellifera.

Column 1

Stage and duration (n). This gives the stage over which mortality is measured
and the duration of the stage. Preadult stages can be further subdivided into
instars, and adults can be divided into various physiological divisions such
as preovipositional and ovipositional or into arbitrary age groupings as given
for the honey bee.

Column 2

Age index, x. This column gives the age associated with ecach stage. For
example, the egg stage lasts 3 days, beginning at age x =0 and extending to
age x +n =0+ 3= 3. This is the starting age index for the unsealed brood.
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Table 2-3.  Abridged Life Table for Worker Honey Bees (Data from Sakagami and Fukuda,
1986)

STAGE Age Parameter

(n = duration Interval, ————————— - —— — -~~~ —

in days) X ]I llpl Ilql lldl IlLK Tl Cl

(1) (2) (3) 4 (5) (6) )] (8) 9

Egg (n=13) 0-3 1.000 958 042 042 2937 40482 40482

Unsealed 3-8 958 857 .143 137 4448 37545 39.191
brood (n = 5§)

Sealed 8-20 821 988 012 010 9792 33097 40313
brood (n=12)

Adult (n = 10) 20-30 811 945 055 031 7955 23.305 28.736

Adult (n= 10} 30-40 80 947 053 041 7.595 15350 19.679

Adult (n=10) 40-50 139 499 .501 370 5540 7.755 10494

Adult (n = 10) 50-60 369 100 900 332 2030 2215 6003

Adult (n=10) > 60 037 000 1.00 037 185 JA85 0 5.000

1000 40.482

The unsealed brood lasts 5 days (n = 5) beginning at age x = 3 and extending
to age x +n =3+ 5=_8. The adult stage is divided into 10-day increments
beginning at age 20 days when the average preadult matures.

Column 3

Fraction of the original cohort alive at the beginning of the designated age
interval, x to x + n, l,. This measure corresponds exactly to the 1, column in
the complete life table. For example, the fraction that survives to the unsealed
brood is .958, and to the adult stage it is .811.

Column 4
Proportion of those alive at age x that survive through the interval x to
X +n, ,p,. For example,

3P0 = l3/lo( = egg survival)
=.958/1.000
=958
12Ps = Lyo/lg( = sealed brood survival)
=.811/.821
=988

Column 5
Proportion of those alive at age x that die in the interval x to x +n, ,q,. For
example,

390 = 1 — 3po( = egg mortality)
=1-—.958
=.042
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129s = 1 — ;,pg( =sealed brood mortality)
=1-—.988
=.012

Column 6
Fraction of the original cohort, 1, that dic in the age interval x to x +n, d,.
For example,
sdo =1y — 15 (fraction of all deaths in egg)
= 1.000 — .958

042
12dg =g — L o(fraction of all deaths in sealed brood)

=.821 — .811

=.010

Column 7
Per capita fraction ol interval lived in the age interval x to x +n,,L,. For
example
3Lo =31y —(1/2)3d,]
= 3[1.000 — (1/2).042]
=(3)(.979)
=2.937
12Lg = 12[15 — (1/2),,ds]
= 12[.821 —(1/2).010]
=(12)(.816)
=9.792

Column 8
Total number of days lived beyond age x, T,. For example,

To=3Lo+sLs+ 12Lg +10L20 + -+ + 10l60
=2937+4.448 +9.792 + 7955+ --- +.185
=40.482

Tg = 12Lg + 10L20 + -+ + 10L6o
=9.792+ 7955+ --- +.185
= 33.097

Column 9
Expected number of additional days the average individual age x will live,
e,. For example,

eo=To/lp
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=40.482/1.000
=40.482

eg = Tg/lg
=33.097/.821
=40.313

Several aspects of the mortality and survival of worker bees are noteworthy
(1) over 80%, of all newborn survive to adulthood and over one-third survive
to age 50 days (from I, schedule); (ii) the probability of dying from age 20
to 30 (first 10 days of adulthood) is around 10-fold less than in the interval
from 40 to 50 days old (i.e., when aduits are 20 to 30 days old); and (iii) the
expectation of life of a newly enclosed adult worker beee is nearly one month.

THE MULTIPLE DECREMENT LIFE TABLE

The multiple decrement life table is used widely in human actuarial studies to
address questions concerning the frequency of occurrence for causes of death
and how life expectancy might change if certain causes were eliminated. The
conventional single decrement life table shows the probability of survivorship
of an individual subject to the one undifferentiated hazard of death. In
multiple decrement tables the individual is subject to a number of mutually
exclusive hazards, such as disease, predators, or parasites, and is followed in
the table only to its exit, as in the ordinary life table. But in the multiple
decrement table there is now more than one way of exiting (Anon., 1962;
Preston et al., 1972; Carey, 1989).

Two probabilities and hence two kinds of tables are commonly recognized
in the study of cause of death. One is the probability of dying of a certain
cause in the presence of other causes; the other is the probability of dying
of a certain cause in the absence of other causes (Preston et al.,, 1972). The
first gives rise to the multiple decrement table proper. The second gives rise
to an associated single decrement table and is applied to find the probability
of dying if one or more [actors were to disappear as a cause of death.

The assumption of the multiple decrement life table is that multiple causes
of death act independently. It is concerned with the probability that an
individual will die of a certain cause in the presence of other causes. The
concept itsell stems from reliability theory in operations research. Keyfitz
(1982, 1985) uses an example of a watch that can operate only as long as all
its parts are functioning: each part has its own life table. The probability
that an individual (i.e., the watch) will survive to a given age is the product
of the independent probabilities that each of its components will “survive”
to that age. The same notion of probabilities applied to internal components
causing the death of a system can also be applied to external components
such as disease and accidents in humans or predation and parasitism in
insects. The concept here is that the probability of an insect’s surviving to
a certain age (or stage) is the product of all independent risk probabilities.
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In general, multiple decrement theory is basically concerned with three
questions (Elandt-Johnson and Johnson, 1980): i) What is the age (stage)
distribution of deaths [rom different causes acting simultaneously in a given
population? ii) What is the probability that a newborn individual will die
after a given age or stage from a specified cause? ii1)) How might the mortality
pattern or expectation of life change if certain causes were eliminated? The
first two questions are concerned with evaluating patterns and rates of
mortality, while the last question is concerned with what is termed “competing
risk analysis.” In both cases the analyses are based on three assumptions: 1)
each death is due to a single cause; ii) each individual in a population has
exactly the same probability of dying from any of the causes operating in
the population (see Moriyama, 1956; Vaupel and Yashin, 1984); and iii) the
probability of dying from any given cause is independent of the probability
of dying from any other source.

Data and Data Organization

A hypothetical data set for analyzing mortality in a synthetic cohort was
derived using average stage-by-cause mortality from 25 life tables given in
Cameron and Morrison (1977) for the apple maggot, Rhagoletis pomonella.
The original data were divided into death due to 11 factors—one for egg,
four for larval, and six for pupal and adult emergence. These sources of
mortality are here lumped into four categories: predation, parasitism, disease,
and other causes. The group within which a cause of death was placed was
arbitrary in several cases.

The hypothetical mortality data for the four categories (causes) ol death
in preadult R. pomonella are given in Table 2-4, where K is the number in
the cohort aged x, D, is the total number of deaths in stage x, and D, is the
number of deaths due to cause i in stage x. Note that D, =D, + D,, + D,, +
D,, and also that the K, column does not represent the non-normalized
survival column. That is, the K, column gives the number of insects at the

Table 2-4. Deaths from Four Causes in Rhagoletis pomonella Populations Using a
Hypothetical Data Set'.

Number Deaths from—

Number
Stage Beginning Total Other
(index), Stage, Deaths, Predators,  Parasites, Disease, causes,
X Kx Dl Dlt D),x D.ix D-ix
Egg (1) 977 14 0 0 0 14
Early larvae (2) 963 810 0 224 0 586
Late larvae (3) 153 112 100 12 0 0
Early pupae (4) 435 98 88 0 10 0
Late pupae (5) 351 206 133 0 19 54

Adult (6) - — — e — =

!The data presented in Cameron and Morrison (1977) were used as guidelines for the relative numbers of
deaths by cause.
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beginning of the stage that were exposed to risk through the stage. This is
not the same as the number that would be exposed to risk in a true cohort
where the numbers would decrease from stage to stage.

General Framework and Notation

The notation for all functions in the multiple decrement table corresponds
to the single decrement cases except i) the prefix a is added to denote “in
presence of all causes”; and ii) the symbol x is used to denote the stage index
rather than the age interval. Therefore, let

al;, = fraction of original cohort living at age x that
ultimately die from cause i

al, = fraction of survivors at age x out of original cohort of al,
(start index at x = 1)
ad,, = fraction of deaths in stage x from cause i among
al, living at stage x

ad, = [raction of deaths in stage x from all causes
(=ad,,+ad,, + - +ady,)

aq;, = fraction of deaths from cause i in stage x in
the presence of all other causes, given that the
individual is alive at beginning of stage x

aq, = fraction of deaths from all causes in stage x,
given that individual is alive at
stage X (=aq;, +aqy, + -+ +2aqy,)
The fraction dying in the interval designated aq, is
aqy = Dx/K.t (2'6)
The [raction of the cohort age x dying in stage x due to cause i is given by
aqix = Dix/Kx (2-7)
For example, no deaths occurred in the egg stage due to predators,
parasites, or discase. Thus
aq;; =aqy,; =aq;; =00
However, 14 of 977 eggs died of “other causes”, therefore
aqa,; =Dy, /K,
=14/977
=.01433

and
aq; =aqy,, =.01433
since “other causes” was the only source of death. The complete table of

death probabilities based on the mortality data of Table 2-4 is given in
Table 2-5. The computation of these rates is necessary for completing the full
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Table 2-5. Cause-Specific Probability of Death from Specified Causes in the Presence of
All Causes for Rhagoletis pomonella using Hypothetical Data Presented in Table 2-4

Cause of Death

Stage (Index), Total, Predators, Parasites, Disease, Other,
X aqy aqx aq;, A ay aq,,,
Egg (1) 01433 00000 00000 00000 01433
Early larvae (2) 84112 00000 23261 000000 60851
Late larvae (3) 13203 65359 07842 00000 00000
Early pupae (4) .22529 .20230 00000 02299 00000
Late pupae (5) 58690 37892 00000 05413 15385
Adult (6) 1.00000 - — — —

multiple decrement analysis. Note in Table 2-5 that the stage- and cause-
specific mortality rates derived from the data are now expressed as per capita
probabilities. Two aspects of this table may be noted: i) the highest death
rete is due to late larval predation; and ii) the highest stage-specific mortality
occurs in early larvae and is due to both predation and other causes.

Table Construction

The main multiple decrement table uses the ag;, value in Table 2-5 to
determine schedules for the fraction of the starting cohort dying in stage x
from cause i (ad;,), the total fraction dying in stage x from all causes (ad,),
and the fraction of newborn surviving to stage x (al ). These are computed
as follows:

Step 1. Compute survival to stage x subject to all causes. We use an index
of x =1 for the first stage (i.e., egg), set al, = 1.0, and compute
progressively

al,,, =al(1.0—aq,)
For example,

alz =all(|.0—aq1)

= 1.0(1.0 — .0143)
= 9857

al, = .9857(1.0 — .8411)
= 1566

Step 2. Compute the fraction of newborns dying in stage x from all causes.
This is computed as

ad,=al, —al,,,
For example,
'ddl — all - all
= 1.0 —.9857
=.0143
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Step 3. Compute the fraction of newborns dying in stage x from cause i.
We use the formula
adi.x = a]x(aqi.x}
For example,
ad,, =al,(aq,,,)

= 1.0(.0143)
=.0143
ad, ; =alj(aq, 3)
.1566(.65359)
=.1024

Values for the various relationships are given in Table 2-6. This table
reveals relations that were not evident from Table 2-4. For example, nearly
83% of all deaths occurred in the early larval stage, only about 4% of all
newborn survived to the pupal stage, nearly 629 of all deaths were a result
of other causes, and disease accounted for less than 19 of all deaths.

Elimination of Cause—Concept

Farr (1875) apparently was the first to ask the question, what would be the
effect on life expectancy if a certain disease were eliminated as a cause of
death? This question is particularly germane to management questions since
if it is possible to gain an understanding of the effect on life expectancy of
eliminating a particular source of death, it follows that the same methods
could be used to determine the impact of adding a source of death.

The only definitive method for determining the effect on expectation of
life in arthropod populations of eliminating a certain cause of death is through
experiment (DeBach and Huffacker, 1971; Royama, 1984; Luck et al., 1988).
However, experimentation is sometimes either not possible or the only data
available is natural history. Therefore it is necessary mathematically to
approximate the effect of eliminating a certain cause. One such approach is
described as follows. Suppose the probability of surviving factor A alone is
pa and the probability of surviving factor B alone is py. Then the probability
of surviving both independent causes together, denoted p,g, is given as

Pap = PaPs (2-8a)
or
Pas= (1 —qa)(1 —qp) (2-8b)
where q, and gy are complements of p, and pg, respectively. If D, and Dy
denote the fraction of all individuals observed that died of cause A and B,
respectively, then
Pas =1 — (D4 + Dg) (2-9a)
and
1 — (D4 + D)= (1 —qu)(1 —gg) (2-9b)
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The objective is to obtain values for q, and g, since we would like to
determine mortality in the absence of one or the other factor. It is necessary
to specify a second equation since Equation 2-9b has two unknowns. By
assuming that the ratio of numbers dying from factor A to the numbers
dying from factor B equals the ratio of the probability of dying from factor
A to the probability of dying from factor B, we can obtain the second equation:

da_ Da
Qs Dg
Therefore Equations 2-9b and 2-10 represent two simultaneous equations in
two unknows (q, and qg). Expressing q, in Equation 2-10 in terms of q, D,

and Dy and then substituting this expression in Equation 2-9b yields the
quadratic equation

(2-10)

aqp+bgqg+c=0 (2-11)

where a=D,;b= — (D, + Dy);c = Dyg(D, + Dy).
The value of qg is found by substituting a,b, and ¢ into the quadratic
formula

—b—/b?—dac (2-12)

s =

Elandt-Johnson and Johnson (1980), Namboordiri and Suchindran (1987),
and Preston etal. (1972) present alternative approaches for finding the
solutions to the independent risk probabilities.

As an example, suppose that of 1000 individuals observed over their
preadult lifetime, 20 remained alive (i.e., 2%), 370 died as a result of natural
enemies and 610 died of other causes. Therefore set D, =.37 and Dy = .61.
Substituting these values into Equation 2-12 yields a =.37, b= — 98, and
¢ =.598. Therefore,

[.98 — \/(98)* — 4(37)(.598)]

qp =

2(.37)
=953
and
da =9qsDa/Dg
=(.953)(.37)/.61
=.578

A graphical interpretation of the analysis is presented in Figure 2-1. The
results state that if factor A were completely eliminated as a source of
mortality, factor B alone would still kill 95.3% of the original cohort. This
is a substantial increase from the 619, mortality owing to this factor in the
presence of factor A. On the other hand, 57.8% would die if factor A alone
accounted for deaths. In short, adding factor A as a cause of mortality when
B is already present would increase mortality from 95.3% to 98%, or less
than 3%. However, adding factor B as a cause of mortality when factor A
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] Dead due factor A

. Dead due factor B

| %

&
|

-

A Alone Joint (A + B) B Alone

Figure 2-1. Tllustration of the concept of competing risk in hypothetical cohorts
subject to mortality factors A alone, B alone, and A and B jointly. Note that the ratio
of those dead owing to A alone (q,) and B alone (g;) equals the ratio of the cause-
specific mortalities when the two factors act jointly (i.e., Dy & Dy). That is, g, /q =
D,/Dy = .61 (redrawn from Carey, 1989).

is already present would increase mortality from 57.8% to 98% or by over
40%;. These differences are referred to in the ecological literature as indispens-
able (or irreplaceable) mortality (Huffaker and Kennet, 1965; Southwood,
1971).

Note that computationally the concept of double decrement given here
embraces all the issues of multiple decrement (Preston et al., 1972). That is,
no matter how many causes are considered, the probability of dying from
each can be computed by considering the one in question versus “all others”.

Elimination of Cause—Application

The data presented in Table 2-4 are used to compute the independent
stage-by-cause probabilities of dying, g;,’s. Note from this table that the egg
stage has a single risk (“Other Causes”); early larvae, late larvae, and early
pupae have two competing risks each, and late pupae have three competing
risks each. Thus for the egg stage we have

qi; =421 =q3;, =0
and
Qa1 =1-—(963/977)
=.0143
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The independent probabilities for the two competing risks in each of the
next three stages can be computed using the same relationships described in
the earlier example with the quadratic equation. For example, 224 of 963
individuals were parasitized in stage 2 (early larvae) and 586 died of other
causes. Therefore, let D, denote the fraction of the total that died of parasites,

D, =224/963 = 2326
and let Dy denote the fraction that died of other causes,
Dy = 586/963 = .6085

Substituting these values in Equation 2-12 yields values for q,, = .296 and
g4z = .775. Probabilities for the three causes in stage S (i.e., predators, disease,
& other causes) are determined by applying the quadraltic to three 2-cause
cases: 1) predators vs. (disease + other causes); ii) disease vs. (predators +
other causes); and iii) other causes vs. (predators + disease).

The results of this analysis are given in Table 2-7, where the g, s denote
the probability of dying in stage x of cause i in the absence of all other causes
of death. These relations show that if a single cause of death were retained
in the population, predation alone would reduce the cohort by over 87%,
while other causes would reduce it by around 76%. This ranking of
importance differs from the mortality data in the presence of all causes given
in Table 2-5. From this perspective, predators appear to be less important
in the presence of all causes since they attack later stages. Thus earlier causes
of death reduced the number at risk in the stages susceptable to predation.

The q,; values in Table 2-7 were used to compute the effect of various
combinations of factors on total mortality. For example, the effect of
predators + parasites on total mortality was computed by i) determining the
probability of surviving each source in the absence of other sources over all
stages—i.e., (I —q,,) and (1 —q,,); ii) obtaining the product of the two
survival probabilities within each stage; and iii) computing the product
of these products over all stages. Since this gives total survival, 1 minus
this value yields total mortality. The computations for this two-cause
case are [(1—=0)(1 —0)] x [(1 —=0)(1 —.296)] x [(1 —.708)(1 —.085)] x

Table 2-7. Stage- and Cause-Specific Probability of Death for R. pomonella in the Absence
of All Other Causes (Totals computed prior to rounding)

Cause of Death

Stage (Index), x Total, q, Predators, q,, Parasites, q,, Disease, q;,  Other, qu,

Egg (1) 014 000 000 000 014
Early larvae (2) 842 000 296 000 775
Late larvae (3) 433 708 D85 000 000
Early pupae (4) 225 207 000 023 000
Late pupae (5) 587 A58 000 065 186

Egg to adult 987 874 356 087 162
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Figure 2-2. Estimated total mortality in R. pomonella cohorts for different cause-
specific combinations.

[(1—=.207)(1 —0)] x [(1 —.458)(1 —0)] = .081. This represents the fraction
surviving to adulthood. Thus (1 —.081)=.919 gives the total preadult
mortality.

The results of the complete analysis are given in Figure 2-2. Several aspects
of these results merit comment. First, the effect of simultaneously eliminating
multiple cause-of-death agents from the population cannot be inferred from
observing the effect of eliminating each individually. The total contribution
to mortality exceeds the sum of the individual components of total mortality
(Preston et al., 1972). Second, while predators alone would kill 87% of an
original cohort, predators plus other causes would reduce the population by
nearly 98%. Thus the effect of adding parasites and disease to the system in
the presence of the other two factors is negligible. Third, any pairwise
combination of parasites, disease, and other causes, as well as all three causes
combined, would reduce the population less than would predation alone.
Conversely, adding or subtracting predation as a source of mortality affects
total mortality much greater than adding or subtracting any other single
source.

General Concepts

Multiple decrement theory embraces most of the major concepts and techni-
ques currently used in insect mortality analysis, including the conventional
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life table (Deevey, 1947), Abbott’s correction (Abbott, 1925), key [actor
analysis (Varley, 1947; Morris, 1965; Harcourt, 1969), tests for joint chemical
toxicity (e.g., Hewlett and Plackett, 1959), and probit analysis (Finney, 1964).
The interconnections of these tools and multiple decrement theory are
described as follows:

l. The independent variable for each is time, age, stage, or dose. And for
chemical tests such as probit analysis, dose and age are interchangeable
in that age can be viewed as a dose of time. Thus probit analysis and
life table analysis are conceptually and statistically identical (see Carey,
1986). Abbott’s correction is simply a double decrement, single-time-step
life table and tests of joint toxicity are essentially multiple decrement,
one-time-step life tables. Key factor analysis orders events by stage as
well as causes of death within a stage and is therefore a type of sequential
risk life table.

2. All of the techniques either explicitly or implicitly rely on the assumption
of competing risk. That is, the removal of one of several mortality factors
within a stage or prior to the stage will change the number of individuals
exposed to the risk of the cause in question. Thompson (1955) labeled
these contemporaneous mortality factors, and Huffaker and Kennett
(1966) referred to the non-additive changes in mortality on removal of
one of several competing risks as compensatory mortality. In the
conventional single decrement life table, death at early stages is
“competing” against death at later stages. That is, a small fraction of
the total deaths occur at older ages simply because most individuals
die before attaining old age. This is a form of sequential competing risk.

3. Most of the techniques are based on the assumption of independence.
In conventional life table analysis it is assumed that the probability of
surviving from age x to age x + | is independent of the probability of
surviving from age x — 1 to age x and also independent of density. This
assumption is explicit in Abbott’s correction or in the tests for joint
toxicity where one chemical does not change the biological effect in the
presence of another chemical. Likewise, in multiple decrement life tables
it is assumed, for example, that if an insect is infected with a pathogen
it is no more susceptible to predation than if it were not infected and
that the associated probabilities of dying of either are density indepen-
dent. Although it is commonly understood that few mortality factors
are totally independent of the presence of other factors or of density,
efforts at measuring and modeling these aspects have been less than
satisfactory.

Despite the fact that demographers concerned with humans originated the
life table that was introduced to the ecological literature by Deevey (1947)
and is now viewed as convention, ecologists have subsequently resisted
drawing from the human demographic and actuarial literature for analytical
techniques concerned with survival. The reason most [requently given for
this provincialism concerns differences in the quality of the data. While the
data on causes of death and death rates in plant and animal populations
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may be less accurate than human vital statistics, concepts for data evaluation
are identical in both cases. Even the concepts involved in cause of death in
humans (e.g., Moriyama, 1956; Anon, 1962; Kitagawa, 1977) or differences
in susceptibility to death (e.g., Vaupel and Yashin, 1985) have direct bearing
on coding, classifying, and interpreting mortality patterns in insect popula-
tions. Distinguishing between the underlying cause of death and contributory
causes of death is often as difficult in humans as it is in animals. In short,
multiple decrement theory is as relevant to insects and populations of other
non-human species as it is to humans.

SELECTED PROPERTIES OF MODEL LIFE TABLES

The life table is often thought of more as an organizational framework than
as a model, but it is both. In this section I present three examples of the
use of the life table in the context of a model: i) a statistical model: ii) sensitivity
analysis, which relates the effect of a small change in mortality at a particular
age to expectation of life; and iii) entropy, which characterizes the broad
pattern of mortality over the entire life course.

Life Table Statistics

The pioneers of life table techniques were actuaries who had little need for
application of probability theory or statistical methods. Actuaries typically
use the weight of large numbers on which to base their arguments. On the
other hand, biologists often use life tables as a bioassay tool where the
number of individuals is less than 50. For these cases a statistical perspective
for analysis of mortality is necded.

The life table is similar to statistical reliability theory in that life is a
random experiment; its outcomes, survival and death, are subject to chance
(Chiang, 1984). The period mortality correspond to failure rate. A statistical
perspective on life table analysis is important for several reasons. First,
demographic techniques given earlier provide specific methodologies for
collecting, compiling, organizing, and analyzing demographic data in more
of a deterministic context (e.g., |, = fraction of a cohort surviving to age x).
However, this fraction also represents a probability. Second, hypothesis
testing is fundamental to science. A statistical perspective for life table analysis
provides an epistemological link to other experimental and theoretical
sciences. Third, many arithmetic and statistical techniques used in ecology
and bioassay are related to those in demographic analysis. Therefore, the
formal statistical bases of demography must be established before these ties
can be fully understood. Two statistical perspectives on the life table will be
introduced in this section—i) probability and ii) mean and variance. More
detailed aspects of life table statistics can be obtained in Chiang (1984).

Probability
Probability is defined as the number of favorable outcomes in a series of
experiments divided by the total number of possible outcomes. Consider an
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Table 2-8. Summary of Two-Spotted Spider Mite
Sex-Specific Survival and Mortality by Sex to Age 21
Days (Data from Hamilton, 1984)

Sex Alive (A) Dead (A) Total

Female 13 12 25
(F) n(FA) n(FA") n(F)
Male 42 11 53
(F') n(F'A) n(F'A") n(F")
Total 55 23 78
n(A) n(A’) n

adult cohort of the two-spotted spider mite, Tetranychus urticae, consisting
of 53 males and 25 females held at 27°C. After 21 days, it is observed that
12 of the females and 11 of the males have died (data from A. Hamilton,
M. S. Thesis, UCD, 1984). These data are summarized in the Table 2-8, where
F = female, F’ = not female (= male), A = alive, and A’ = not alive (= dead)
and n = number observed in the specified category.

The probability of a mite’s dying in this experiment, denoted Pr(A’), is
equal to the number of dead mites at the end of 21 days divided by the total
number subject to death over the period:

Pr(A’) = n(A’)/n
=23/78
=29

This is called a posteriori probability or frequency as distinct from
classical, or a priori probability. The later type of probability is associated
with coin tosses or dice rolling in basic statistical theory. For example,
given a well-balanced coin, one would cxpect that the coin is just as
likely to fall heads as tails; hence, the probability of the event of a head
is given the value of 1. There is no need to flip a coin several hundred times
to determine this probability. Examples of classical probability used
in biology include Hardy-Weinberg or Mendelian proportions in gene-
tics and the normal distribution. Typically a test is conducted to tell
whether an observed distribution departs from the classical, or “expected”,
distribution.

Mortality data is a form of a frequency or a posteriori probability since it
is necessary to first observe death rates before we can make statements
regarding how other groups of mites might react (survive) under similar
conditions. The probability of a mite’s being alive is

Pr(A)=n(A)/n

= 55/78 (2-13a)
=371
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or of a mite’s being a female is

Pr(F) = n(F)/n
=25/78 (2-13b)
=32

The complements of two of these probabilities can be given as

Pr(F) = 1 — Pr(F)

=1—(25/78) (2-13)c)
= .68

Pr(A’) = 1 — Pr(A)
=1—(55/78) (2-13d)
=29

The probability of not being a female (i.e., being a male) is I minus the
probability of being a female, and the probability of not being alive (i.e.,
being dead) is 1 minus the probability of being alive.

Mean and variance

There are three different types of arithmetic means: i) expectation of a sample
proportion; ii) expectation of a sample sum; and iii) expectation of a random
variable. The distinction among these three types of means may best be
explained by considering the following. Suppose the length of life of each
individual adult fly in a large group was determined by an experimenter who
rolled a fair die as each one eclosed. The number of days the individual was
“allowed” to live would correspond to the number that turned up. Thus each
fly would have an equal probability of living 1, 2, 3, 4, 5, or 6 days. The
expectation of a sample proportion will be the proportion of flies expected to
live for, say, 3 days. This is expressed as

E(p)=p (2-14)
and equals £ in this case. This probability is identical with all of the others
since each number is equally likely to be rolled.

The expectation of a sample sum is equal to the number of times a particular
number will appear out of n trials (flies). This is expressed as

E(x; +x,4 -+ x,)=np (2-15)

and equals 17 flies out of 100 trials for the current case (i.e., one-sixth of 100).
This represents the expected number of times the number 3 appeared out of

the 100 rolls of the die. This is the number of flies that would be allowed to
live 3 days.

The expectation of a random variable equals the sum of the product of
the probabilities (frequencies) and the values and is expressed as

E(x)=) k Pr(x =k) (2-16)
k

where k is the number of possible outcomes. The value of k weights proba-
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bility (i.e., proportion) by the number of days. In the current case for the die
throws determining longevity gives an average life expectancy of

1day (k =1) x frequency of occurrence (Pr[x = 1]) =1 x 1/6 =.167
2days (k = 2) x frequency of occurrence (Pr[x =2]) =2 x 1/6 =.333
3days(k = 3) x frequency of occurrence (Pr[x =3]) =3 x 1/6 =.500
4days (k =4) x [requency of occurrence (Pr[x =4])=4 x 1/6 = .667
5days(k = 5) x frequency of occurrence (Pr[x = 5]) =5 x 1/6 = .833
6 days(k = 6) x frequency of occurrence (Pr[x =6]) =6 x 1/6 = 1.000

Thus
E(x)=szr[x:k]/k k=12...,6)
k

=.167 +.333 4+ .500 + .667 + .833 + 1.000
= 3.5 days

Therefore the average fly lives 3.5 days.
In summary, the three averages in the demographic context are—

1. Expectation of a sample proportion—the proportion of all individuals
that lived over the specified period.

2. Expectation of a sample sum—the number of individuals which are likely
to live over the specified period.

3. Expectation of a random variable—the average number of individuals
that experienced all events averaged.

The variance of each of these means is defined as

variance of a sample proportion = Var(p) = pg/n

variance of sample sum = Var(x, 4+ ---x,) = npq

variance of random variable = 6% =Y [k — E(x)]* Pr(x = k)
k

The standard deviation (SD) of each is the square root of their variance.
In order to illustrate each of these statistical measures, suppose that a
group of 100 insects exhibited the life table characteristics shown in Table 2-9.

Table 2-9. Hypothetical Life Table for

100 Insects

X 1 d,
0 100 26
1 74 18
2 56 14
3 42 24
4 18 18
5 0 0
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The expectation of sample proportion living to age class 3 and the variance is

E(2) = p = 56/100 = .56
Var(p) = np(1 — p}
= 100(.56)(.44)
=.0025
SD = ./.0025
=05

Thus the interrelation between the expectation of the sample proportion
and the expectation of the sample sum in this example is as follows. Assuming
that the hundred individuals in the hypothetical study are typical of all other
groups of one hundred, 67% of the time the fraction of the cohort surviving
to age class 3 should be within 1 SD of p=0.56: i.e., between p=0.51 (i.e,
p=.56—.05) and p=.61 (ie, p=.56+.05). Likewise, the number of
individuals surviving to age 3 should be within 1 SD of the mean number
out of 100 or between 51 and 61 individuals.

The random variable in a life table is death, and its probability distribution
is the d, schedule. Hence the mean age of death at birth is the life table
parameter ¢,. That is,

mean age of death =¢,,

L)

=% 3d,

= 6(:.36) + 1(.18) + 2(.14) + 3(.24) + 4(.18)
=19

Thus x in the equation is the age interval in which death may occur and d,
is the probability that death of a newborn will occur in the interval x to
X + 1. The variance of deaths around this mean age is

Variance = i (x —eo)d,
x=0
= (0— 1.9)2(26) + (1 — 1.9)(.18) + (2 — 1.9)%(.14)
+(3— 1.9%(24) + (4 — 1.9)%(.18)
gt =217

As an example problem, suppose the death rate of a group of insects is
normally distributed with g =20 days and ¢ = 6: 1) What fraction of all
deaths occur before 10 days? Before 35 days? ii) What fraction of deaths
occur between ages 15 and 25 days?

The first question calls for the probabilities

Pr(x < 10) and Pr(x < 35)
Converting x to standard normal random variables yields

Pr(Z <[10 —20]/6) and Pr(Z <[35—20]/6)
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or
Pr(Z < — 1.67) and Pr(Z < 2.5)

Consulting a normal distribution table reveals that
Pr(Z < —1.67)=.05

and
Pr(Z < 2.50) = .995

Thus 5% of all deaths occur before age 10 days and 99.5% of all deaths are
expected to have occurred by age 35 days.
The second question calls for the probability

Pr(15 < x < 25)
Converting to the Z scale yields

Pr(Z < [15—20]/6) and Pr(Z < [25—20]/6)
Pr(—0.83 <Z <0.83)
The normal distribution table shows that the area up to Z= — 83 is .197.

Since the distribution is symmetrical, this will also equal the area greater
than 0.83. Therefore

Pr[— 83 <Z < .83]=1.0—2(.197)
=61

Thus 619, of all deaths would be expected to occur between the ages of 15
and 25 days.

Sensitivity Analysis

A question of importance in the analysis of survivorship involves the extent
to which a slight change in survival at a specified age changes the expectation
of life at birth, e,. Assuming that the age interval is short, we can examine
this in terms of 1.'s.

e0: Z lx
x=0
[ x—=1
= Z Iy 1_[ Py
x=0 y=0
=1+ po+PoP1 +PoP1P2 + - (2-19)

To determine the effect of a small change in, for example, p, of a four-
age-class cohort, we set

€y =1+ po + PoP1 + PoP1P:2
and

deo/dp; = po + PoP2
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The derivative can also be expressed as

3

deo/dp, =(1/p,) Z L

x=2
since
Po + PoP2 = (PoP1/P1) + (PoP1P2)/P1
The term (1/p,) can be factored out of the right-hand side, yielding

(1/p1)(PoP1 + PoP1P2)

(1/p)l; +13)

or

Therefore the general form is

[

deo/dp,=(1/p,) ), 1, (2-15)
y=x+1

This expression illustrates two important aspects of the sensitivity of e,
to changes in period survival. First, as x increases, the sum of the I’s from
X to o continually decreases. Therefore the effect of a change in period
survival on ¢, will always be greater at young ages than at older ages, all
else being equal. Second, e, will be most greatly affected by changes in period
survivorships (p,’s) that are low rather than those that are high. This is
evident by noting that the term outside the summation is an inverse of a
fraction. For example, if p, =.9 the factor by which the sum of 1,’s will be
multiplied is 1.1 (=1/.9). On the other hand if p,=.5, the sum will be
multiplied by 2.0 (= 1/.5). The reason for this is that a “small” change is a
greater proportion of p, when p, is small than when it is large. In short,
small changes in survival at young ages when mortality is high will most

greatly affect the expectation of life at age 0.

Life Table Entropy

If all individuals die at exactly the same age, the shape of the |, schedule is
“rectangular,” whereas if all individuals have exactly the same probability of
dying at each age (ie, all p,’s are identical), the |, schedule decreases
geometrically. The distribution of deaths by age varies greatly between the
two patterns. A measure of this heterogeneity is referred to as entropy (H).
Demitrius (1978, 1979) is recognized as originating this concept as applied
to demographic heterogeneity. Goldman and Lord (1986) provided more
intuitive interpretations of the measure. The formula for this measure using

life table notation is
H:{f e,d,}/ec (2-16)
x=0

The numerator (i.e., sum of products e,d,) can be interpreted in three different
ways: i) the weighted average of life expectancies at age x; ii) the average
days of future life that are lost by the observed deaths; or iii) the average
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number of days an individual could expect to live, given a second chance on
life. The denominator is the expectation of life at birth, ¢,, and thus converts
the absolute effect to a relative effect.

Vaupel (1986) provided three different interpretations of entropy, H: 1) the
proportional increase in life expectancy at birth if every individual's first
death were averted; ii) percentage change in life expectancy produced by a
reduction of 1% in the force of mortality at all ages; and iii) the number of
days lost owing to death per number of days lived. In general, entropy serves
as a quantitative characterization of survival pattern. If H = 0, then all deaths
occur at exactly the same age, and if H=1, then the I, schedule is
exponentially declining. The intermediate value, H = 0.5, indicates a linear
1, schedule.

As an example, consider entropy for the human louse life table given in
Table 2-2:

H=(eodg +€d; + -~ + €64dgs + €65dss)/eo
=[32.438(.014) + 31.891(.013) + --- 4 1.000(.001) + .500(.001)]/32.438
=11.794/32.438
=.364(= entropy)
The louse survival schedule and various entropy values are presented in

Figure 2-3. Note that for reference when H = 0 all individuals die at once,
thus heterogeneity in the death rate is nil. When H = 1 the number of days

1.0 feves
o, e, H=.0
."'-.,. Human Louse
.'.. (H = .364)

2

> H=.5 %,

> ...

o

D .’

w .,

H=10
0 ...“‘0
0 Max

AGE

Figure 2-3. Shapes of three hypothetical life table survival schedules and associated
entropy values, H. Life table of human louse taken from survival schedule given in
Table 2-2.
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lost in the cohort owing to death equals the average number of days lived
by a newborn. The case of H=.5 is intermediate between the two extremes.
The entropy value for the louse life table states that .36 days would be gained
by the average individual if every first death were averted.
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