
sustainability

Article

Artificial Intelligence-Enabled Traffic
Monitoring System

Vishal Mandal 1,2 , Abdul Rashid Mussah 1, Peng Jin 1 and Yaw Adu-Gyamfi 1,*
1 Department of Civil and Environmental Engineering, University of Missouri-Columbia, E2509 Lafferre Hall,

Columbia, MO 65211, USA; vmghv@mail.missouri.edu (V.M.); akm2fx@mail.missouri.edu (A.R.M.);
peng.jin@mail.missouri.edu (P.J.)

2 WSP USA, 211 N Broadway Suite 2800, St. Louis, MO 63102, USA
* Correspondence: adugyamfiy@missouri.edu

Received: 29 September 2020; Accepted: 29 October 2020; Published: 4 November 2020
����������
�������

Abstract: Manual traffic surveillance can be a daunting task as Traffic Management Centers operate a
myriad of cameras installed over a network. Injecting some level of automation could help lighten
the workload of human operators performing manual surveillance and facilitate making proactive
decisions which would reduce the impact of incidents and recurring congestion on roadways. This article
presents a novel approach to automatically monitor real time traffic footage using deep convolutional
neural networks and a stand-alone graphical user interface. The authors describe the results of research
received in the process of developing models that serve as an integrated framework for an artificial
intelligence enabled traffic monitoring system. The proposed system deploys several state-of-the-art
deep learning algorithms to automate different traffic monitoring needs. Taking advantage of a large
database of annotated video surveillance data, deep learning-based models are trained to detect queues,
track stationary vehicles, and tabulate vehicle counts. A pixel-level segmentation approach is applied to
detect traffic queues and predict severity. Real-time object detection algorithms coupled with different
tracking systems are deployed to automatically detect stranded vehicles as well as perform vehicular
counts. At each stage of development, interesting experimental results are presented to demonstrate
the effectiveness of the proposed system. Overall, the results demonstrate that the proposed framework
performs satisfactorily under varied conditions without being immensely impacted by environmental
hazards such as blurry camera views, low illumination, rain, or snow.

Keywords: traffic monitoring; intelligent transportation systems; traffic queues; vehicle counts;
artificial intelligence; deep learning

1. Introduction

Monitoring traffic effectively has long been one of the most important efforts in transportation
engineering. Till date, most traffic monitoring centers rely on human operators to track the nature of
traffic flows and oversee any incident happening on the roads. The processes involved in manual traffic
condition monitoring can be challenging and time-consuming. As humans are prone to inaccuracies
and subject to fatigue, the results often involve certain discrepancies. It is, therefore, in best interests
to develop automated traffic monitoring tools to diminishing the workload of human operators
and increase the efficiency of output. Hence, it is not surprising that automatic traffic monitoring systems
have been one of the most important research endeavors in intelligent transportation systems. It is
worthwhile to note that most present-day traffic monitoring activity happens at the Traffic Management
Centers (TMCs) through vision-based camera systems. However, most existing vision-based systems are
monitored by humans which makes it difficult to accurately keep track of congestion, detect stationary
vehicles whilst concurrently keeping accurate track of the vehicle count. Therefore, TMCs have been

Sustainability 2020, 12, 9177; doi:10.3390/su12219177 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-2292-1364
http://www.mdpi.com/2071-1050/12/21/9177?type=check_update&version=1
http://dx.doi.org/10.3390/su12219177
http://www.mdpi.com/journal/sustainability

Sustainability 2020, 12, 9177 2 of 21

laying efforts on bringing in some levels of automation in traffic management. Automated traffic
surveillance systems using Artificial Intelligence (AI) have the capability to not only manage traffic
well but also monitor and access current situations that can reduce the number of road accidents.
Similarly, an AI-enabled system can identify each vehicle and additionally track its movement pattern
characteristic to identify any dangerous driving behavior, such as erratic lane changing behavior.
Another important aspect of an AI-enabled traffic monitoring system is to correctly detect any stationary
vehicles on the road. Oftentimes, there are stationary vehicles which are left behind and that impedes
the flow of preceding vehicles and causes vehicles to stack up. This results in congestion that hampers
the free mobility of vehicles. Intelligent traffic monitoring systems are thus an integral component of
systems needed to quickly detect and alleviate the effects of traffic congestion and human factors.

In the last few years, there has been extensive research on machine and deep learning-based
traffic monitoring systems. Certain activities such as vehicle count, and traffic density estimation
are limited by the process of engaging human operators and requires some artificial intelligence
intervention. Traffic count studies for example require human operators to be out in the field during
specific hours, or in the case of using video data, human operators are required to watch man hours of
pre-recorded footage to get an accurate estimation of volume counts. This can be both cumbersome
and time-consuming. Similarly, when it comes to seeing traffic videos from multiple CCTV cameras,
it becomes extremely difficult to analyze each traffic situation in real time. Therefore, most TMCs seek
out deploying automated systems that can, in fact, alleviate the workload of human operators and lead
to effective traffic management system. At the same time, the associated costs are comparatively lower
due to savings associated with not needing to store multiple hours of large video data. In this study,
we deployed several state-of-the-art deep learning algorithms based on the nature of certain required
traffic operations. Traditional algorithms [1–3] often record lower accuracies and fail at capturing
complex patterns in a traffic scene; hence, we tested and deployed deep learning-based models trained
on thousands of annotated traffic images. Thus, the proposed system as shown in Figure 1 can perform
the following:

1. Monitoring traffic congestion
2. Traffic accidents, stationary or stranded vehicle detection
3. Vehicle detection and count
4. Managing traffic using a stand-alone Graphical User Interface (GUI)
5. Scaling traffic monitoring to multiple traffic cameras.

Sustainability 2020, 12, x FOR PEER REVIEW 2 of 21

keep track of congestion, detect stationary vehicles whilst concurrently keeping accurate track of the

vehicle count. Therefore, TMCs have been laying efforts on bringing in some levels of automation in

traffic management. Automated traffic surveillance systems using Artificial Intelligence (AI) have the

capability to not only manage traffic well but also monitor and access current situations that can

reduce the number of road accidents. Similarly, an AI-enabled system can identify each vehicle and

additionally track its movement pattern characteristic to identify any dangerous driving behavior,

such as erratic lane changing behavior. Another important aspect of an AI-enabled traffic monitoring

system is to correctly detect any stationary vehicles on the road. Oftentimes, there are stationary

vehicles which are left behind and that impedes the flow of preceding vehicles and causes vehicles

to stack up. This results in congestion that hampers the free mobility of vehicles. Intelligent traffic

monitoring systems are thus an integral component of systems needed to quickly detect and alleviate

the effects of traffic congestion and human factors.

In the last few years, there has been extensive research on machine and deep learning-based

traffic monitoring systems. Certain activities such as vehicle count, and traffic density estimation are

limited by the process of engaging human operators and requires some artificial intelligence

intervention. Traffic count studies for example require human operators to be out in the field during

specific hours, or in the case of using video data, human operators are required to watch man hours

of pre-recorded footage to get an accurate estimation of volume counts. This can be both cumbersome

and time-consuming. Similarly, when it comes to seeing traffic videos from multiple CCTV cameras,

it becomes extremely difficult to analyze each traffic situation in real time. Therefore, most TMCs

seek out deploying automated systems that can, in fact, alleviate the workload of human operators

and lead to effective traffic management system. At the same time, the associated costs are

comparatively lower due to savings associated with not needing to store multiple hours of large video

data. In this study, we deployed several state-of-the-art deep learning algorithms based on the nature

of certain required traffic operations. Traditional algorithms [1–3] often record lower accuracies and

fail at capturing complex patterns in a traffic scene; hence, we tested and deployed deep learning-

based models trained on thousands of annotated traffic images. Thus, the proposed system as shown

in Figure 1 can perform the following:

1. Monitoring traffic congestion

2. Traffic accidents, stationary or stranded vehicle detection

3. Vehicle detection and count

4. Managing traffic using a stand-alone Graphical User Interface (GUI)

5. Scaling traffic monitoring to multiple traffic cameras.

Figure 1. Proposed front-end GUI-based system with algorithms and traffic database processed in the

back end. To visualize the demonstration of the proposed GUI based platform, refer to [4].
Figure 1. Proposed front-end GUI-based system with algorithms and traffic database processed
in the back end. To visualize the demonstration of the proposed GUI based platform, refer to [4].

Sustainability 2020, 12, 9177 3 of 21

2. Literature Review

In the past few years, several vision-based systems have been studied to automatically monitor
traffic. We broadly discuss some of the related articles focused on congestion prediction, traffic count
and anomaly detection.

2.1. Deep Learning Frameworks for Object Detection and Classification

There are two main ways through which video-based congestion monitoring systems
function. The first instance is the method based on “three-step inference” and the other one is
the “one-step-classification” approach. Willis et al. in [5] studied traffic queues classification using deep
neural networks on traffic images. The researchers trained a two-phase network using GoogLeNet and a
bespoke deep subnet, and applied that in the process of detecting traffic network congestion. Chakraborty
et al. in [6] used traffic imagery and applied both deep convolutional neural networks (DCNN) and You
Only Look Once (YOLO) algorithms in different environmental set-ups. Similarly, for inference-based
approaches, Morris et al. proposed a portable system for extracting traffic queue parameters at signalized
intersections from video feeds [7]. For that, they applied image processing techniques such as clustering,
background subtraction, and segmentation, to identify vehicles and finally tabulated queue lengths
for calibrated cameras at different intersections. Fouladgar et al. in [8] proposed a decentralized deep
learning-built system, wherein every node precisely predicted each of its congestion states based on
their adjacent stations in real-time conditions. Their approach was scalable and could be completely
decentralized to predict the nature of traffic flows. Likewise, Ma et al. in [9] proposed an entirely
automated deep neural network-based model for analyzing spatiotemporal traffic data. Their model
first uses convolutional neural network to learn the spatio-temporal features. Later, a recurrent neural
network is trained by utilizing the output of their first-step model that helps categorize the complete
sequence. The model could be feasibly applied at studying traffic flows and predicting congestion.
Similarly, Wang et al. in [10] introduced a deep learning model that uses an RCNN structure to
continuously predict traffic speeds. Using their model and integrating the spatio-temporal traffic
information, they could identify the sources of congestion on city ring-roads. Carli et al. in [11]
proposed an automatic traffic congestion analysis in urban streets. They used GPS-generated data to
generalize traffic characteristics. Likewise, in this paper, the authors have demonstrated the usage of a
video-based congestion monitoring system which might not be as accurate as the GPS-based technique
but are sturdy and yield lower operating costs. Furthermore, as congestion occurs frequently on urban
roadways, identifying different indicators for effectively planning transportation systems would be
beneficial [12].

Popular object detection frameworks such as Mask R-CNN [13], YOLO [14], Faster R-CNN [15],
etc. have been utilized far and beyond in the field of intelligent transportation systems (ITS). However,
another state-of-the-art object detector called CenterNet [16] has not had enough exposure in ITS.
So far, object detection using CenterNet has been successfully applied in the fields of robotics [17,18],
medicine [19–21], phonemes [22], etc. Its faster inference speed and shorter training time have made it
popular for real-time object detection [23]. In this study, the authors deploy several state-of-the-art
object detectors including CenterNet. The use of CenterNet in the of context of ITS for studying
counting problems, as applied in this study, is a novel idea worth looking into, which could also further
serve as literature for future studies in this area.

2.2. Vision-Based Traffic Analysis Systems

Most existing counting methods could be generally categorized as detection instance counter [24,25]
or density estimator [25,26]. Detection instance counters localize every car exclusively and then count
the localization. However, this could hold a problem since the process requires scrutinizing the whole
image pixel by pixel to generate localization. Similarly, occlusions could create another obstacle as
detectors might merge overlapping objects. In contrast, density estimators work in an instinctive

Sustainability 2020, 12, 9177 4 of 21

manner of trying to create an approximation of density for countable vehicles and then assimilating
them over that dense area. Density estimators usually do not require large quantities of training data
samples, but are generally constrained in application to the same scene where the training data are
collected. Chiu et al. in [27] presented an automatic traffic monitoring system that implements an object
segmentation algorithm capable of vehicle recognition, tracking and detection from traffic imagery.
Their approach separated mobile vehicles from stationary ones using a moving object segmentation
technique that uses geometric features of vehicles to classify vehicle type. Likewise, Zhuang et al.
in [28] proposed a statistical method that performs a correlation-based estimation to count city vehicles
using traffic cameras. For this, they introduced two techniques, the first one using a statistical machine
learning approach that is based on Gaussian models, and the second one using the analytical deviation
approach based on the origin–destination matrix pair. Mundhenk et al. in [29] created a dataset
of overhead cars and deployed a deep neural network to classify, detect and count the number of
cars. To detect and classify vehicles, they used a neural network called ResCeption. This network
integrates residual learning with Inception-style layers that can detect and count the number of cars in a
single look. Their approach is superior in getting accurate vehicle counts in comparison to the counts
performed with localization or density estimation.

Apart from congestion detection and vehicle counts, various articles have been reviewed to study
anomaly detection systems. Kamijo et al. in [30] developed a vehicle tracking algorithm based on
spatio-temporal Markov random fields to detect traffic accidents at intersections. The model presented
in their study was capable of robustly tracking individual vehicles without their accuracies being greatly
affected by occlusion and clutter effects, two very common characteristics at most busy intersections
which pose a problem for most models. Although traditionally, spot sensors were used primarily for
incident detection [31], the scope of their use proved to be rather trivial for anomaly detection systems.
Vision-based approaches have therefore been utilized far and beyond mostly due to their superior
event recognition capability. Information such as traffic jams, traffic violations, accidents, etc. could
be easily extracted from vision-based systems. Rojas et al. in [32] and Zeng et al. in [33] proposed
techniques to detect vehicles on a highway using a static CCTV camera, while, Ai et al. in [34] proposed
a method to detect traffic violation at intersections. The latter’s approach was put into practice on
the streets of Hong Kong to detect red light runners. Thajchayapong et al. proposed an anomaly
detection algorithm that could be implemented in a distributed fashion to predict and classify traffic
abnormalities in different traffic scenes [35]. Similarly, Ikeda et al. in [36] used image-processing
techniques to automatically detect abnormal traffic incidents. Their method could detect four different
types of traffic anomalies such as detecting stopped vehicles, slow-speed vehicles, dropped objects
and the vehicles that endeavored to change lanes consecutively.

3. Proposed Methodology

The methodology adopted for implementing an automatic traffic monitoring system is shown
in Figure 2. The main components consist of, first, a GPU-enabled backend (on premise) which is
designed to ensure that very deep models can be trained quickly and implemented on a wide array
of cameras in near real time. At the heart of the proposed AI-enabled traffic monitoring system is
the development and training of several deep convolutional neural network models that are capable
of detecting and classifying different objects or segmenting a traffic scene into its constituent objects.
Manually annotated traffic images served as the main source of dataset used for training these models.
To enable the system to be situationally aware, different object tracking algorithms are implemented to
generate trajectories for each detected object on the traffic scene at all times. The preceding steps are
then combined to extract different traffic flow variables (e.g., traffic volume and occupancy) and monitor
different traffic conditions such as queueing, crashes and other traffic scene anomalies. The AI-enabled
traffic monitoring system is capable of tracking different classes of vehicles, tabulating their count,
spotting and detecting congestion and tracking stationary vehicles in real time.

Sustainability 2020, 12, 9177 5 of 21

Sustainability 2020, 12, x FOR PEER REVIEW 5 of 21

Figure 2. Visual representation of the proposed AI-enabled system.

Some of the deep learning algorithms used in the study are explained in detail as follows:

3.1. Faster R-CNN

Faster R-CNN is a two-stage target detection algorithm [15]. In Faster-RCNN, a Region Proposal

Network (RPN) shares complete-image convolutional features along with a detection network that

enables cost-free region proposals. Here, the RPN simultaneously predicts object bounds and their

equivalent score values at each position. End-to-end training of RPN provides high-class region

proposals which is used by Faster R-CNN to achieve object predictions. Compared to Fast R-CNN,

Faster R-CNN produces high-quality object detection by substituting selective search method with

RPN. The algorithm splits every image into multiple sections of compact areas and then passes every

area over an arrangement of convolutional filters to extract high-quality feature descriptors which is

then passed through a classifier. After that, the classifier produces the probability of objects in each

section of an image. To achieve higher prediction accuracies on traffic camera feeds, the model is

trained for five classes viz. pedestrian, cyclist, bus, truck and car. Training took approximately 8 h on

NVIDIA GTX 1080Ti GPU. The model processed video feeds at 5 frames per second.

3.2. Mask R-CNN

Mask R-CNN, abbreviated from Mask-region based Convolutional Neural Network, is an

extension to Faster R-CNN [13]. In addition to accomplishing tasks equivalent to Faster R-CNN, Mask

R-CNN supplements it by adding superior masks, and sections the region of interest pixel-by-pixel.

The model used in this study is based on Feature Pyramid Network (FPN) and is executed with

resnet101 backbone. In this, ResNet101 served as the feature extractor for the model. While using

FPN, there was an improvement in the standard feature extraction pyramid by the introduction of

another pyramid that took higher level features from the first pyramid and consequently passed them

over to subordinate layers. This enabled features at each level to obtain admission at both higher and

lower-level characters. In this study, the minimum detection confidence rate was set at 90% and run

at 50 validation steps. An image-centric training approach was followed in which every image was

cut to the square’s shape.

The images were converted from 1024 × 1024px × 3 (RGB) to a feature map of shape 32 × 32 ×

2048 on passing through the backbone network. Each of our batch had a single image per GPU and

every image had altogether 200 trained Region of Interests (ROIs). Using a learning rate of 0.001 and

a batch size of 1, the model was trained on NVIDIA GTX 1080Ti GPU. A constant learning rate was

used during the iteration. Likewise, a weight decay of 0.0001 and a learning momentum of 0.9 were

Figure 2. Visual representation of the proposed AI-enabled system.

Some of the deep learning algorithms used in the study are explained in detail as follows:

3.1. Faster R-CNN

Faster R-CNN is a two-stage target detection algorithm [15]. In Faster-RCNN, a Region Proposal
Network (RPN) shares complete-image convolutional features along with a detection network that
enables cost-free region proposals. Here, the RPN simultaneously predicts object bounds and their
equivalent score values at each position. End-to-end training of RPN provides high-class region
proposals which is used by Faster R-CNN to achieve object predictions. Compared to Fast R-CNN,
Faster R-CNN produces high-quality object detection by substituting selective search method with
RPN. The algorithm splits every image into multiple sections of compact areas and then passes every
area over an arrangement of convolutional filters to extract high-quality feature descriptors which is
then passed through a classifier. After that, the classifier produces the probability of objects in each
section of an image. To achieve higher prediction accuracies on traffic camera feeds, the model is
trained for five classes viz. pedestrian, cyclist, bus, truck and car. Training took approximately 8 h on
NVIDIA GTX 1080Ti GPU. The model processed video feeds at 5 frames per second.

3.2. Mask R-CNN

Mask R-CNN, abbreviated from Mask-region based Convolutional Neural Network, is an extension
to Faster R-CNN [13]. In addition to accomplishing tasks equivalent to Faster R-CNN, Mask R-CNN
supplements it by adding superior masks, and sections the region of interest pixel-by-pixel. The model
used in this study is based on Feature Pyramid Network (FPN) and is executed with resnet101 backbone.
In this, ResNet101 served as the feature extractor for the model. While using FPN, there was an
improvement in the standard feature extraction pyramid by the introduction of another pyramid that
took higher level features from the first pyramid and consequently passed them over to subordinate
layers. This enabled features at each level to obtain admission at both higher and lower-level characters.
In this study, the minimum detection confidence rate was set at 90% and run at 50 validation steps.
An image-centric training approach was followed in which every image was cut to the square’s shape.

The images were converted from 1024 × 1024px × 3 (RGB) to a feature map of shape 32 × 32
× 2048 on passing through the backbone network. Each of our batch had a single image per GPU
and every image had altogether 200 trained Region of Interests (ROIs). Using a learning rate of 0.001
and a batch size of 1, the model was trained on NVIDIA GTX 1080Ti GPU. A constant learning rate
was used during the iteration. Likewise, a weight decay of 0.0001 and a learning momentum of 0.9

Sustainability 2020, 12, 9177 6 of 21

were used. The total training time for the model training on a sample dataset was approximately 3 h.
The framework for Mask-RCNN is shown in Figure 3.

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 21

used. The total training time for the model training on a sample dataset was approximately 3 h. The

framework for Mask-RCNN is shown in Figure 3.

Figure 3. Mask-region based Convolutional Neural Network (Mask R-CNN) framework.

3.3. YOLO

You Only Look Once (YOLO) is the state-of-the-art object detection algorithm [14]. Unlike

traditional object detection systems, YOLO investigates the image only once and detects if there are

any objects in it. In this study, YOLOv4 was used to perform vehicle detection, counts, and compare

results for traffic queues generation. Most contemporary object detection algorithms repurpose CNN

classifiers with an aim of performing detections. For instance, to perform object detection, these

algorithms use a classifier for that object and test it at varied locations and scales in the test image.

However, YOLO reframes object detection, i.e., instead of looking at a single image thousand times

to perform detection, it just looks at the image once and performs accurate object predictions. A singe

CNN concurrently predicts multiple bounding boxes and class probabilities for those generated

boxes. To build YOLO models, the typical time was roughly 20–30 h. YOLO used the same hardware

resources for training as Mask R-CNN.

3.4. CenterNet

CenterNet [16] discovers visual patterns within each section of a cropped image at lower

computational costs. Instead of detecting objects as a pair of key points, CenterNet detects them as a

triplet thereby, increasing both precision and recall values. The framework builds up on the

drawbacks encountered by CornerNet [37] which uses a pair of corner keypoints to perform object

detection. However, CornerNet fails at constructing a more global outlook of an object, which

CenterNet does by having an additional keypoint to obtain a more central information of an image.

CenterNet functions on the intuition that if a detected bounding box has a higher Intersection over

Union (IOU) with the ground-truth box, then the likelihoods of that central keypoint being in its

central region and being labelled in the same class are high. Hence, the knowledge of having a triplet

instead of a pair increases CenterNet’s superiority over CornerNet or any other anchor-based

detection approaches. Despite using a triplet, CenterNet is still a single-stage detector but it partly

receives the functionalities of RoI pooling. Figure 4 shows the architecture of CenterNet where it uses

a CNN backbone that performs cascade corner pooling and center pooling to yield two corner and a

center keypoint heatmap. Here, cascade corner pooling enables the original corner pooling module

to receive internal information whereas center pooling helps center keypoints to attain further

identifiable visual pattern within objects that would enable it to perceive the central part of the region.

Likewise, analogous to CornerNet, a pair of detected corners and familiar embeddings are used to

predict a bounding box. Then, the final bounding boxes are determined using the detected center

keypoints.

Figure 3. Mask-region based Convolutional Neural Network (Mask R-CNN) framework.

3.3. YOLO

You Only Look Once (YOLO) is the state-of-the-art object detection algorithm [14]. Unlike traditional
object detection systems, YOLO investigates the image only once and detects if there are any objects in it.
In this study, YOLOv4 was used to perform vehicle detection, counts, and compare results for traffic
queues generation. Most contemporary object detection algorithms repurpose CNN classifiers with an
aim of performing detections. For instance, to perform object detection, these algorithms use a classifier
for that object and test it at varied locations and scales in the test image. However, YOLO reframes object
detection, i.e., instead of looking at a single image thousand times to perform detection, it just looks at
the image once and performs accurate object predictions. A singe CNN concurrently predicts multiple
bounding boxes and class probabilities for those generated boxes. To build YOLO models, the typical
time was roughly 20–30 h. YOLO used the same hardware resources for training as Mask R-CNN.

3.4. CenterNet

CenterNet [16] discovers visual patterns within each section of a cropped image at lower
computational costs. Instead of detecting objects as a pair of key points, CenterNet detects them as a
triplet thereby, increasing both precision and recall values. The framework builds up on the drawbacks
encountered by CornerNet [37] which uses a pair of corner keypoints to perform object detection.
However, CornerNet fails at constructing a more global outlook of an object, which CenterNet does
by having an additional keypoint to obtain a more central information of an image. CenterNet
functions on the intuition that if a detected bounding box has a higher Intersection over Union (IOU)
with the ground-truth box, then the likelihoods of that central keypoint being in its central region
and being labelled in the same class are high. Hence, the knowledge of having a triplet instead of a pair
increases CenterNet’s superiority over CornerNet or any other anchor-based detection approaches.
Despite using a triplet, CenterNet is still a single-stage detector but it partly receives the functionalities
of RoI pooling. Figure 4 shows the architecture of CenterNet where it uses a CNN backbone that
performs cascade corner pooling and center pooling to yield two corner and a center keypoint heatmap.
Here, cascade corner pooling enables the original corner pooling module to receive internal information
whereas center pooling helps center keypoints to attain further identifiable visual pattern within objects
that would enable it to perceive the central part of the region. Likewise, analogous to CornerNet,
a pair of detected corners and familiar embeddings are used to predict a bounding box. Then, the final
bounding boxes are determined using the detected center keypoints.

Sustainability 2020, 12, 9177 7 of 21

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 21

Figure 4. Architecture of CenterNet.

The following sections give out a brief description of several traffic operations that could be

seamlessly automated.

3.5. Monitoring Traffic Queues

The methodology adopted for an automatic queue monitoring system is shown in Figure 5. The

first step of performing annotation was achieved using a VGG Image Annotator [38]. In the follow

up, annotated images were used to train both Mask R-CNN and YOLO models. The training times

for Mask R-CNN and YOLO were approximately 3.5 and 22 h, respectively. After training was done,

these models were run on real-time traffic videos to evaluate their performance. The main reason for

using Mask R-CNN was due to its ability to obtain pixel-level segmentation masks that made queue

detections precise. Since YOLO uses a bounding box to perform detection, it covers areas that are

both congested and non-congested. Therefore, Mask-RCNN has an advantage over YOLO when it

comes to precisely predicting classified regions of interest.

Figure 5. Flowchart of stepwise operations.

3.6. Detecting Stationary Vehicles

Figure 6 shows the proposed methodology for detecting stationary or stranded vehicles. To

begin the process, a YOLO model is trained to perform vehicle detection. Then, detections are tracked

using an Intersection over Union (IOU) process and each vehicle trajectory is plotted from traffic

scenes. Tracking results are then used to sketch certain travel directions (east, west, north or south),

the kind of road being analyzed (i.e., either intersection or freeway), and the predicted speed of

tracked vehicles. The results of tracking are later used to state discrete travel directions, road type

and estimated vehicular speed. For certain types of roadway, if the vehicular speed falls under a

specific threshold for a certain amount of time, then the model is able to detect that the vehicle is

stationary.

Figure 4. Architecture of CenterNet.

The following sections give out a brief description of several traffic operations that could be
seamlessly automated.

3.5. Monitoring Traffic Queues

The methodology adopted for an automatic queue monitoring system is shown in Figure 5.
The first step of performing annotation was achieved using a VGG Image Annotator [38]. In the follow
up, annotated images were used to train both Mask R-CNN and YOLO models. The training times
for Mask R-CNN and YOLO were approximately 3.5 and 22 h, respectively. After training was done,
these models were run on real-time traffic videos to evaluate their performance. The main reason for
using Mask R-CNN was due to its ability to obtain pixel-level segmentation masks that made queue
detections precise. Since YOLO uses a bounding box to perform detection, it covers areas that are both
congested and non-congested. Therefore, Mask-RCNN has an advantage over YOLO when it comes to
precisely predicting classified regions of interest.

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 21

Figure 4. Architecture of CenterNet.

The following sections give out a brief description of several traffic operations that could be

seamlessly automated.

3.5. Monitoring Traffic Queues

The methodology adopted for an automatic queue monitoring system is shown in Figure 5. The

first step of performing annotation was achieved using a VGG Image Annotator [38]. In the follow

up, annotated images were used to train both Mask R-CNN and YOLO models. The training times

for Mask R-CNN and YOLO were approximately 3.5 and 22 h, respectively. After training was done,

these models were run on real-time traffic videos to evaluate their performance. The main reason for

using Mask R-CNN was due to its ability to obtain pixel-level segmentation masks that made queue

detections precise. Since YOLO uses a bounding box to perform detection, it covers areas that are

both congested and non-congested. Therefore, Mask-RCNN has an advantage over YOLO when it

comes to precisely predicting classified regions of interest.

Figure 5. Flowchart of stepwise operations.

3.6. Detecting Stationary Vehicles

Figure 6 shows the proposed methodology for detecting stationary or stranded vehicles. To

begin the process, a YOLO model is trained to perform vehicle detection. Then, detections are tracked

using an Intersection over Union (IOU) process and each vehicle trajectory is plotted from traffic

scenes. Tracking results are then used to sketch certain travel directions (east, west, north or south),

the kind of road being analyzed (i.e., either intersection or freeway), and the predicted speed of

tracked vehicles. The results of tracking are later used to state discrete travel directions, road type

and estimated vehicular speed. For certain types of roadway, if the vehicular speed falls under a

specific threshold for a certain amount of time, then the model is able to detect that the vehicle is

stationary.

Figure 5. Flowchart of stepwise operations.

3.6. Detecting Stationary Vehicles

Figure 6 shows the proposed methodology for detecting stationary or stranded vehicles.
To begin the process, a YOLO model is trained to perform vehicle detection. Then, detections
are tracked using an Intersection over Union (IOU) process and each vehicle trajectory is plotted from
traffic scenes. Tracking results are then used to sketch certain travel directions (east, west, north or
south), the kind of road being analyzed (i.e., either intersection or freeway), and the predicted speed of
tracked vehicles. The results of tracking are later used to state discrete travel directions, road type
and estimated vehicular speed. For certain types of roadway, if the vehicular speed falls under a specific
threshold for a certain amount of time, then the model is able to detect that the vehicle is stationary.

Sustainability 2020, 12, 9177 8 of 21

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 21

Figure 6. Flowchart for traffic anomaly detection.

4. Data Description

Traffic camera images served as the primary source of the dataset used in this study. The images

were obtained from Iowa 511, New York State DOT, RITIS, Iowa DOT Open Data and Louisiana

Department of Transportation and Development. Altogether, 18,509 images were used for training

and validation purposes. The datasets consisted of images taken at different times of the day in varied

environmental conditions. Intersection, freeway and work-zone images were included in both

training and testing samples. These images were used to train and validate deep learning models

meant to carry out the processes of congestion detection, stationary vehicle tracking, and vehicle

counting. For anomaly detection, traffic videos from NVIDIA AI City Challenge were used to test the

effectiveness of the proposed model. Eventually, the model was assessed on 100 CCTV video feeds

with different kinds of anomalies on irregular traffic and weather patterns [39].

5. Results

In this section, we evaluate the performance of Traffic queues, Anomaly detection system and

Automatic vehicle counts.

5.1. Traffic Queues Detection

The performance of Mask R-CNN was tested on 1000 traffic camera images (500 congested and

500 uncongested) and a comparative analysis is carried out with a classical YOLO framework.

Standard performance metrics of precision, recall and accuracy, as shown in Equations (1), (2) and

(3), respectively, were used to test the models. Then, the results of a real-time implementation of

Mask R-CNN are shown at an intersection.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3)

In the Figure above, Figure 7a,b are presented as being actual predictors of congestion and are

predicted as true positives (TP). Figure 7a,b shows the detections made by YOLO and Mask-RCNN,

respectively. Mask R-CNN predicts congestion using a pixel-wise segmentation method while YOLO

predicts congestion through a bounding box approach. Similarly, Figure 7c,d were the

misclassifications and thus, classified as false positives (FP). In Figure 7d, Mask R-CNN incorrectly

predicted an uncongested image as congested due to the presence of a distant platoon of vehicles

present in the image. The existence of an overhead bridge might have caused YOLO to make a

mistake in Figure 7c. Example of false negatives (FN) are shown in Figure 7e,f where both Mask R-

Figure 6. Flowchart for traffic anomaly detection.

4. Data Description

Traffic camera images served as the primary source of the dataset used in this study. The images
were obtained from Iowa 511, New York State DOT, RITIS, Iowa DOT Open Data and Louisiana
Department of Transportation and Development. Altogether, 18,509 images were used for training
and validation purposes. The datasets consisted of images taken at different times of the day in varied
environmental conditions. Intersection, freeway and work-zone images were included in both training
and testing samples. These images were used to train and validate deep learning models meant to
carry out the processes of congestion detection, stationary vehicle tracking, and vehicle counting.
For anomaly detection, traffic videos from NVIDIA AI City Challenge were used to test the effectiveness
of the proposed model. Eventually, the model was assessed on 100 CCTV video feeds with different
kinds of anomalies on irregular traffic and weather patterns [39].

5. Results

In this section, we evaluate the performance of Traffic queues, Anomaly detection system
and Automatic vehicle counts.

5.1. Traffic Queues Detection

The performance of Mask R-CNN was tested on 1000 traffic camera images (500 congested
and 500 uncongested) and a comparative analysis is carried out with a classical YOLO framework.
Standard performance metrics of precision, recall and accuracy, as shown in Equations (1), (2) and (3),
respectively, were used to test the models. Then, the results of a real-time implementation of Mask
R-CNN are shown at an intersection.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP

TP + FP + TN + FN
(3)

In the Figure above, Figure 7a,b are presented as being actual predictors of congestion and are
predicted as true positives (TP). Figure 7a,b shows the detections made by YOLO and Mask-RCNN,
respectively. Mask R-CNN predicts congestion using a pixel-wise segmentation method while YOLO
predicts congestion through a bounding box approach. Similarly, Figure 7c,d were the misclassifications
and thus, classified as false positives (FP). In Figure 7d, Mask R-CNN incorrectly predicted an
uncongested image as congested due to the presence of a distant platoon of vehicles present in the image.

Sustainability 2020, 12, 9177 9 of 21

The existence of an overhead bridge might have caused YOLO to make a mistake in Figure 7c. Example of
false negatives (FN) are shown in Figure 7e,f where both Mask R-CNN and YOLO were unsuccessful
at detecting queues. The reason could be that the platoon of vehicles was far away from the camera
(Figure 7e) and glaring issues (Figure 7f). Figure 7g,h correctly predicted uncongested images as true
negatives (TN). Table 1 shows the Precision, Recall and Accuracy values obtained for Mask R-CNN
and YOLO models in correctly predicting traffic queues.

Sustainability 2020, 12, x FOR PEER REVIEW 9 of 21

CNN and YOLO were unsuccessful at detecting queues. The reason could be that the platoon of

vehicles was far away from the camera (Figure 7e) and glaring issues (Figure 7f). Figure 7g,h correctly

predicted uncongested images as true negatives (TN). Table 1 shows the Precision, Recall and

Accuracy values obtained for Mask R-CNN and YOLO models in correctly predicting traffic queues.

Figure 7. Classification of predicted queues: True positive—(a,b), false positive—(c,d), false

negative—(e,f), true negative—(g,h) by You Only Look Once (YOLO) and Mask R-CNN.

Table 1. Performance of Mask R-CNN versus YOLO at detecting queues.

Model Precision Recall Accuracy

Mask R-CNN 92.8 95.6 90.5

YOLO 95.5 94.8 93.7

Figure 7. Classification of predicted queues: True positive—(a,b), false positive—(c,d), false negative—(e,f),
true negative—(g,h) by You Only Look Once (YOLO) and Mask R-CNN.

Sustainability 2020, 12, 9177 10 of 21

Table 1. Performance of Mask R-CNN versus YOLO at detecting queues.

Model Precision Recall Accuracy

Mask R-CNN 92.8 95.6 90.5
YOLO 95.5 94.8 93.7

A Case Study for Studying Traffic Queues

A case study was conducted in which the Mask R-CNN model was implemented in real time
for monitoring queues at an intersection. It is imperative to note that the alterations in video camera
perspective often made it challenging to extract traffic queue parameters from frame scenes. A typical
course around this was to adjust the camera to a specific height, observing angle, zoom level, etc.
Although this might be effective, it is not scalable. Another alternative to this approach could
be to directly use image pixel values to characterize queue parameters. While using this method,
queue information from one spot could not be compared to a different location since the camera
geometric features could possibly differ. In the steps described below, we develop a simple, standardized
calibration-free approach for extracting queue length parameters from traffic video feeds. This approach
is scalable and is useful in comparing queuing levels at different locations.

Step 1: Extract queue regions from traffic video feeds with Mask RCNN.
Step 2: Calculate the pixel length of each detected queue mask.
Step 3: Accumulate length over time (minimum duration is 1 week).
Step 4: Use adaptive thresholding (Figure 8) to bin queue lengths into different severity levels:
low, medium and high.
Step 5: Generate heat map of queuing levels and finally, compare.

Sustainability 2020, 12, x FOR PEER REVIEW 10 of 21

A Case Study for Studying Traffic Queues

A case study was conducted in which the Mask R-CNN model was implemented in real time for

monitoring queues at an intersection. It is imperative to note that the alterations in video camera

perspective often made it challenging to extract traffic queue parameters from frame scenes. A typical

course around this was to adjust the camera to a specific height, observing angle, zoom level, etc.

Although this might be effective, it is not scalable. Another alternative to this approach could be to

directly use image pixel values to characterize queue parameters. While using this method, queue

information from one spot could not be compared to a different location since the camera geometric

features could possibly differ. In the steps described below, we develop a simple, standardized

calibration-free approach for extracting queue length parameters from traffic video feeds. This

approach is scalable and is useful in comparing queuing levels at different locations.

Step 1: Extract queue regions from traffic video feeds with Mask RCNN.

Step 2: Calculate the pixel length of each detected queue mask.

Step 3: Accumulate length over time (minimum duration is 1 week).

Step 4: Use adaptive thresholding (Figure 8) to bin queue lengths into different severity levels:

low, medium and high.

Figure 8. Adaptive thresholding steps.

Step 5: Generate heat map of queuing levels and finally, compare.

The Mask R-CNN framework was used to quantify queuing levels at an intersection. The heat

map shown in Figure 9 clearly captures the onset and dissipation of queues. The heat map for the

intersection could detect both AM and PM peak hours.

Figure 9. Heat map of traffic queue severity at an intersection.

Figure 8. Adaptive thresholding steps.

The Mask R-CNN framework was used to quantify queuing levels at an intersection. The heat
map shown in Figure 9 clearly captures the onset and dissipation of queues. The heat map for
the intersection could detect both AM and PM peak hours.

Sustainability 2020, 12, 9177 11 of 21

Sustainability 2020, 12, x FOR PEER REVIEW 10 of 21

A Case Study for Studying Traffic Queues

A case study was conducted in which the Mask R-CNN model was implemented in real time for

monitoring queues at an intersection. It is imperative to note that the alterations in video camera

perspective often made it challenging to extract traffic queue parameters from frame scenes. A typical

course around this was to adjust the camera to a specific height, observing angle, zoom level, etc.

Although this might be effective, it is not scalable. Another alternative to this approach could be to

directly use image pixel values to characterize queue parameters. While using this method, queue

information from one spot could not be compared to a different location since the camera geometric

features could possibly differ. In the steps described below, we develop a simple, standardized

calibration-free approach for extracting queue length parameters from traffic video feeds. This

approach is scalable and is useful in comparing queuing levels at different locations.

Step 1: Extract queue regions from traffic video feeds with Mask RCNN.

Step 2: Calculate the pixel length of each detected queue mask.

Step 3: Accumulate length over time (minimum duration is 1 week).

Step 4: Use adaptive thresholding (Figure 8) to bin queue lengths into different severity levels:

low, medium and high.

Figure 8. Adaptive thresholding steps.

Step 5: Generate heat map of queuing levels and finally, compare.

The Mask R-CNN framework was used to quantify queuing levels at an intersection. The heat

map shown in Figure 9 clearly captures the onset and dissipation of queues. The heat map for the

intersection could detect both AM and PM peak hours.

Figure 9. Heat map of traffic queue severity at an intersection. Figure 9. Heat map of traffic queue severity at an intersection.

5.2. Stationary Vehicle Detection

Faster R-CNN and YOLO algorithms were deployed to study stationary vehicles. To comprehend
and compare the test results for both Faster R-CNN and YOLO frameworks, confusion matrices and F-1
scores were used. The confusion matrix represents accuracy levels for different sections of image
classification. Overall, 25 test results are shown in a 5 × 5 table that is referred to as a confusion
matrix. Here, each row shows the actual number of predictions and total number of each row implies
the number of targets predicted for that class. Likewise, every column signifies the true number of
targets while the total number of each column represents the actual number of targets for that class.
Similarly, the F-1 score shown in Equation (4) is used to compare the performance of both Faster R-CNN
and YOLO models. The results obtained for confusion matrix and F-1 scores are shown in Tables 2 and 3.

F− 1 =
2 × Precision × Recall

Precision + Recall
(4)

Table 2. Confusion Matrix of YOLO and Faster R-CNN.

YOLO

True Pred Ped Cyclist Car Bus Truck

Ped 0.9928 0.0053 0.0008 0 0.0008
Cyclist 0.0228 0.9726 0 0 0.0045

Car 0 0 0.9947 0.0001 0.0050
Bus 0 0 0 0.9942 0.0057

Truck 0 0 0.0457 0.0074 0.9467

Faster R-CNN

True Pred Ped Cyclist Car Bus Truck

Ped 0.9973 0.0026 0 0 0
Cyclist 0.0401 0.9553 0.0044 0 0

Car 0.0002 0.0001 0.9943 0.0003 0.0047
Bus 0 0 0.0103 0.9792 0.0103

Truck 0 0 0.0367 0.0079 0.9553

Sustainability 2020, 12, 9177 12 of 21

Table 3. F-1 Scores of YOLO and Faster R-CNN.

YOLO

Class Precision Recall F-1 Score

Ped 0.9216 0.7367 0.8188
Cyclist 0.9424 0.8658 0.9025

Car 0.9276 0.7990 0.8585
Bus 0.9508 0.8571 0.9015

Truck 0.9160 0.8400 0.8764
Total 0.9269 0.7975 0.8573

Faster R-CNN

Ped 0.8754 0.8838 0.8796
Cyclist 0.9380 0.8514 0.8926

Car 0.8312 0.8788 0.8543
Bus 0.8952 0.8663 0.8805

Truck 0.8928 0.8972 0.8950
Total 0.8417 0.8798 0.8604

As seen from Table 2, the performance of both Faster R-CNN and YOLO models were similar.
Faster R-CNN was relatively inferior in detecting cyclists and buses but was better at detecting trucks
when compared to the performance of YOLO. Both models predicted cars and pedestrians with a 99%
level of accuracy. From Table 3, it is understood that the cumulative F-1 score of YOLO was lower than
that of Faster R-CNN. Additionally, the recall value for YOLO was lower, which implies that YOLO
detects fewer objects on a traffic scene compared to Faster R-CNN. After comparing results in Table 3,
it appears that Faster-RCNN was slightly better but comparable to YOLO. Therefore, any one of them
could be used as an object detector.

Similarly, after the object detector spots any vehicle’s position on a traffic scene, the tracker is
brought in to track the state of vehicles from a sequence of traffic video frames. Intersection over Union
(IOU) and feature-based tracking systems have been deployed and further explained as follows:

Tracking Detection by IOU and Feature Tracker

Anomaly detection systems not only require a detector to correctly detect vehicles in the frames,
but also need a tracker to distinguish the state and motion of each vehicle. After the detector predicts
the position of vehicle in each frame, the tracker is liable for tracing vehicle trajectory based on a series
of consecutive frames within a video file. After calculating the spatial overlap of object detection
boxes in each consecutive video frame, an IOU allocates detections. Erik et al.’s IOU was implemented
in this study [40]. As IOU trackers have lower computational cost, obtaining trajectories of vehicles is
easy to attain and integrate to other higher-level trackers without affecting the computational speed.
Frame rates even as high as 50,000 fps can be achieved with IOU. It is imperative to note that the IOU
tracker is heavily reliant on how accurately predictions are done by object detection models. Road type
is categorized based on the number of street directions detected. For more than two detected directions,
the road type is categorized as either an intersection or an interchange. Likewise, for exactly two
detected directions, the road is categorized as a freeway or, simply, a two-lane street. In Figure 10,
the first image is classified as a freeway while the second image is an intersection.

Sustainability 2020, 12, 9177 13 of 21

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 21

Tracking Detection by IOU and Feature Tracker

Anomaly detection systems not only require a detector to correctly detect vehicles in the frames,

but also need a tracker to distinguish the state and motion of each vehicle. After the detector predicts

the position of vehicle in each frame, the tracker is liable for tracing vehicle trajectory based on a

series of consecutive frames within a video file. After calculating the spatial overlap of object

detection boxes in each consecutive video frame, an IOU allocates detections. Erik et al.’s IOU was

implemented in this study [40]. As IOU trackers have lower computational cost, obtaining trajectories

of vehicles is easy to attain and integrate to other higher-level trackers without affecting the

computational speed. Frame rates even as high as 50,000 fps can be achieved with IOU. It is

imperative to note that the IOU tracker is heavily reliant on how accurately predictions are done by

object detection models. Road type is categorized based on the number of street directions detected.

For more than two detected directions, the road type is categorized as either an intersection or an

interchange. Likewise, for exactly two detected directions, the road is categorized as a freeway or,

simply, a two-lane street. In Figure 10, the first image is classified as a freeway while the second image

is an intersection.

Figure 10. Vehicle tracking and road type classification.

In Feature-based object tracking, appearance information is used to track objects in a traffic

scene. This method is useful in tracking vehicles in an environment where occlusion frequently

occurs. The system extracts object features from one frame and then matches appearance information

with succeeding frames based on the level of similarity. The minimum value of cosine distance is

suitable for calculating any resemblance between some of the characteristic features which is

convenient for vehicle tracking. Besides, the results are compared between IOU and Feature Tracker

based on the average switch rate for different environmental and video quality conditions. The switch

rate measures how often a vehicle is assigned a new track number when it crosses a traffic scene. In

simple terms, it is the ratio of vehicle switch to the actual number of vehicles.

In this study, an anomaly is defined as an event whereby any vehicle stops for 15 s or more,

typically in a non-congested environment. To detect anomalies, the speed of every tracked vehicle is

calculated over time. Based on that, any vehicle beyond the speed of 0.5 pixels per second over a 15

s time interval is characterized as a probable anomaly. Likewise, the direction of travel and the type

of road are used to decide the possibility of anomaly in post-processing steps. The impact of ID

switches from the IOU tracker is fairly apparent in the second column of Figure 11. The detected

Figure 10. Vehicle tracking and road type classification.

In Feature-based object tracking, appearance information is used to track objects in a traffic
scene. This method is useful in tracking vehicles in an environment where occlusion frequently occurs.
The system extracts object features from one frame and then matches appearance information with
succeeding frames based on the level of similarity. The minimum value of cosine distance is suitable for
calculating any resemblance between some of the characteristic features which is convenient for vehicle
tracking. Besides, the results are compared between IOU and Feature Tracker based on the average
switch rate for different environmental and video quality conditions. The switch rate measures how
often a vehicle is assigned a new track number when it crosses a traffic scene. In simple terms, it is
the ratio of vehicle switch to the actual number of vehicles.

In this study, an anomaly is defined as an event whereby any vehicle stops for 15 s or more,
typically in a non-congested environment. To detect anomalies, the speed of every tracked vehicle is
calculated over time. Based on that, any vehicle beyond the speed of 0.5 pixels per second over a 15 s time
interval is characterized as a probable anomaly. Likewise, the direction of travel and the type of road
are used to decide the possibility of anomaly in post-processing steps. The impact of ID switches from
the IOU tracker is fairly apparent in the second column of Figure 11. The detected traffic anomalies are
shown in Figure 12. These anomalies are shown both prior to and after post-processing of the required
steps. ID switches causes several anomalies to be detected at the same spot. In the post-processing step,
an ID suppressing technique is used to decrease the number of anomalies. In order to achieve this,
the first step is to detect multiple anomalies that remain close to one another which are then combined
to one. After that, all the anomalies are merged based on the direction of roadway. The assumption
made here is that only one anomaly exists on one side of the road within a 15-min time interval.
Finally, traffic anomalies are plotted in case the roadway is either a freeway or a two-lane street and if
the road is assessed as an intersection, then the anomaly is rejected and considered a false case.

Sustainability 2020, 12, 9177 14 of 21

Sustainability 2020, 12, x FOR PEER REVIEW 14 of 21

traffic anomalies are shown in Figure 12. These anomalies are shown both prior to and after post-

processing of the required steps. ID switches causes several anomalies to be detected at the same spot.

In the post-processing step, an ID suppressing technique is used to decrease the number of anomalies.

In order to achieve this, the first step is to detect multiple anomalies that remain close to one another

which are then combined to one. After that, all the anomalies are merged based on the direction of

roadway. The assumption made here is that only one anomaly exists on one side of the road within

a 15-min time interval. Finally, traffic anomalies are plotted in case the roadway is either a freeway

or a two-lane street and if the road is assessed as an intersection, then the anomaly is rejected and

considered a false case.

Figure 11. Comparison of clustered charts for IOU and Feature Tracker.

Figure 12. Traffic anomalies.

The proposed traffic anomaly detection system was assessed on 100 traffic video feeds with

varying traffic and weather patterns. The presence of frozen frames and pixelation effects in the

assessment video dataset presented a major challenge in detecting anomalies. The IOU tracker used

in the study conceived a single vehicle or a platoon of vehicles a possible anomaly even if the traffic

stop sign dictated them to stop. Although this condition could not be classified as an anomaly, the

IOU labelled them as such. Therefore, to overhaul this issue, it is important to determine whether a

roadway is an intersection or a freeway. Based on the road type, any vehicle remaining stationary for

over 30 s on a freeway was considered an anomaly and for an intersection, the time limit was set to

60 s. Similarly, IOU tracker’s competence was further challenged by video files that remained stuck

for certain time periods. The videos often remained stuck for over a minute. In such cases, the IOU

tracker detected the vehicle as a probable anomaly each time the video was frozen for longer time

Figure 11. Comparison of clustered charts for IOU and Feature Tracker.

Sustainability 2020, 12, x FOR PEER REVIEW 14 of 21

traffic anomalies are shown in Figure 12. These anomalies are shown both prior to and after post-

processing of the required steps. ID switches causes several anomalies to be detected at the same spot.

In the post-processing step, an ID suppressing technique is used to decrease the number of anomalies.

In order to achieve this, the first step is to detect multiple anomalies that remain close to one another

which are then combined to one. After that, all the anomalies are merged based on the direction of

roadway. The assumption made here is that only one anomaly exists on one side of the road within

a 15-min time interval. Finally, traffic anomalies are plotted in case the roadway is either a freeway

or a two-lane street and if the road is assessed as an intersection, then the anomaly is rejected and

considered a false case.

Figure 11. Comparison of clustered charts for IOU and Feature Tracker.

Figure 12. Traffic anomalies.

The proposed traffic anomaly detection system was assessed on 100 traffic video feeds with

varying traffic and weather patterns. The presence of frozen frames and pixelation effects in the

assessment video dataset presented a major challenge in detecting anomalies. The IOU tracker used

in the study conceived a single vehicle or a platoon of vehicles a possible anomaly even if the traffic

stop sign dictated them to stop. Although this condition could not be classified as an anomaly, the

IOU labelled them as such. Therefore, to overhaul this issue, it is important to determine whether a

roadway is an intersection or a freeway. Based on the road type, any vehicle remaining stationary for

over 30 s on a freeway was considered an anomaly and for an intersection, the time limit was set to

60 s. Similarly, IOU tracker’s competence was further challenged by video files that remained stuck

for certain time periods. The videos often remained stuck for over a minute. In such cases, the IOU

tracker detected the vehicle as a probable anomaly each time the video was frozen for longer time

Figure 12. Traffic anomalies.

The proposed traffic anomaly detection system was assessed on 100 traffic video feeds with varying
traffic and weather patterns. The presence of frozen frames and pixelation effects in the assessment
video dataset presented a major challenge in detecting anomalies. The IOU tracker used in the study
conceived a single vehicle or a platoon of vehicles a possible anomaly even if the traffic stop sign
dictated them to stop. Although this condition could not be classified as an anomaly, the IOU labelled
them as such. Therefore, to overhaul this issue, it is important to determine whether a roadway
is an intersection or a freeway. Based on the road type, any vehicle remaining stationary for over
30 s on a freeway was considered an anomaly and for an intersection, the time limit was set to 60 s.
Similarly, IOU tracker’s competence was further challenged by video files that remained stuck for
certain time periods. The videos often remained stuck for over a minute. In such cases, the IOU
tracker detected the vehicle as a probable anomaly each time the video was frozen for longer time
periods. This could, however, be classified as a false anomaly. While conducting the experiment, it was
identified that although the video remained frozen for longer time periods, the speed of each vehicle
in the frozen video remained 0, as it is the same video-frame scene. Since any vehicle’s speed in an
accident is approximately 0, although not exactly zero, the rectangle surrounding it is in a somewhat
swaying state. Therefore, all anomalies with a speed value of zero were categorized as false detections.
To determine the performance of the proposed anomaly detection model, standard performance metrics

Sustainability 2020, 12, 9177 15 of 21

of F1, Root Mean Square Error (RMSE) and S3 values were used. The equation used to compute
the value of the S3 score is shown in Equation (5).

S3 = F1 ∗ (1− NRMSE) (5)

As shown in Equation (5), NRMSE is the Normalized Root Mean Square Error. To compute
the F-1 score, the value for the true positive is required. A true positive is defined as the one
in which the detection of an anomaly is under the 10 s time frame from the actual. An anomaly can
only be considered a true positive for a single anomaly. In other words, the same anomaly could
not be counted twice. False positive cases are defined as ones that do not resemble true positives for
certain occurrences. Similarly, false negatives are the type of anomalies that are true anomalies in nature
but are missed by the model. Figure 13 shows some of the examples of true positive, false positive
and false negative.

Sustainability 2020, 12, x FOR PEER REVIEW 15 of 21

periods. This could, however, be classified as a false anomaly. While conducting the experiment, it

was identified that although the video remained frozen for longer time periods, the speed of each

vehicle in the frozen video remained 0, as it is the same video-frame scene. Since any vehicle’s speed

in an accident is approximately 0, although not exactly zero, the rectangle surrounding it is in a

somewhat swaying state. Therefore, all anomalies with a speed value of zero were categorized as

false detections. To determine the performance of the proposed anomaly detection model, standard

performance metrics of F1, Root Mean Square Error (RMSE) and S3 values were used. The equation

used to compute the value of the S3 score is shown in Equation (5).

𝑆3 = 𝐹1 ∗ (1 − 𝑁𝑅𝑀𝑆𝐸) (5)

As shown in Equation (5), NRMSE is the Normalized Root Mean Square Error. To compute the

F-1 score, the value for the true positive is required. A true positive is defined as the one in which the

detection of an anomaly is under the 10 s time frame from the actual. An anomaly can only be

considered a true positive for a single anomaly. In other words, the same anomaly could not be

counted twice. False positive cases are defined as ones that do not resemble true positives for certain

occurrences. Similarly, false negatives are the type of anomalies that are true anomalies in nature but

are missed by the model. Figure 13 shows some of the examples of true positive, false positive and

false negative.

Figure 13. Classification of predicted anomalies - First row, (a): true positives. Second row, (b): false

negatives—anomalies indicated with red circles. Third row, (c): false positives.

Errors in anomaly detection are represented by the root mean square error (RMSE). The RMSE

value is calculated for the ground truth anomaly times and predicted anomaly times for any true

positive’s detection. The S3 value is computed using the RMSE, which is normalized by NRMSE as

seen from Equation (5). Normalization is carried out using a min–max normalization technique with

the largest and lowest values set at 300 and 0, respectively. From Table 4, the F1 score is calculated to

be 0.8333, meaning that the detector predicts nearly 83.3% of the total anomalies. However, due to

the shortcomings in the dataset, specifically for vehicles situated distant from the camera, the model

failed to spot anomalies in those situations.

Table 4. F1, RMSE and S3 Final values.

Name F1 RMSE S3

Model M1 0.8333 154.7741 0.4034

The importance of anomaly detection algorithms extends the use-case beyond not only detecting

traffic incidents in real-time, but also being able to properly and accurately measure and calculate

their durations and secondary effects of such incidents, be it queue formations or the possibility of

Figure 13. Classification of predicted anomalies - First row, (a): true positives. Second row, (b): false
negatives—anomalies indicated with red circles. Third row, (c): false positives.

Errors in anomaly detection are represented by the root mean square error (RMSE). The RMSE
value is calculated for the ground truth anomaly times and predicted anomaly times for any true
positive’s detection. The S3 value is computed using the RMSE, which is normalized by NRMSE as
seen from Equation (5). Normalization is carried out using a min–max normalization technique with
the largest and lowest values set at 300 and 0, respectively. From Table 4, the F1 score is calculated to
be 0.8333, meaning that the detector predicts nearly 83.3% of the total anomalies. However, due to
the shortcomings in the dataset, specifically for vehicles situated distant from the camera, the model
failed to spot anomalies in those situations.

Table 4. F1, RMSE and S3 Final values.

Name F1 RMSE S3

Model M1 0.8333 154.7741 0.4034

The importance of anomaly detection algorithms extends the use-case beyond not only detecting
traffic incidents in real-time, but also being able to properly and accurately measure and calculate their
durations and secondary effects of such incidents, be it queue formations or the possibility of secondary
downstream incidents of the formed queue. It is no surprise that traffic incidents account for a quarter
of all roadway congestion in the United States [41]. Average clearance time for incidents reported
through the HELP [42] program ranged between 42 min and 50 min. The usual approach to measuring

Sustainability 2020, 12, 9177 16 of 21

the impact of traffic incidents utilizes deterministic queuing diagrams, coupled with an examination
of the change of network capacity [43]. A challenge in achieving effective incident management is
posed by the lack of accurate data that quantifies the impact of incidents, taking into account both their
unique spatial and temporal attributes [44]. Traffic incident management response can benefit from
the valuable insights extrapolated from the data derivable from detected incident situations, as well as
the effects of the applied countermeasures, in order to improve on secondary responder deployment
and coordination to the benefit and improvement of future situation management.

5.3. Vehicle Counts

With the advent of ITS, vehicle counts are often automated using either loop detectors or
vision-based systems. Although inductive loops give out accurate traffic counts, they often have
trouble distinguishing the type of vehicles (i.e., cars, trucks, buses, etc.) Not to forget that these detectors
are intrusive. On the contrary, vision-based systems’ non-intrusive nature enables counts by different
vehicle class types with high confidence scores [45,46]. Since accurate vehicle count enables TMCs
and other transportation agencies to apply them in their day-to-day application areas, the significance of
accurate vehicle counts cannot be ignored. Studies such as daily volume counts, travel times calculation,
and traffic forecasts are all precursors of an accurate vehicle counting system. These parameters serve
as important tools for optimizing traffic at different roadways. Similarly, counting information also
enables engineers to obtain future traffic forecasts which in turn helps identify what routes are utilized
extensively to lay out affirmative planning decisions.

In this study, we aim at developing a single look vehicle counting system that could automatically
detect and tabulate the number of vehicles passing through the road. To accurately perform vehicular
count, the vehicles are detected using object detectors and then traced through trackers. To obtain vehicle
counts, the trackers are set an IOU threshold of 0.5 as shown in Equation (6) which helps correctly
track vehicles and avoids multiple counts.

IOU =
Intersection

Union
(6)

To assess the performance of the proposed models, the number of vehicles passing through
the north and southbound directions were manually counted and compared against the automatic
counts obtained from the combination of two different object detectors and trackers. CenterNet
and YOLOv4 were the two different object detectors used in combination with IOU and Feature Tracker.
For comparison, these frameworks were tested on a total of 546 video clips, each 1 min in length,
comprising over 9 h of total video length.

Table 5 demonstrates the performance comparison of CenterNet and YOLOv4 models in different
conditions. The performance of these detector–tracker frameworks is assessed by dividing the values
obtained from them with the manually counted ground truths expressed in per hundredth or percentage.
As seen from Table 5, the combination of YOLOv4 and Feature tracker obtained a reasonable counting
performance for all the three different environmental conditions specified. For model combinations
where a count percentage of over one hundred was achieved, there was clearly some fault in both
detector and tracker. The reasoning behind the detector–tracker combination achieving over 100 percent
accuracy is largely to do with the object detector generating multiple bounding boxes for the same
vehicle. This resulted in overcounting of vehicles. Similarly, IOU at times did not do very well at
predicting vehicle trajectories and identified them as disparate vehicles.

Sustainability 2020, 12, 9177 17 of 21

Table 5. Vehicle Count Performance.

Time of Day Detector/Tracker
Combination

Northbound Count
Percentage

Southbound Count
Percentage

Day CenterNet and IOU 137.04 144.06
CenterNet and Feature Tracker 75.02 105.66

YOLOv4 and IOU 144.38 155.27
YOLOv4 and Feature Tracker 70.81 89.70

Night CenterNet and IOU 144.75 161.38
CenterNet and Feature Tracker 74.74 112.41

YOLOv4 and IOU 145.91 166.23
YOLOv4 and Feature Tracker 72.99 87.12

Rain CenterNet and IOU 169.74 150.31
CenterNet and Feature Tracker 119.14 99.47

YOLOv4 and IOU 145.91 153.76
YOLOv4 and Feature Tracker 82.06 74.89

To study the performance of object detectors, heat maps showing false negatives (FN),
false positives (FP) and true positives (TP) from left to right, are shown in Figure 14 for CenterNet
and YOLOv4 models. YOLOv4 did well at detecting FN, however, CenterNet detected multiple
vehicles as seen from the generated heat maps in its southbound direction. This was largely due
to the insufficient number of traffic images used for training. Another possibility is that the model
experienced heavy congestion at these locations due to the presence of heavy gross-weighted vehicles
such as buses and trucks. The FP for object detectors are generally clean for both the object detectors
which is ideal for this situation. Some instances of FP could be seen from YOLOv4 which could have
resulted from the lower visibility or night-time conditions. For TP, both CenterNet and YOLOv4
models generated accurate predictions with an exclusion of a specific situation where the vehicles were
too distant from the camera.

Sustainability 2020, 12, x FOR PEER REVIEW 17 of 21

Day CenterNet and IOU 137.04 144.06

CenterNet and Feature

Tracker
75.02 105.66

 YOLOv4 and IOU 144.38 155.27

 YOLOv4 and Feature Tracker 70.81 89.70

Night CenterNet and IOU 144.75 161.38

CenterNet and Feature

Tracker
74.74 112.41

 YOLOv4 and IOU 145.91 166.23

 YOLOv4 and Feature Tracker 72.99 87.12

Rain CenterNet and IOU 169.74 150.31

CenterNet and Feature

Tracker
119.14 99.47

 YOLOv4 and IOU 145.91 153.76

 YOLOv4 and Feature Tracker 82.06 74.89

To study the performance of object detectors, heat maps showing false negatives (FN), false

positives (FP) and true positives (TP) from left to right, are shown in Figure 14 for CenterNet and

YOLOv4 models. YOLOv4 did well at detecting FN, however, CenterNet detected multiple vehicles

as seen from the generated heat maps in its southbound direction. This was largely due to the

insufficient number of traffic images used for training. Another possibility is that the model

experienced heavy congestion at these locations due to the presence of heavy gross-weighted vehicles

such as buses and trucks. The FP for object detectors are generally clean for both the object detectors

which is ideal for this situation. Some instances of FP could be seen from YOLOv4 which could have

resulted from the lower visibility or night-time conditions. For TP, both CenterNet and YOLOv4

models generated accurate predictions with an exclusion of a specific situation where the vehicles

were too distant from the camera.

(a)

(b)

Figure 14. Heat maps generated for vehicle counts using (a) CenterNet and (b) YOLOv4.

6. Front-End Graphical User Interface

React, [47] a JavaScript library, was used to build a front-end Graphical User Interface (GUI).

The deep learning algorithms are made to run in the background on live-traffic video feeds. These

algorithms record the state of traffic flows such as congestion, environmental conditions (i.e., rain,

snow), etc., and display CCTVs for roadways on their front-end GUI with their constituent levels of

traffic severity just by writing certain keywords. For example, a traffic operator at the TMC wants to

know what camera locations spot congestion or estimate the number of vehicles on that section of the

roadway. The operator can just do that by merely typing a bunch of keywords on the GUI’s input

Figure 14. Heat maps generated for vehicle counts using (a) CenterNet and (b) YOLOv4.

6. Front-End Graphical User Interface

React, [47] a JavaScript library, was used to build a front-end Graphical User Interface (GUI).
The deep learning algorithms are made to run in the background on live-traffic video feeds.
These algorithms record the state of traffic flows such as congestion, environmental conditions
(i.e., rain, snow), etc., and display CCTVs for roadways on their front-end GUI with their constituent
levels of traffic severity just by writing certain keywords. For example, a traffic operator at the TMC
wants to know what camera locations spot congestion or estimate the number of vehicles on that section

Sustainability 2020, 12, 9177 18 of 21

of the roadway. The operator can just do that by merely typing a bunch of keywords on the GUI’s input
panel and the system would display the list of cameras that record congestion. Similarly, additional
information such as vehicle counts on the camera locations helps operators extrapolate traffic density
information at certain times of the day at that location. Factors such as weather information also
hold great importance for studying traffic behavior. Out of many other functionalities, the proposed
system also enables the operator to identify what camera locations observe different weather patterns
such as if there is rain or snow in that particular moment in time. For instance, how would the traffic
need to be managed in situations where recurring congestion occurs due to weather impacts such as
heavy rainfall or snow storms. All this information serves as a useful tool in discerning appropriate
traffic monitoring needs by quickly running over hundreds of cameras and enabling operators ease
and accessibility in traffic surveillance. For further detail, please refer to [4] to see a quick demonstration
of the developed GUI. Figure 15 shows the front-end GUI of the proposed system.

Sustainability 2020, 12, x FOR PEER REVIEW 18 of 21

panel and the system would display the list of cameras that record congestion. Similarly, additional

information such as vehicle counts on the camera locations helps operators extrapolate traffic density

information at certain times of the day at that location. Factors such as weather information also hold

great importance for studying traffic behavior. Out of many other functionalities, the proposed

system also enables the operator to identify what camera locations observe different weather patterns

such as if there is rain or snow in that particular moment in time. For instance, how would the traffic

need to be managed in situations where recurring congestion occurs due to weather impacts such as

heavy rainfall or snow storms. All this information serves as a useful tool in discerning appropriate

traffic monitoring needs by quickly running over hundreds of cameras and enabling operators ease

and accessibility in traffic surveillance. For further detail, please refer to [4] to see a quick

demonstration of the developed GUI. Figure 15 shows the front-end GUI of the proposed system.

Figure 15. Screenshot of AI-enabled traffic monitoring system GUI.

7. Conclusions

The rapid progression in the field of deep learning and high-performance computing has highly

augmented the scope of video-based traffic monitoring systems. In this study, an automatic traffic

monitoring system is developed that builds on robust deep learning models and facilitates traffic

monitoring using a graphical user interface. Deep learning algorithms, such as Mask R-CNN, Faster

R-CNN, YOLO and CenterNet, were implemented alongside two different object tracking systems

viz. IOU and Feature Tracker. Mask R-CNN was used to detect traffic queues from real-time traffic

CCTVs whereas YOLO and Faster R-CNN were deployed to predict objects which later coupled with

object trackers were used to detect stationary vehicles. Mask R-CNN predicted traffic queues with

90.5% accuracy while the highest accuracy attained by YOLO was 93.7%. The discrepancy in correctly

detecting queues was mainly due to the poor image quality, queues being distant from the camera

and glaring effects. These issues significantly affected the accuracies of the proposed models.

Similarly, the F1, RMSE and S3 scores for detecting stationary vehicles were 0.8333, 154.7741 and

0.4034, respectively. It was observed that the model correctly detected stranded vehicles which

remained closer to the camera but faced difficulties while detecting distant stationary vehicles. Part

of the problem for lower S3 scores was also due to issues such as video pixelation, and the presence

of traffic intersections. Regardless, procedures such as anomaly suppression and video pixelation

corrections were useful at improving the efficacy of the proposed model. It is worth noting that these

corrections led to an effective stationary vehicle prediction system. Lastly, the performance of the

vehicle counting framework was satisfactory for both CenterNet and YOLO combinations with

Feature Tracker. However, the vehicle-counting framework could be further explored and the

existing models be further fine-tuned to generate a near to perfect counting framework. This could

Figure 15. Screenshot of AI-enabled traffic monitoring system GUI.

7. Conclusions

The rapid progression in the field of deep learning and high-performance computing has highly
augmented the scope of video-based traffic monitoring systems. In this study, an automatic traffic
monitoring system is developed that builds on robust deep learning models and facilitates traffic
monitoring using a graphical user interface. Deep learning algorithms, such as Mask R-CNN,
Faster R-CNN, YOLO and CenterNet, were implemented alongside two different object tracking
systems viz. IOU and Feature Tracker. Mask R-CNN was used to detect traffic queues from real-time
traffic CCTVs whereas YOLO and Faster R-CNN were deployed to predict objects which later coupled
with object trackers were used to detect stationary vehicles. Mask R-CNN predicted traffic queues
with 90.5% accuracy while the highest accuracy attained by YOLO was 93.7%. The discrepancy
in correctly detecting queues was mainly due to the poor image quality, queues being distant from
the camera and glaring effects. These issues significantly affected the accuracies of the proposed models.
Similarly, the F1, RMSE and S3 scores for detecting stationary vehicles were 0.8333, 154.7741 and 0.4034,
respectively. It was observed that the model correctly detected stranded vehicles which remained closer
to the camera but faced difficulties while detecting distant stationary vehicles. Part of the problem
for lower S3 scores was also due to issues such as video pixelation, and the presence of traffic
intersections. Regardless, procedures such as anomaly suppression and video pixelation corrections
were useful at improving the efficacy of the proposed model. It is worth noting that these corrections
led to an effective stationary vehicle prediction system. Lastly, the performance of the vehicle
counting framework was satisfactory for both CenterNet and YOLO combinations with Feature Tracker.

Sustainability 2020, 12, 9177 19 of 21

However, the vehicle-counting framework could be further explored and the existing models be further
fine-tuned to generate a near to perfect counting framework. This could in fact be ideal for most
transportation agencies as they rely heavily on turning movement counts to optimize traffic signals
at intersections.

In conclusion, the proposed models which form an integrated AI-enabled traffic monitoring
system obtained superior results and could be useful at attaining some level of automation at Traffic
Management Centers. It is worth mentioning that since most software suites sold by transportation
vendor companies cost over hundreds of thousands of dollars, their functionalities are limited and they
offer just a few more traffic surveillance capabilities than our proposed framework. In that case,
the system proposed in this paper could be a cheaper and reliable alternative to bringing in some level
of traffic automation by supplementing it with some additional low-cost back-up software suites.

Author Contributions: Conceptualization, Y.A.-G.; Data curation, V.M. and P.J.; Formal analysis, V.M. and Y.A.-G.;
Investigation, V.M., P.J. and Y.A.-G.; Methodology, V.M. and P.J.; Project administration, Y.A.-G.; Software, V.M.,
Y.A.-G.; Supervision, Y.A.-G.; Validation, A.R.M.; Writing—original draft, V.M.; Writing—review & editing, A.R.M.,
P.J. and Y.A.-G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Land, E.H. An alternative technique for the computation of the designator in the retinex theory of color
vision. Proc. Natl. Acad. Sci. USA 1986, 83, 3078–3080. [CrossRef] [PubMed]

2. Rahman, Z.-u.; Jobson, D.J.; Woodell, G.A. Multi-scale retinex for color image enhancement. In Proceedings
of the 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 19 September 1996;
IEEE: Piscataway, NJ, USA; pp. 1003–1006.

3. He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. pattern Anal. Mach. Intell.
2010, 33, 2341–2353. [PubMed]

4. GitHub. Video Demonstration of a GUI based AI Enabled Traffic Monitoring System. Available online:
https://github.com/titanmu/aienabled (accessed on 30 September 2020).

5. Willis, C.; Harborne, D.; Tomsett, R.; Alzantot, M. A Deep Convolutional Network for Traffic Congestion
Classification. Available online: https://dais-ita.org/sites/default/files/nato_ist_trafficCongestion_Paper4_
Issue1.pdf (accessed on 4 October 2020).

6. Chakraborty, P.; Adu-Gyamfi, Y.O.; Poddar, S.; Ahsani, V.; Sharma, A.; Sarkar, S. Traffic congestion detection
from camera images using deep convolution neural networks. Transp. Res. Rec. 2018, 2672, 222–231.
[CrossRef]

7. Morris, T.; Schwach, J.A.; Michalopoulos, P.G. Low-Cost Portable Video-Based Queue Detection for Work-Zone
Safety; Technical Report No. 1129; Department of Civil Engineering, University of Minnesota: Minneapolis,
MN, USA, 2011.

8. Fouladgar, M.; Parchami, M.; Elmasri, R.; Ghaderi, A. Scalable deep traffic flow neural networks for urban
traffic congestion prediction. In Proceedings of the 2017 International Joint Conference on Neural Networks
(IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: Piscataway, NJ, USA; pp. 2251–2258.

9. Ma, X.; Yu, H.; Wang, Y.; Wang, Y. Large-scale transportation network congestion evolution prediction using
deep learning theory. PLoS ONE 2015, 10, e0119044. [CrossRef] [PubMed]

10. Wang, J.; Gu, Q.; Wu, J.; Liu, G.; Xiong, Z. Traffic speed prediction and congestion source exploration: A deep
learning method. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM),
Barcelona, Spain, 12–15 December 2016; IEEE: Piscataway, NJ, USA; pp. 499–508.

11. Carli, R.; Dotoli, M.; Epicoco, N.; Angelico, B.; Vinciullo, A. Automated evaluation of urban traffic congestion
using bus as a probe. In Proceedings of the 2015 IEEE International Conference on Automation Science
and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; IEEE: Piscataway, NJ, USA; pp. 967–972.

12. Litman, T. Developing indicators for comprehensive and sustainable transport planning. Transp. Res. Rec.
2007, 2017, 10–15. [CrossRef]

http://dx.doi.org/10.1073/pnas.83.10.3078
http://www.ncbi.nlm.nih.gov/pubmed/3458165
http://www.ncbi.nlm.nih.gov/pubmed/20820075
https://github.com/titanmu/aienabled
https://dais-ita.org/sites/default/files/nato_ist_trafficCongestion_Paper4_Issue1.pdf
https://dais-ita.org/sites/default/files/nato_ist_trafficCongestion_Paper4_Issue1.pdf
http://dx.doi.org/10.1177/0361198118777631
http://dx.doi.org/10.1371/journal.pone.0119044
http://www.ncbi.nlm.nih.gov/pubmed/25780910
http://dx.doi.org/10.3141/2017-02

Sustainability 2020, 12, 9177 20 of 21

13. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International conference
on computer vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

14. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection.
Available online: https://arxiv.org/abs/2004.10934 (accessed on 4 October 2020).

15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards Real-Time Object Detection with Region Proposal
Networks. Available online: https://arxiv.org/abs/1506.01497 (accessed on 4 October 2020).

16. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection.
In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–
2 November 2019; pp. 6569–6578.

17. Rakhimkul, S.; Kim, A.; Pazylbekov, A.; Shintemirov, A. Autonomous object detection and grasping using
deep learning for design of an intelligent assistive robot manipulation system. In Proceedings of the 2019
IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019;
IEEE: Piscataway, NJ, USA; pp. 3962–3968.

18. Cui, X.; Lu, C.; Wang, J. 3D semantic map construction using improved ORB-SLAM2 for mobile robot in edge
computing environment. IEEE Access 2020, 8, 67179–67191. [CrossRef]

19. Liu, Y.; Zhao, Z.; Chang, F.; Hu, S. An anchor-free convolutional neural network for real-time surgical tool
detection in robot-assisted surgery. IEEE Access 2020, 8, 78193–78201. [CrossRef]

20. Wang, D.; Zhang, N.; Sun, X.; Zhang, P.; Zhang, C.; Cao, Y.; Liu, B. AFP-Net: Realtime anchor-free polyp
detection in colonoscopy. In Proceedings of the 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 636–643.

21. Chung, M.; Lee, J.; Park, S.; Lee, M.; Lee, C.E.; Lee, J.; Shin, Y.-G. Individual tooth detection and identification
from dental panoramic x-ray images via point-wise localization and distance regularization. Available online:
https://arxiv.org/abs/2004.05543 (accessed on 4 October 2020).

22. Algabri, M.; Mathkour, H.; Bencherif, M.A.; Alsulaiman, M.; Mekhtiche, M.A. Towards deep object detection
techniques for phoneme recognition. IEEE Access 2020, 8, 54663–54680. [CrossRef]

23. Liu, Z.; Zheng, T.; Xu, G.; Yang, Z.; Liu, H.; Cai, D. Training-Time-Friendly Network for Real-Time Object
Detection; AAAI: Menlo Park, CA, USA, 2020; pp. 11685–11692.

24. Moranduzzo, T.; Melgani, F. Automatic car counting method for unmanned aerial vehicle images. IEEE Trans.
Geosci. Remote Sens. 2013, 52, 1635–1647. [CrossRef]

25. Kamenetsky, D.; Sherrah, J. Aerial car detection and urban understanding. In Proceedings of the 2015
International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, SA,
Australia, 23–25 November 2015; IEEE: Piscataway, NJ, USA; pp. 1–8.

26. Arteta, C.; Lempitsky, V.; Noble, J.A.; Zisserman, A. Interactive object counting. In Proceedings of
the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2020; Springer:
Berlin, Germany; pp. 504–518.

27. Chiu, C.-C.; Ku, M.-Y.; Wang, C.-Y. Automatic Traffic Surveillance System for Vision-Based Vehicle Recognition
and Tracking. J. Inf. Sci. Eng. 2010, 26, 611–629.

28. Zhuang, P.; Shang, Y.; Hua, B. Statistical methods to estimate vehicle count using traffic cameras.
Multidimens. Syst. Signal. Process. 2009, 20, 121–133. [CrossRef]

29. Mundhenk, T.N.; Konjevod, G.; Sakla, W.A.; Boakye, K. A large contextual dataset for classification, detection
and counting of cars with deep learning. In Proceedings of the European Conference on Computer Vision,
Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin, Germany; pp. 785–800.

30. Kamijo, S.; Matsushita, Y.; Ikeuchi, K.; Sakauchi, M. Traffic monitoring and accident detection at intersections.
IEEE Trans. Intell. Transp. Syst. 2000, 1, 108–118. [CrossRef]

31. Gangisetty, R. Advanced traffic management system on I-476 in Pennsylvania. In Proceedings of
the Conference on Intelligent Transportation Systems, Boston, MA, USA, 12 November 1997; IEEE: Piscataway,
NJ, USA; pp. 373–378.

32. Rojas, J.C.; Crisman, J.D. Vehicle detection in color images. In Proceedings of the Conference on Intelligent
Transportation Systems, Boston, MA, USA, 12 November 1997; IEEE: Piscataway, NJ, USA; pp. 403–408.

33. Zeng, N.; Crisman, J.D. Vehicle matching using color. In Proceedings of the Conference on Intelligent
Transportation Systems, Boston, MA, USA, 12 November 1997; IEEE: Piscataway, NJ, USA; pp. 206–211.

34. Ai, A.H.; Yungf, N.H. A video-based system methodology for detecting red light runners. In Proceedings of
the IAPR Workshop on Machine Vision Applications, Makuhari, Chiba, Japan, 17–19 November 1998.

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/1506.01497
http://dx.doi.org/10.1109/ACCESS.2020.2983488
http://dx.doi.org/10.1109/ACCESS.2020.2989807
https://arxiv.org/abs/2004.05543
http://dx.doi.org/10.1109/ACCESS.2020.2980452
http://dx.doi.org/10.1109/TGRS.2013.2253108
http://dx.doi.org/10.1007/s11045-008-0068-x
http://dx.doi.org/10.1109/6979.880968

Sustainability 2020, 12, 9177 21 of 21

35. Thajchayapong, S.; Garcia-Trevino, E.S.; Barria, J.A. Distributed classification of traffic anomalies using
microscopic traffic variables. IEEE Trans. Intell. Transp. Syst. 2012, 14, 448–458. [CrossRef]

36. Ikeda, H.; Kaneko, Y.; Matsuo, T.; Tsuji, K. Abnormal incident detection system employing image processing
technology. In Proceedings of the 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation
Systems (Cat. No. 99TH8383), Tokyo, Japan, 5–8 October 1999; pp. 748–752.

37. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

38. Dutta, A.; Zisserman, A. The VIA annotation software for images, audio and video. In Proceedings of
the 27th ACM International Conference on Multimedia, Nice, France, 25 November 2019; pp. 2276–2279.

39. The AI City Challenge. Available online: https://www.aicitychallenge.org/ (accessed on 28 September 2020).
40. Bochinski, E.; Eiselein, V.; Sikora, T. High-speed tracking-by-detection without using image information.

In Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), Lecce, Italy, 29 August–1 September 2017; IEEE: Piscataway, NJ, USA; pp. 1–6.

41. NTIMC. Benefits of Traffic Incident Management; National Traffic Incident Management Coalition: Amsterdam,
The Netherlands, 2006.

42. Haghani, I.; Hamedi, Y. Methodology for Quantifying the Cost Effectiveness of Freeway Service Patrol Programs—Case
Study: H.E.L.P: Program; Final Report; University of Maryland: College Park, MD, USA, 2006.

43. Baykal-Gürsoy, M.; Xiao, W.; Ozbay, K. Modeling traffic flow interrupted by incidents. Eur. J. Oper. Res.
2009, 195, 127–138. [CrossRef]

44. Yang, H.; Ozbay, K.; Xie, K.; Ma, Y. Development of an automated approach for quantifying spatiotemporal
impact of traffic incidents. In Proceedings of the Transportation Research Board 95th Annual Meeting,
Washington, DC, USA, 1–14 January 2016; pp. 10–14.

45. Mandal, V.; Adu-Gyamfi, Y. Object Detection and Tracking Algorithms for Vehicle Counting: A Comparative
Analysis. Available online: https://arxiv.org/abs/2007.16198 (accessed on 4 October 2020).

46. Mandal, V. Artificial Intelligence Enabled Automatic Traffic Monitoring System. Master’s Thesis, University of
Missouri–Columbia, Columbia, MO, USA, December 2019.

47. React. Available online: https://reactjs.org/ (accessed on 8 October 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TITS.2012.2220964
https://www.aicitychallenge.org/
http://dx.doi.org/10.1016/j.ejor.2008.01.024
https://arxiv.org/abs/2007.16198
https://reactjs.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Deep Learning Frameworks for Object Detection and Classification
	Vision-Based Traffic Analysis Systems

	Proposed Methodology
	Faster R-CNN
	Mask R-CNN
	YOLO
	CenterNet
	Monitoring Traffic Queues
	Detecting Stationary Vehicles

	Data Description
	Results
	Traffic Queues Detection
	Stationary Vehicle Detection
	Vehicle Counts

	Front-End Graphical User Interface
	Conclusions
	References

