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Abstract: The study utilizes a dataset with seven critical constraints and creates models that are
estimated based on various metrics. The goal is to categorize and properly predict the water quality
index (WQI) using the suggested models. The outcomes show that the implied models can accurately
assess water quality and forecast WQI with high rates of success. Temperature, pH, dissolved oxygen
(DO), conductivity, total dissolved solids (TDS), turbidity, and chlorides (Cl-) are some of the six
crucial factors used in the study’s dataset. The mean absolute error (MAE), mean squared error (MSE),
and coefficient of determination (R2) are some of the metrics used to develop and assess the Artificial
Neural Networks (ANN) and Long Short-Term Memory (LSTM) models. The study also makes
use of heat maps and correlation graphs to shed further light on the connections between various
water quality measures. The color-coded values of the seven parameters, which represent the water
quality level of the sample, are displayed on the heat map. The link between the two parameters is
shown by the correlation graph between TDS and turbidity, which depicts their correlation coefficient.
The study’s results show how effective machine learning algorithms may be as a tool for observing
surface water quality. Himachal Pradesh is the tourist hub, so with the rapid increase in the volume
of surface water contamination, the application of artificial intelligence will give a better view of
data analytics and help with prediction and modeling. It was obtained from the study that the mean
square error and root mean square error of ANN and LSTM lie between 0.52–6.0 and 0.04–0.21,
respectively. However, the LSTM model’s accuracy is 95%, which is higher than the ANN model.
The study highlights the importance of leveraging machine learning techniques in water quality
monitoring to ensure the protection and management of water resources. With advancements in
machine learning, artificial intelligence (AI) techniques have emerged as a promising tool for surface
water quality monitoring. The major goal of the study is to explore the potential of two types of
machine learning algorithms, namely artificial neural networks (ANNs) and long short-term memory
(LSTM) models, for surface water quality monitoring.

Keywords: artificial intelligence; surface water; water quality index; neural networks

1. Introduction

Even though fresh water covers 34% of the earth’s exterior, just 1% of fresh water is
available to humans. Global population growth and industrialization are also contributing
to the spread of pollutants in water bodies. As a result, it is critical to continuously screen
the quantity of water from common and unique sources [1,2]. The quality of the water
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tested and evaluated is attainable by the verification of the framework. Water quality can be
checked by organic records or physiochemical parameters. Advancing from conventional
water quality checking and evaluation strategies, Web of Things-enabled technologies,
and the utilization of artificial insights, which are unused domains being investigated,
artificial intelligence was presented in computer science in the 1950s and has undergone
substantial changes in enhancement and modernity. The scientific commitment of the
research is to illustrate a study on the application of different sorts of neural networks
to the surface quality of water to finalize the various strategies utilized in the area of the
test where the input parameter will be utilized [3–7]. Most water resources, such as rivers,
ponds, and tributaries, are subjected to strict purity standards. Various water standards
exist for diverse purposes and applications. For instance, irrigation water should not
have excessive salinity or hazardous substances that could be transmitted to plants or
soil, posing risks to ecosystems. The specific attributes necessary for industrial water
quality vary depending on the type of industrial activity. When it comes to drinking
water, natural water sources like groundwater and surface water are considered highly
preferable. Pollution of such resources can occur because of human or engineering activities
as well as other ecological activities [8,9]. As a result, increasing industrial expansion has
accelerated the degradation of water quality. Furthermore, infrastructure has a significant
impact on drinking water quality due to a shortage of community awareness and less
sanitized elements. Undoubtedly, the concerns of polluted water sources are exceptionally
detrimental, presenting a significant risk to individual health, the environment, and societal
structures [3]. According to data from the United Nations, approximately 1.5 million
individuals lose their lives each year due to illnesses resulting from tainted water. In poor
nations, it is estimated that 80% of health issues stem from water contamination. Each year,
there are five million reported casualties and 2.5 billion instances of sickness related to this
issue. These statistics reveal a higher mortality rate compared to deaths resulting from
accidents, crimes, or acts of terrorism. Massive population growth, industrial innovation,
and the usage of manure and fungicides have all had a negative impact on water quality
(WQ) ecosystems [10–12].

As a vital natural resource, surface water is essential for maintaining environmental
health, economic activity, and human existence. Any water that is present on the top of the
earth’s surface, such as rivers, lakes, ponds, wetlands, and seas, is referred to as a surface
water source [13–19]. The primary sources of surface water are precipitation and runoff
from higher altitudes. Snow melts in the spring when the climate warms, and the water
that results rushes into surrounding streams and rivers, making a large contribution to the
world’s supply of drinking water. Surface water is not always readily available in different
areas and at different times of the year, and both human activity and natural processes
can have an impact on its quality [1,2,4,5,10,20–46]. Human consumption is one of the
key uses of apparent water, especially in places where groundwater supplies are scarce
or difficult to reach. Various governmental organizations estimate that 68% of the water
that is provided to humans globally originates from surface water. Surface water must be
treated to eliminate impurities such as bacteria, viruses, chemicals, and other pollutants
before it is safe to drink [15,19–24]. The irrigation of crops, especially in agriculture, is
a substantial additional use of surface water. Additionally, surface water is used for
leisure pursuits including swimming, boating, and fishing, as well as industrial processes,
hydropower production, and cattle irrigation. But there is a growing need for surface water
for a variety of purposes, and there are consequences of climate change, such as droughts
and floods [25–28]. Evaporation and infiltration, when water seeps into the earth and
turns into subterranean water, can also cause surface water levels to drop. Particularly in
regions with few surface water supplies, groundwater may be a substantial source of water
for human use. However, excessive groundwater pumping can result in pollution and
depletion, which can have an impact on the environment and individual fitness. A variety
of human activities, such as agriculture, industrial operations, and home wastewater can
also have an influence on the superiority of surface water [11,18]. In addition, pollution
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from industrial operations and wastewater can introduce chemicals and other pollutants
into the water, causing eutrophication and the creation of toxic algal blooms. Nutrient
runoff from fertilizers and animal manure can also contribute to this problem. Several
measures, including water conservation techniques, wastewater treatment, and rules to
regulate pollution and safeguard water quality, have been put in place to guarantee the
sustainable use of surface water. A further way to guarantee the fair and effective use of
surface water resources is to implement integrated water resource management methods,
such as watershed management and water allocation plans. In conclusion, surface water
is an important natural resource that supports both ecosystems and people by offering
vital functions. For water security, human health, and environmental sustainability, it
must be used and managed sustainably [4,10]. It is crucial to put into place efficient
policies and practices in order to preserve and safeguard surface water resources for
both current and future generations. The quality of surface water can be impacted by a
wide range of contaminants. For instance, nutrient contamination is a serious issue in
many aquatic environments. When surface waterways obtain an excessive amount of
nitrogen and phosphorus from fertilizers, sewage, and other sources, algal blooms can
result, which can reduce oxygen levels and endanger aquatic life. Another major issue
is sediment contamination, which is brought on by soil erosion into surface waterways,
damages aquatic life, and causes siltation and turbidity [22]. Another significant problem
for surface water quality is chemical contaminants such as industrial chemicals, medicines,
and pesticides. These pollutants, which can endanger aquatic life and human health, can
enter streams through spills, runoff, or direct discharges [7,29–31].

There are several management techniques that may be used to preserve and enhance
the quality of surface water. Limiting the use of chemicals and other pollutants is one way
to decrease pollution at the source. To minimize storm water runoff, for instance, people
can use fewer fertilizers, pesticides, and other chemicals surrounding their houses, and
companies can utilize green infrastructure techniques like rain gardens and green roofs.
Treatment of contaminants before they enter surface waterways is an alternative strategy.
This might entail filtering contaminants and enhancing water quality utilizing a variety of
methods, including sediment basins, wetlands, and artificial treatment wetlands [32,33].
Pollutants can often be avoided by using source control measures, such as covering storage
places and reducing industrial discharges [6].

Therefore, surface waters are essential for preserving natural systems and sustaining
human existence. However, contamination from a multitude of sources may swiftly degrade
their quality. Reducing pollution at the source and using various treatment technologies
to filter pollutants can enhance water quality to safeguard and amend the superiority of
surface water. We can ensure that surface waters continue to deliver important advantages
for future generations by adopting these steps [16,34].

Artificial intelligence (AI) has made a difference analyst accomplish the plausibility
of imitating human behaviour abilities in specific spaces of knowledge [3–5]. AI instru-
ments include sloppy logic, particle swarm optimization, algorithmic genetics, artificial
neural networks, assistance vector machine, ad boost algorithm, etc. The sustainability of
ecosystems, human health, and economic activities all depend on the quality of surface
water. Surface water quality monitoring and evaluation have historically relied on labour-
intensive, expensive, and time-consuming laboratory studies and manual sampling [6,7].
This is because AI models are capable of processing large amounts of data quickly and
accurately, allowing for the identification of trends and patterns in water quality data that
may be difficult to detect using traditional methods.Artificial intelligence (AI) and other
emerging technologies provide the potential to fundamentally alter how we measure, track,
and evaluate the quality of surface water [8,9]. A promising approach to improving the
evaluation, monitoring, and assessment of surface water quality is offered by artificial
intelligence. By utilizing its potential, we may better understand our water systems and
develop proactive management approaches. To ensure the comprehensive and ethical
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management of water resources, AI should be implemented, but with consideration for its
limitations and in conjunction with human expertise [10–12].

Having models for predicting the WQ is therefore quite useful for drawing conclusions
about water contamination. Currently, there are two primary types of models employed
for the purpose of demonstrating and assessing water quality: machinery-oriented models
and non-machinery-oriented models. The machinery-oriented model stands out for its
advanced nature, as it replicates water quality using data derived from the headway
system infrastructure. This versatility allows it to be applied to various water bodies.
Among the early simulation models for water quality, the widely utilized Streeter–Phelps
(S-P) model deserves mention. Researchers have extensively studied the water quality of
Lake Galaa in Turkey, employing techniques such as satellite image fusion and principal
component analysis (PCA). In another instance, the water quality of the Narmada River
was predicted using a decision tree technique incorporating five water quality indicators.
Additionally, a study proposed the utilization of deep fractional stacked simple recurrent
units (Bi-S-SRU) for the development of an accurate water quality forecasting system in
smart agriculture [13–16].

Keeping in view of the above, this study focuses on reviewing the effectiveness of
the AI models in water quality monitoring depending on the range of appropriate key
issues, like the quality of the data and the simulation’s training. The outcomes of this
investigation have meaningful suggestions for legislators and stakeholders involved in
water resource management. The use of AI models in surface water quality monitoring can
help elaborate actual approaches for water resource control, ensure the availability of safe
and clean water for all, and prevent water pollution. The leading area of this consideration
was to gather measurable data regarding the physical, chemical, and biological properties
of water by conducting water sampling. The aim was to employ machinery knowledge
algorithms to analyze the classification of water quality and determine the water quality
index. Various artificial intelligence models, including artificial neural networks (ANN)
and long short-term memory (LSTM) deep-rooted learning algorithms, were utilized for
this purpose. The significance of the study is justified considering that the accessibility of
clean water could be the basic economic advancement objective, and the neural system in
water quality checking and evaluation is a generally novel area to investigate.

2. AI in Water Quality Monitoring

Artificial intelligence (AI) states the examination and exploration of computer ar-
rangements accomplished to execute the responsibilities stereotypically associated with
social intellect, such as graphic awareness, dialog acknowledgement, choice making, and
understanding ordinary linguistic [11]. The concept of AI dates to ancient philosophers
who were interested in the systematization of reasoning. However, it was not until the
development of programmable computers in the 19th century that the focus shifted to-
wards the possibility of creating intelligent machines. AI is a broad and swiftly evolving
technology field that encompasses a range of sub-disciplines, including natural language
processing, computer vision, robotics, and cognitive computing [17–19]. The technology
has to be imminent to transmute numerous activities, including healthcare, economics,
manufacturing, and transportation. However, it also enhances ethical, social, and economic
questions, such as the effect on occupation and privacy, the capability for preference and
perception, and the decent use of AI in decision-making [35].

AI has a rich history that dates to ancient times. The development of programmable
computers in the 20th century, coupled with advancements in various fields, led to the cre-
ation of topological works that described how machines could be designed to think [3,13,37].
AI is a fast-expanding science that has the potential to disrupt many sectors, but it also
poses significant ethical, societal, and economic issues that must be addressed. In sur-
face water quality monitoring, AI Technologies discovered that employing a combina-
tion of physical-chemical and biological criteria did not produce excellent results. The
fast evolution of the Internet of Things (IoT) in radar, wireless interaction, and trade
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IoT is enhancing more presumed to be the next-creation option of control [38]. Many
researchers [7,8,10,11,21,33,35,38,39] have used the application of IOT for water quality
observing systems and concluded that parameters like pH and TDS for different types of
water—salty, mud, drinking, and tap water—showed varied results. The Internet of Things
is crucial for increasing trade effectiveness and superiority while cutting trade costs and
supplies. Conversely, there have been few openly published real-world IoT project applica-
tions thus far. AI for Surface Water Excellence Observing and Estimation demonstrated the
various models used for water excellence observing and performed a literature review for
previous research [18]. Many studies [11,12,15,17,19,20,38] have also discussed different
types of artificial models and the models that can be used to calculate water quality index.
Because the predictor parameters of these models can be measured fast, the BOD value may
be predicted promptly. Few of the researchers have highlighted the AI approach to predict
river water quality and predicted the results using the parameters like BOD, COD, EC,
TDS, and turbidity. Studies have shown that the expectation of groundwater level (GWL)
using geoelectric properties is one of the trickiest puzzles to solve. It is partly because there
is not yet a concrete empirical connection between the amount of groundwater and the
geoelectric parameters. This study investigated the ability of advanced artificial neural
networks (ANNs) to model nonlinear systems to get around these problems [40].

Water quality monitoring (WQM) parameters like turbidity, temperature, pH, electrical
conductivity, oxidation, etc. are essential for depicting the ideal nature of water sources. To
find solutions that are physically accurate, it is important to formulate the problem more
precisely than has previously been the case in the literature and to represent the underlying
processes realistically. It successfully integrates data models, makes wise decisions, does
dynamic optimization, and controls. Researchers [5,31] have predicted that using a CNN
model detected algae and foam present in water and it was concluded that the model
used gave appropriate results. Contaminants are eliminated by the procedure, which
then turns them into waste matter that may either be supplied to the water supply or
immediately recovered. Studies have shown the comparison of different types of artificial
models like ANFIS and ANN [28,34]. It also indicated which models were more accurate
at predicting the water quality categorization and index. The modeling methodology
also helps in achieving a variety of other parameters like data–model integration, sound
decision-making, dynamic optimization, and control, which help in more accurate result
description. The Internet of Things (IoT) and smart grid play essential roles in encouraging
and guiding information technology and economic growth. IoT applications are now
expanding quickly, but some of them have specific criteria that present technology cannot
provide. IoT is the focus of a lot of research. Wi-Fi-based wireless sensor networks (WSNs)
are capable of non-linear transmission, large-scale data gathering, good cost-effectiveness,
and video monitoring, in addition to having high bandwidth and rate [41].

To obtain the most information from the water quality data gathered, the design of
a network for monitoring water quality is a difficult process that requires the best config-
uration. The network design should ideally consider the specific monitoring objectives,
representative sampling size, location, and frequency, water quality variable selection,
as well as logistical and financial limitations [25]. A workable and simple technique for
designing a water quality monitoring network will provide a reliable, effective, and afford-
able design. Anomalies in water can be detected in real time using multi-sensor systems.
While the set of sensors varies depending on the application, the overall principle stays the
same. This technology might be used in a wide range of applications, including surface
water, urban runoff, food and industrial process water, aquaculture, and several other
sectors where water is utilized and reused. The creation and development of AI techniques
using ANNs give unique ways in a variety of domain domains; nevertheless, their spe-
cific application can provide novel approaches to increasing water quality efficiently and
effectively [20,28,36,42].
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3. Study Area

The study area chosen for the research was Ashwini Khud. The geographical location
of the study area is represented in Figure 1. The study of water samples from the River
Ashwini in Sadhupul, Himachal Pradesh, is of utmost significance for assessing the quality
of drinking water in the region. The Ashwini River is the primary source of water supply
for many villages and towns in the Solan district, and therefore it is essential to determine
its suitability for consumption. The substantial and compound attributes of the river water
could change depending on the geographical features of the area, and these could have an
impact on the water’s suitability for drinking purposes. The study includes an analysis of
the water samples for various parameters involving pH, total dissolved solids, electrical
conductivity, turbidity, and microbial contamination. These parameters could indicate the
specter of harmful contaminants such as substantial metals, pesticides, and bacteria, which
could make the water unfit for human consumption. The results of this study will help to
identify the parameters that indicate the presence of harmful contaminants such as heavy
metals and bacteria, which could make the water unfit for human consumption, which in
turn can help to identify the potential health risks associated with drinking water from the
Ashwini River and to take appropriate measures to improve the water quality if required.
It is crucial to ensure the welfare and superiority of drinking water in the region to prevent
waterborne diseases and promote the overall health and wellbeing of the local population.
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Data Collection and Treatment

The quality of water is an essential aspect to consider as it directly affects human
health, agriculture, industry, and the environment. The study focused on monitoring
twelve water quality measures for six months to determine the suitability of the water for
different purposes. Out of the twelve measures tracked, only six variables were chosen
for the study based on their significant influence on the traits of water quality. The pH,
hardness, total dissolved solids, chlorides, turbidity, and dissolved oxygen are important
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indicators of water quality, and their values might alter the water’s usefulness for various
purposes. The study used a dataset consisting of 200 water samples to monitor these
parameters. Although the dataset is limited, it provides important insights into the water
quality of the area and could be useful in identifying trends and patterns in the data as
given in Figure 2. The findings of this study might aid in determining the appropriateness
of water for various applications, including drinking, irrigation, and industrial usage.
The investigation might also assist in identifying potential sources of contamination and
establishing measures for protecting and improving the area’s water quality. In conclusion,
this study is crucial in determining the quality of water in the area and provides valuable
information on the parameters that significantly impact water quality. This information
could be used to develop policies and strategies to improve water quality, promote public
health, and protect the environment.
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4. Artificial Neural Network (ANN) Model

ANN is a type of machine learning algorithm that is capable of learning complex
patterns in data, making it useful for identifying trends and patterns in water quality data.
After receiving data from a variety of different neurons and mathematically processing it,
ANNs are composed of connected, layered neurons that send the results to neurons in the
layer below to generate the output as shown in Figure 3 [10,17,32,35,43].
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The strength of these connections between neurons can be adjusted based on the data
that the network is trained on, allowing the network to learn and improve its performance
over time. The basic unit of an ANN is the artificial neuron, also known as a perception.
A perception takes in one or more inputs, multiplies each input by a weight, adds them
together, and applies an activation function to produce an output [44]. The activation
function is usually non-linear, allowing the network to learn complicated correlations
between inputs and outputs. There are several types of ANNs, including feed forward
networks, recurrent networks, and convolution networks. Feed forward networks are the
simplest type of network, and they are used for tasks like classification and prediction.
Recurrent networks are designed to process sequences of data, and they are commonly used
in tasks like speech recognition and natural language processing. Convolution networks are
used for tasks like image and audio recognition, and they are designed to detect patterns
in data that are spatially or temporally localized [25,31,37]. Training an ANN involves
adjusting the weights between neurons so that the network produces the desired output for
a given input. This is typically carried out using a process called back propagation, which
involves computing the error between the network’s output and the desired output and
then using that error to adjust the weights in the network. This process is repeated over
many iterations, and the network’s performance gradually improves as the weights are
adjusted to minimize the error.

Image and audio identification, natural language processing, and financial modelling
are just a few of the uses for ANNs. They have been particularly successful in tasks like
object recognition and speech recognition, where they have achieved human-level perfor-
mance in some cases [11,14,33,40,44]. However, training ANNs may be computationally
costly and requires a huge quantity of data to attain decent performance. Additionally, they
can be difficult to interpret, which can make it challenging to understand how the network
is making decisions. In conclusion, ANNs are a powerful type of machine learning model
that are inspired by the way the human brain works. They have been successful in a wide
range of applications, but they can be computationally expensive to train and difficult to
interpret [26]. An artificial neural network (ANN) may be used to forecast and monitor
water quality. The following are the steps for developing an ANN model for measuring
water quality.

Data collection: To gain facts on the properties of water characteristics, data can be
collected from various sources such as rivers, lakes, and wells. The data can be gathered
through manual sampling or automated monitoring systems. Parameters that can be
measured include temperature, pH, dissolved oxygen content, and pollutants. For example,
temperature can be measured using thermometers or temperature probes, pH can be
measured using pH meters, dissolved oxygen can be measured using oxygen sensors, and
pollutants can be measured using analytical instruments such as spectrophotometers or
gas chromatographs. Data can also be collected from government agencies or research
organizations that monitor water quality, such as the Environmental Protection Agency or
the US Geological Survey [25,26]. Collecting comprehensive and accurate data on water
characteristic is essential for certifying the welfare of consumption water, protecting aquatic
ecosystems, and monitoring the impacts of human activities on water resources.

Data preprocessing: Data preprocessing is a crucial step in preparing data for artifi-
cial neural network (ANN) analysis. It involves cleaning the data to remove errors and
inconsistencies, and normalizing it to establish a standardized format suitable for analy-
sis. This includes identifying and removing missing values, outliers, and irrelevant data
points. Normalization techniques such as scaling or standardization are used to ensure
that all features are on a similar scale, allowing the ANN to learn the patterns in the data
more effectively [41]. A well-preprocessed dataset is essential for accurate and effective
ANN analysis.

Data splitting: Once data preprocessing is completed, the dataset is split into three sets:
training, validation, and testing. The training set is used to train the ANN model, while
the validation set is used to adjust model parameters and prevent over fitting 254. Finally,
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the testing set is used to evaluate the performance of the trained model on unseen data [9].
This approach ensures that the performance of the ANN model is not overly influenced by
the training data and can generalize to new, unseen data.

ANN structural design: The structural design of an artificial neural network (ANN)
involves creating an input layer, one or more hidden layers, and an output layer [25]. The
number of nodes in each layer and the activation functions used can be optimized using
techniques such as grid search and cross-validation. Grid search involves systematically
testing different combinations of hyper parameters to identify the optimal configuration,
while cross-validation involves evaluating the performance of the model on different
subsets of the data to prevent over fitting.

Model justification: The performance of an artificial neural network (ANN) is justified
by evaluating its accuracy, precision, recall, and other metrics on a separate validation
set. If necessary, the ANN’s settings can be modified to improve its performance, such
as adjusting the number of hidden layers or nodes, changing the learning rate, or using
different activation functions [38,45]. The goal is to optimize the ANN to achieve the
highest possible accuracy on unseen data while avoiding over fitting.

Model testing: To analyze the performance of an artificial neural network (ANN) model,
a testing set can be used to evaluate its F1-score, accuracy, precision, and recall. Additionally,
other machine learning models like k-nearest neighbor (KNN) and decision tree (DT) can
be used to compare their performance with that of the ANN. For both classification and
prediction problems, KNN and DT models can provide insights into the relationships
among variables and may be used to identify the most important features. By comparing
the performance of these models, it is possible to identify the most accurate and effective
approach to solving the given problem statement [8,9,13]. Using the steps mentioned above,
an artificial neural network (ANN) model can be developed and deployed to regulate and
monitor water quality, ensuring the security and sustainability of water supplies. The ANN
can be trained on data collected from various sources, preprocessed, and validated using
testing and validation sets. Finally, the ANN’s performance can be analyzed and compared
to other machine learning models to identify the most accurate and effective approach for
water quality monitoring and regulation.

The equation of the simulation is exhibited as Equations (1) and (2)

R2 = 1 − ∑(x − y)2

∑ y2 − y2

n

(1)

RMSE =

√
1
n ∑ n(x − y)2 (2)

where x represents the detected data, y is the expected data and n is the number of
observations [1,2].

The network architecture of the model is designed to facilitate a structured flow of
information. Input signals, representing independent variables, are directed to the hidden
layer for processing and are then transmitted to the output layer through a network of
weighted connections.

LSTM (Long Short-Term Memory)

The primary objective behind the development of recurrent neural networks (RNNs)
incorporating long short-term memory (LSTM) is to overcome the problem of vanishing
gradients encountered in traditional RNNs. LSTM is a type of neural network that is partic-
ularly useful for processing sequential data, making it well suited for time-series analysis
of water quality data. In traditional RNNs, when the error gradient in the backpropagation
process diminishes significantly, it becomes challenging for the network to learn long-term
relationships [17,19]. To tackle this issue, LSTM models incorporate a memory cell that
can selectively retain, or input information based on the input data. The architecture of an
LSTM includes an input layer, an output layer, and one or more LSTM layers with memory
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cells as shown in Figure 4 [14]. Each memory cell consists of three gates: an input gate
to regulate the flow of new input data, a forget gate to determine which data to retain
or discard, and an output gate to control the flow of output data. The gates in LSTM
models are regulated by sigmoid activation functions, which produce values ranging from
0 to 1. A value of 0 indicates “forget” or “closed,” while a value of 1 signifies “input” or
“open” [14,35].
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LSTMs have demonstrated superior performance compared to traditional RNNs and
other machine learning techniques across various applications. This has made them a
popular choice for tasks involving time series analysis and prediction. The following steps
outline the implementation of an Artificial Neural Network (ANN) model for monitoring
water quality.

Collection of data: To obtain details on the properties of water quality, data can be
collected from various sources, such as rivers, lakes, and wells. The data can be gathered
through manual sampling or automated monitoring systems. Parameters that can be
measured include temperature, pH, dissolved oxygen content, and pollutants as shown in
Table 1. For example, temperature can be measured using thermometers or temperature
probes; pH can be measured using pH meters; dissolved oxygen can be measured using
oxygen sensors; and pollutants can be measured using analytical instruments such as
spectrophotometers or gas chromatographs.

Table 1. Standard values of parameters according to WHO [46].

Parameter Range

pH 6.5–8.5

Hardness 300 mg/L

TDS 500 mg/L

Chlorides 10 mg/L

Turbidity Below 1 NTU

Dissolved oxygen 6.5–8 mg/L

Water quality index and classification: WQI may be used to evaluate the water’s quality
by using measured values for various parameters that impact it. The experiment involved
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measuring the nine previously indicated factors, which were then utilized to calculate the
WQI (Equation (4)).

WQI = ∑N
i=1 qi × xi

∑N
i=1 xi

(3)

In the given expression, N represents the total number of parameters, qi signifies the
quality rating scale assigned to each parameter, and xi denotes the corresponding unit
weight assigned to each parameter [20].

The following equations can be used to calculate qi and xi (Equations (4) and (5)):

qi = 100 × (Pi − Pideal)
(Si − Pideal)

(4)

xi =
K
Si

(5)

In the context provided, Pi represents the measured values of parameters, P ideal
represents the ideal values of parameters, and Si represents the standard values of parame-
ters [14,31].

Preprocessing method: Data normalization is a crucial step in data preparation for
machine learning. The objective of normalization is to rescale input values and output
variables to a standardized scale, enabling consistent and comparable comparisons. One
of the most used normalization methods is min-max normalization, which scales input
variables to an average, with the range containing only ones and zeros. To perform min-
max normalization, the lowest and greatest values of each variable are identified, and
the values are rescaled to lie between 0 and 1. This is carried out by deducting the least
value from every value and splitting by the differentiation concerning the greatest and
lowest values [4,30]. This results in a new set of values that are all within the range of
0 to 1. Overall, data normalization is critical for machine learning because it ensures
that each variable is given equal weight during model training. Without normalization,
variables with large ranges may dominate the training process, resulting in suboptimal
model performance Equation (6).

x =
x − xmin

xmax − xmin
(6)

Performance Measurement: The study of artwork involves the use of various metrics,
including mean square error (MSE), root mean square error (RMSE), mean absolute error,
and correlation coefficient. These metrics are used to evaluate the performance of machine
learning models that analyze artwork, such as those used for image classification or style
transfer. They help assess the accuracy of the models and identify areas for improvement.

Mean Square Error: Equation (7).

MSE =
1
n

n

∑
i=1

(yiobserved − yiestimated) (7)

In this context, yi represents the observed value and the estimated value.
Rootmean square error: Equation (8).

RMSE =

√√√√ n

∑
i=1

(yiobserved − yiestimated)2

n
(8)

Coefficient of Correlation: Equation (9).

R =
n(∑n

i=1 yiob × yiest)− (∑n
i=1 yiob)(∑n

i=1 yiest))√
n(∑n

i=1 yiob)2 − (∑n
i=1 yiest)2

(9)
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5. Results and Discussion

It was investigated if artificial intelligence algorithms could replace more traditional
techniques for estimating and forecasting water quality. Because of the demonstration and
prediction of water attributes, the time and resources needed for laboratory analysis have
greatly and crucially decreased. The SES preprocessing approach and updated LSTM and
ANN simulations were used to predict water superiority and anticipate the features of
water quality in surface water. In this study, we have compared two distinct models, i.e.,
the artificial neural network model and the long short-term memory model. The ANN
model presents the data in the form of histograms that show us the correlation between
different parameters. But, in the case of the LSTM model, it tells us about the water quality
index, MSE, and RMSE. We can also test the model’s accuracy by using two different
classifications: the KNN (k-nearest neighbor) and the DT (decision tree) models.

With the use of a potent artificial intelligence model, the main goal is to initiate a
real-time approach and test a fresh strategy for accurately anticipating and classifying water
quality [30]. The study proposes merging the discussed artificial intelligence methods to
precisely duplicate water levels and quality. The dataset had a total of six parameters. The
study concluded that categorization and forecasting of water quality may be performed
using LSTM and ANN models. The principle of this study was to show how the LSTM and
ANN models may be used to forecast the quality of surface water.

Heat Map: Monitoring water quality is a crucial part of maintaining and defending
our water resources. Data on many aspects of water quality, including pH, temperature,
dissolved oxygen, turbidity, and nutrient concentrations, are gathered and analyzed during
monitoring. The heat map is a helpful tool for visualizing and examining data on water
quality. In a heat map, values are represented graphically by colors, with greater values
denoted by warmer hues like red and lower values denoted by cooler hues like blue [11,26].
Heat maps can be used in water quality monitoring to show the geographical and temporal
fluctuations in water quality parameters. Finding problem regions or hotspots is one of the
main uses of heat maps in water quality monitoring. The heat map may display regions
with high or low values for each parameter by showing water quality data on a geographic
map. This makes it simple to pinpoint places where water quality may be impaired and
where more research or intervention may be required.

Heat maps may also be used to evaluate the success of water quality control plans. The
efficiency of various management techniques may be assessed by contrasting heat maps
from various time periods, and changes in water quality can be connected to particular
treatments. Additionally, the management and protection of water quality can be prioritized
using heat maps. Resources can be directed towards implementing tactics to enhance water
quality in areas with low water quality by identifying these places. The color code referred
to in the statement is likely a color-coded representation of water quality parameters in
a histogram or similar visual display. The range of values for this color code is −0.2 to
1.0, with darker colors indicating negative effects on the corresponding parameter. The
statement notes that most of the colors in the histogram are light, which suggests that the
quality of surface water in that area is good. This could indicate that the water quality
parameters being measured are within acceptable ranges and that there are no significant
negative impacts on the water quality. Overall, color-coded visual displays of water quality
data can be a useful tool for quickly and easily identifying areas of concern or areas
where water quality is good. They can aid in decision-making for water management and
protection and help to ensure that our water resources remain safe and healthy for both
human use and the environment.

Figure 5 discusses the correlation of two different parameters. One can take the
example of TDS and turbidity. An illustration of the link between these two indicators of
water quality is a correlation graph between TDS (Total Dissolved Solids) and turbidity
(Figure 6). Turbidity is the cloudiness or haziness of the water brought on by suspended
particles, whereas TDS is the quantity of dissolved solids in the water. An outlier or other
anomaly in the data can be found using a correlation graph. It may be a sign that there are
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additional variables influencing the link between TDS and turbidity, such as the presence
of pollutants or other contaminants, if, for instance, most of the data points on the graph
follow a distinct pattern but a small number of points fall outside of this pattern.
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Figure 7. Comparison analysis between density and pH value using distplot graph [26].

Boxplot graph: Boxplots are employed to assess the distribution of data within a dataset
and determine their level of dispersion. They depict key statistical measures such as the
minimum, maximum, median, first quartile, and third quartile of the dataset, creating three
distinct quartiles as shown in Figure 8.
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The aim of this study is to find the accuracy of models. Two classifiers were used to
find the model accuracy of the ANN model.

Decision Tree classifier: It is a type of machine learning algorithm that is used for
classification tasks. It functions by creating a tree-like representation of decisions and
potential outcomes. The tree is made up of leaf nodes, which represent the output class or
category, and interior nodes, which reflect judgments depending on the values of one or
more input attributes. Beginning at the root node, the decision tree classifier determines a
course of action depending on the value of a single input characteristic (Figure 9). After that,
it descends the tree to the following node and bases its judgment on a different characteristic.
The projected class or category is represented by a leaf node, which is reached by continuing
this procedure. For classification problems in machine learning, decision tree classifiers are
an all-around effective and flexible tool. They may offer important insights into complicated
datasets and are applicable to a wide range of tasks, such as forecasting consumer behavior
and identifying medical disorders. The Figure 10 shows the accuracy of an ANN model
using a DT classifier.
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KNN classifier: It is a non-parametric lazy learning method, which means it does not
assume anything about how the data are distributed and does not need a training phase. In
KNN classification, a new data point’s class is predicted using the training data’s k-nearest
neighbor’s classes. A user-defined hyperparameter called k controls how many neighbors
are considered. The algorithm determines the distances between each new data point and
every other data point in the training set to categorize it. Then, it chooses the k-nearest
data points and determines the new data point’s class based on the dominant class of the
chosen neighbor. The following figure shows the accuracy of the ANN model using the
KNN classifier. But in the case of the LSTM model, we have found the accuracy of the
model using the DT classifier as shown in Figure 11. The accuracy of the model using DT
comes out to be 95%, which is more than the ANN model.
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Mean square error and Root mean square error.
Based on previous measurements, we provide predictions for future water quality

levels in this analysis. The LSTM model would thus be a solid option for this investigation.
If the research requires figuring out detailed relationships between several water quality
indicators, ANN could be a better option. Because the MSE of the LSTM model is less than
1, it can be assumed that model predictions are, on average, relatively close to actual values.
A smaller mean squared error (MSE) indicates that the model performs better in predicting
the output values as given in Table 2. This metric quantifies the average squared difference
between the expected values and the actual values.

Table 2. MSE and RMSE values for ANN and LSTM model.

MODELS MSE RMSE

ANN model 0.52 0.60

LSTM model 0.04 0.21

However, the MSE value in the ANN model is also less than 1, slightly higher than
the LSTM model value. The second element is determined by the model’s accuracy rating.
Using KNN and DT classifiers, the ANN model’s accuracy score is calculated to be 87.5%
and 92.5%, respectively. However, the LSTM model’s accuracy is 95%, which is higher than
the ANN model. This demonstrates that, for limited datasets, the LSTM model outperforms
the ANN model in terms of predicting water quality analysis.

6. Conclusions

In recent years, the use of artificial intelligence (AI) models in monitoring and evaluat-
ing water quality has become increasingly popular. This is because AI models are capable
of processing large amounts of data quickly and accurately, allowing for the identification
of trends and patterns in water quality data that may be difficult to detect using traditional
methods. In this study, several research questions were raised regarding the use of AI
models in surface water quality monitoring and evaluation, and the findings shed light
on the most commonly used models, input parameters, and output measures, which are
as follows:

• One of the major findings of the study was that long short-term memory (LSTM) and
artificial neural networks (ANN) were the most commonly used AI models for water
quality monitoring and evaluation in the past decade.

• The study also found that Iran and Southeast Asia account for most of the research on
neural networks for surface water quality monitoring and evaluation. This suggests
that these regions may be particularly interested in using AI models to improve water
quality monitoring and evaluation.

• Another important finding of the study was that the most accurate models for pre-
dicting surface water quality were LSTM models for small datasets. This suggests
that LSTM models may be particularly useful for analyzing small datasets, such as
those that may be collected in rural or remote areas where water quality monitoring
resources may be limited. Interestingly, the study found that there was no clear re-
lationship between the size of the dataset and the R2 value at the testing stage. This
suggests that even small datasets can be used to train accurate AI models for water
quality monitoring and evaluation.

Overall, the findings of this study suggest that AI models, particularly LSTM and
ANN models, are a promising tool for improving surface water quality monitoring and
evaluation. By analyzing large amounts of data quickly and accurately, these models can
help identify trends and patterns in water quality data that may be difficult to detect using
traditional methods. However, further research is needed to determine the most effective
ways to implement these models in real-world water quality monitoring and evaluation
programs. It was depicted from the heat map generation of the study that the color code
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reference for water quality parameters falls in the range of values for this color code of −0.2
to 1.0, with darker colors indicating negative effects on the corresponding parameter. The
study models gave the correlation between pH and density, indicating the distribution of
variables. It was obtained from the study that the mean square error and root mean square
error of ANN and LSTM lie between 0.52–6.0 and 0.04–0.21, respectively. This indicates the
model performs better in predicting the output values. The study also indicated that, using
KNN and DT classifiers, the ANN model’s accuracy score is calculated to be 87.5% and
92.5%, respectively. However, the LSTM model’s accuracy is 95%, which is higher than the
ANN model.

It is important to note that there are still several issues that need to be addressed to
improve the accuracy and applicability of these models. These issues could serve as a
platform for future research in this area. One of the main issues that needs to be addressed
is the need for a wider variety of neural network topologies to be examined in surface
water quality prediction studies. Future studies could explore the use of convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and deep belief networks
(DBNs), among others. Another important issue that needs to be addressed is the lack of
research on neural network models in certain regions.

While the study found that Iran and Southeast Asia have been the most active regions
in terms of research on neural networks in surface water quality monitoring and evaluation,
there are still many regions where research in this area is lacking. It is imperative for Amer-
ican researchers to take up the challenge and take advantage of the numerous prospects for
using neural networks in WQA. With the potential for new neural network topologies and
the continued development of ensemble models, the accuracy of water quality prediction
could be pushed even higher.
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