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A B S T R A C T

Missing data is pertinent to criminal networks due to the hidden nature of crime. Generally, researchers evaluate
the impact of incomplete network data by extracting or adding nodes and/or edges from a known network.
Statistics on this reduced or completed network are then compared with statistics from the known network. In
this study, we integrate police data on known offenders with DNA data on unknown offenders. Statistics from the
integrated dataset (‘known network’) are compared with statistics from the police data (‘reduced network’).
Networks with both known and unknown offenders are bigger but also have a different structure to networks
with only known offenders.

1. Introduction

It is not easy to map criminal networks. They have fuzzy boundaries
and dynamic relationships (Sparrow, 1991). The partnerships between
different offenders can be temporary (only for one crime, for example)
or more permanent in nature (Weerman and Kleemans, 2002), although
offenders do not usually commit multiple crimes with the same co-of-
fender, except in more specialized groups (Reiss and Farrington, 1991).
As a result, co-offenders often belong to multiple offending groups at
the same time (Warr, 1996). But perhaps the main obstacle to the study
of criminal networks is the incompleteness of the available network
data. Unlike social networks such as friendships or working relation-
ships, criminal ties are less visible, as offenders try to conceal their
crimes and ties with criminal friends. Consequently, criminal networks
are incomplete and both nodes and edges are missing (Sparrow, 1991;
Xu and Chen, 2005).

Depending on the data collection method, missing data in networks
can have multiple causes: the boundary specification problem (BSP),
respondent inaccuracy and non-response in network surveys or inter-
views and the study design. For example, the study design can create a
fixed choice effect, where bias is caused by limiting respondents to
naming, say, three friends when in reality they have at least ten friends
(Kossinets, 2006). The BSP is the most important factor in this research.
The BSP refers to the question how accurately network boundaries are
defined. Changes in the location of the boundary of the network can
have a significant impact on both centrality and density measures

(Doreian and Woodard, 1994). The BSP is of particular interest in the
study of criminal networks, as only detected offenders and their crimes
can be integrated in the network. In other words: the external bound-
aries of the network lie where the police and court files end (Berlusconi,
2013, p. 63; Campana and Varese, 2011, p. 20). However, these
boundaries can be very restrictive, as in many Western countries the
clearance rate of registered crimes is very low (De Wree et al., 2006;
Lammers and Bernasco, 2013). Unknown offenders and their offences,
and the unknown crimes of known offenders, remain out of reach to
those studying offending behaviour, and as a result criminal network
data is incomplete as part of the existing nodes and/or links are not
visible (Coles, 2001).

Current research on imperfect or missing data in networks has an
important limitation. Generally, random errors are applied to networks.
However, as in many other network contexts, missing data are non-
random in criminal networks (Sparrow, 1991). Some offenders may be
more likely than others to be absent in police-recorded crime data. The
non-random removal of central nodes, as performed in the study by
Smith et al. (2017) also doesn’t seem an adequate answer, as the
missing of nodes and edges may be related to features other than the
position one takes in a network. Although not in a network context,
Lammers et al. (2012), for example, found that unknown (i.e., not ar-
rested) offenders may differ from arrested offenders as the latter have a
longer criminal career (i.e., commit multiple crimes) and have a more
versatile offending pattern (i.e., are not limited to only one crime type).
Moreover, in light of the low clearance rates, the most central nodes in
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police recorded crime data may not be the main offenders in the net-
work. Indeed, Sparrow (1991, p. 256) stated that “the determination of
centrality will depend upon who you know most about, rather than who is
central or pivotal in any structural sense”.

The central question in this research is whether unknown offenders
have an impact on the offender network containing both known and
unknown offenders. This research question is further operationalized in
two sub questions. First, does the offender image changes when un-
known offenders are included in a network analysis (RQ1)? Second, do
known and unknown offenders differ in network centrality (RQ2)? In
other words, are unknown offenders random missing nodes or not? To
assess these questions, police-recorded crime data are used to construct
the ‘reduced network’ and the integrated dataset of police-recorded
crime data and forensic DNA data is used to construct the ‘real-world
network’, combining DNA data on unknown offenders and police-re-
corded crime data on known offenders. By comparing network mea-
sures of both networks, the effect of missing data (i.e., unknown of-
fenders) in police-recorded crime data can be evaluated.

The remainder of this article is structured as follows. The next
section gives a brief overview of the literature on missing data in
criminal network analysis. We then present our data, followed by a
method section. The main finding are presented in the results section. A
final section concludes this paper with a discussion and some limita-
tions before highlighting possibilities for future research.

2. Literature review on missing data in criminal network analysis

Criminological researchers have used several sources to extract
network data: surveillance data from communications using telephone,
e-mail or personal contact (e.g., Campana and Varese, 2011), interview
data with offenders (e.g., Vlaemynck, 2016), experiential knowledge of
police officers and other criminal justice agencies (e.g., McGloin, 2005),
police crime reports (e.g., Papachristos and Wildeman, 2014), tran-
scripts of court proceedings (e.g., Reid et al., 2013) and open source
media reports (e.g., Burcher and Whelan, 2015; Morselli et al., 2007).
In recent years, a number of researchers have evaluated (the com-
pleteness of) these different data sources for use in network analysis.
Bright et al. (2012) recommended the use of judges’ sentencing com-
ments. The researchers admitted that these data might not provide as
valuable information as that gained from other sources, but highlighted
that, in contrast to offender databases or wire taps for example, judges’
sentencing comments are free of charge, publicly available and concise.

Other researchers have focused on methodological issues to eval-
uate the impact of incomplete data on criminal networks. Malm and
Bichler (2011) concluded that the use of multiple data sources can
provide a more comprehensive picture of drug market networks.
Berlusconi (2013) used wire taps, arrest warrants and judgment data on
groups operating in an Italian province. She noted that the number of
nodes and ties present in the data decreases from wire taps to arrest
warrants to judgment data, although the statistical measures that de-
scribe the position of an actor within a network (degree and between-
ness centrality) remain quite robust.

A more systematic way of evaluating the impact of incomplete
network data is by simulating network errors in an observed network: a
certain percentage of nodes and/or edges are extracted from or added
to a known network (i.e., the error % mentioned in Table 1). Statistics
on this reduced or completed network are then compared with the
statistics from the known or real-world network (Borgatti et al., 2006;
Kossinets, 2006; Smith and Moody, 2013; Smith et al., 2017; Xu and
Chen, 2008). This allows the different error types that are possible in
network data to be assessed. For example, the impact of false negative
nodes and false negative edges can be studied by deleting nodes or
edges in criminal offending networks. A false negative node refers to
the absence of a person in the network who should be present as he is
an offender. A false negative edge means that the relation between two
offenders is not observed in the network. The two offenders are not

registered as co-offenders even though they actually are. The impact of
false positive nodes and false positive edges can be assessed by adding
nodes or edges in criminal offending networks. A false positive node
refers to a person registered as an offender who is not the offender of
the crime and should therefore not be part of the network. False posi-
tive edges appear when relationships between offenders are incorrectly
present in a network: two offenders are registered as co-offenders, but
have not committed any crimes together (Frantz et al., 2009; Wang
et al., 2012). A less commonly studied measurement error is false ag-
gregation and disaggregation. Two nodes are falsely aggregated when
they are wrongly regarded as one node. The opposite applies to false
disaggregation: one node is wrongly regarded as two separate nodes in
the network. The impact of these errors is assessed by aggregating or
disaggregating nodes. In the former, edges of node A are connected to
node B and node A is removed afterwards. In the latter, node A is split
into two nodes A and B. Some of the edges of node A are randomly
removed and added to the new node B (Wang et al., 2012).

Most researchers using simulated network errors apply random er-
rors to real-world (i.e., observed) networks (e.g., Huisman, 2009; Smith
and Moody, 2013; Wang et al., 2012) or to simulated, random networks
(e.g., Borgatti et al., 2006; Frantz et al., 2009) to assess the impact on
centrality measures. In a recent study, Smith et al. (2017) applied non-
random errors to 12 real-world networks by removing nodes propor-
tional to their centrality. Most of these studies simulating network er-
rors conclude that the effect of missing data depends on a number of
factors (Smith et al., 2017). First, the lower the sample coverage, the
more the network estimates are corrupted (Galaskiewicz, 1991). The
nature of the missing data is a second factor. For example, bias is worse
when more central nodes are missing. In other words, non-random
missing data cause a higher bias. Third, missing data do not have the
same effect on every network statistic (Costenbader and Valente, 2003).
Centrality measures seem to be more robust against missing network
data than other network statistics like topology and homophily for
example (For an elucidation of the robustness of these other network
measures, see Smith and Moody, 2013; Smith et al., 2017). Finally, the
characteristics of the network will also influence the effect of missing
data. Smith and Moody (2013), for example, found in their research on
random missing nodes in different empirical networks that larger, more
centralized networks are generally more robust to missing data.
Borgatti et al. (2006) concluded that, except for edge deletion, cen-
trality measures of dense networks are the most robust against random
errors in network data. Frantz et al. (2009) also found that network
errors may have a different impact on centrality measures, depending
on the network topology (uniform random, small-world, core-per-
iphery, scale-free or cellular networks). Table 1 gives an overview of the
main characteristics and results of the studies discussed above.

3. Data

The study makes use of two databases: the Belgian General Police
Database and the Belgian National Genetic Database (NGDB). The
Belgian General Police Database is the main source for nationwide
crime statistics in Belgium. All detected and reported crimes are re-
gistered in this database. The database contains, inter alia, information
on crimes, offenders, modus operandi, and victims. The NGDB was set
up in 2002 and is managed by the National Forensic and Criminology
Institute NICC/INCC, a federal scientific institution within the Ministry
of Justice. On 31 December 2015 the NGDB contained 34,784 reference
profiles and 43,224 forensic profiles or crime scene profiles (NICC/
INCC, 2016).1 The former are ‘known’ profiles obtained from stains
taken directly from known individuals (for example, a buccal swab

1 The NGDB also contained 1,207 reference profiles of suspects. As from 1
January 2014, suspect profiles can be stored in the NGDB under specific con-
ditions.
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from an offender) whereas the latter refers to an ‘unknown’ DNA profile
of a (hitherto) unidentified offender gathered at a crime scene (i.e.,
crime scene profile). DNA traces involving the same unknown offender,
found at different crime scenes at different time points (i.e., a serial
offender) can be linked. Moreover, the involvement of other unknown
co-offenders can be revealed through the presence of their DNA traces
at shared crime scenes. Consequently, even though the crime may not
be solved and the associated offenders may not be identified, in-
formation on the offenders’ network may still be available for re-
searchers.

The dataset contains six years of recorded crime data (2010 through

2015) relating to the four most frequently recorded crime types in the
NGDB: violent theft, aggravated burglary, lethal violence, and sexual
offences.2 All known offenders involved in crimes that matched these
criteria were selected from the Belgian General Police Database, re-
sulting in a police dataset of 73,837 known offenders. The police da-
taset was enriched with offender data from the DNA dataset to

Table 1
Overview of main characteristics and results of studies on missing data in networks illustrated in the text.

Study Type of
network

Network measure Type of error Error % Replications General conclusions

Borgatti et al.
(2006)

Random
networks

Centrality:
- degree
- betweenness
- closeness
- eigenvector

Random Node removal/
addition
Edge removal/
addition

1
5
10
25
50

10,000 - Accuracy of centrality measures
declines smoothly and predictably
with the amount of error

- Different types of error had relatively
similar effects on centrality
robustness

Smith and Moody
(2013)

Empirical
networks
(directed and
non-directed)

Centrality:
- degree
- closeness
- betweenness
- Bonacich power score

Centralization Topology
Homophily

Random Node removal 1
2
5
10
15
25
30
40
50
60
70

1,000 - Measurement bias generally
increases with more missing data

- Exact rate and nature of increase
varies systematically across network
measures

- Bias dependent on the features of the
network

Smith et al.
(2017)

Empirical
networks
(directed and
non-directed)

Centrality:
- degree
- closeness
- betweenness
- Bonacich power score

Centralization Topology
Homophily

Non-
random

Node removal 1
2
5
10
15
25
30
40
50
60
70

1,000 - Bias is worse when more central
nodes are missing

- Bias dependent on the features of the
network

Wang et al.
(2012)

Empirical
networks

Centrality:
- degree
- eigenvector

Clustering coefficient
Network constraint

Random Node removal/
addition
Edge removal/
addition
Aggregation/
disaggregation of
nodes

From 5 to
additionally
removing up to
95

10 - Networks with low average
clustering and less positively
skewed degree distributions are
most resistant to measurement
error

- Bias dependent on the features of the
network

Kossinets (2006) Random
networks
Empirical
networks

Degree Clustering
Assortativity Fractional
size largest component
Average path length

Random
and non-
random

Node removal
Edge removal

- Boundary specification (non-
inclusion of nodes or edges) can
dramatically alter estimates of
network-level statistics

Frantz et al.
(2009)

Random
networks

Centrality:
- degree
- betweenness
- closeness
- eigenvector

Local clustering

Random Node removal
Edge removal

1
5
10
25
50

10–250 - The topological form of known
network (uniform random, small-
world, core-periphery, scale-free
or cellular) has a measurable effect
on robustness

- Results are consistent with Borgatti
et al. (2006) for the uniform random
topology

Costenbader and
Valente
(2003)

Empirical
networks

11 centrality measures Random Node removal From 20 to 80, in
steps of 10

25 - Some measures are more stable
than others

- Bias dependent on the features of the
network

Huisman (2009) Empirical
networks
(directed and
non-directed)

Degree Reciprocity
Clustering Assortative
mixing (on degree)
Distance

Random
and non-
random

Node removal
Edge removal

From 10 to 90, in
steps of 10

100 - Missing data can have large
negative effects on structural
properties of the network

Galaskiewicz
(1991)

Empirical
networks

Point centrality Random Node removal 25
50
75

10 - Bias increased considerably as
sampling percentage decreased

2 Violent theft refers to crimes like robbery, carjacking and home jacking.
Aggravated burglary refers to crimes like raid, burglary in a dwelling and theft
using false keys. Lethal violence refers to crimes like manslaughter, murder and
poisoning. Rape is an example of sexual offences.
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construct a dataset with both known and unknown offenders. Some
precaution is needed when combining data from the Belgian General
Police Database and the NGDB. The same person may be registered in
both as a known offender. Profiles of known offenders (i.e., suspects or
convicted offenders) are stored in the NGDB using a DNA code number
to protect the privacy of the offender. However, possible matches be-
tween known DNA profiles and known offenders stored in the police
dataset could not be checked because access to the corresponding
identity of the offender is prohibited for scientific research. This could
lead to what Wang et al. (2012) define as false disaggregation in net-
work data. To avoid this type of false disaggregation, only unknown
offenders were selected from the NGDB.

Table 2 illustrates the process used to select unknown offenders
from the NGDB. The same DNA profile can be linked to different crimes,
whether it is a reference profile and/or a crime scene profile. For ex-
ample, the DNA profile of offender O5 is found at a crime scene, and a
reference profile is obtained from the same offender O5 in the context
of crime C4. Offender O5 is therefore a known offender and would not
be included in the analysis. In another example, although two offenders
are related to crime C6, only O6 would be retained in the analysis as the
other offender, O7, is a known offender. This selection procedure re-
sulted in a DNA dataset of 16,092 different unknown offenders.

4. Methods

4.1. Network analysis

A social network analysis was performed making use of the R
packages ‘igraph’ (Csárdi and Nepusz, 2006) and ‘Matrix’ (Bates and
Maechler, 2017) to identify different components of offenders in the
two datasets. Component analysis allows sub-networks within larger
networks to be identified. Only offenders and their other co-offenders
who commit a crime together are part of the same component or sub-
network. That way, each sub-network consists of at least two offenders
connected to each other, directly or indirectly, but the offenders within
a sub-network have no links with other offenders outside the sub-net-
work (Wasserman and Faust, 1994).

In this study, some basic network measures were computed. The size
of a network is equal to the number of nodes or links. The geodesics is
the shortest path between a pair of offenders. The geodesic distance is
equal to the length of the shortest path. The average path length is the
average length of the shortest paths for all possible pairs of nodes.
Density describes the network cohesion. It is the proportion of the actual
present edges to all the possible edges. A network containing all pos-
sible edges is a clique (Rossy and Morselli, 2018; Wasserman and Faust,
1994).

This study was limited to two centrality measures (i.e., degree and
betweenness) for substantive reasons. Not all centrality measures are
meaningful for disconnected networks composed of several distinct
components like the network data in this study (e.g., closeness, see
Haythornthwaite, 1996; Prell, 2013; Wasserman and Faust, 1994).3 The
degree refers to the number of direct links an offender has with other

offenders by committing a crime together (Freeman, 1979; Wasserman
and Faust, 1994). The minimum degree is 0 (or 0%), which means that
the offender committed all his crimes without any co-offender. An of-
fender with degree 0 is called an isolate. The maximum degree is equal
to the number of nodes in the network minus 1 (or 100%). Offenders
with a maximum degree committed at least one crime with every single
other offender in the network. The degree only takes the local positon
of the actor into account, as it is not concerned by how the other of-
fenders are connected in the network (Morselli, 2009, p. 39; Wasserman
and Faust, 1994). Betweenness centrality is the proportion of times an
offender is located along the geodesics between any two other offen-
ders. In other words: to what extent is an offender the direct link be-
tween two other offenders? Unlike degree, the quantity of direct con-
tacts is not important, but the quality of the (direct and indirect)
connections is. An offender with a relatively low degree may play an
important ‘intermediary’ role and so be very central to the network
(Scott, 2013, p. 87). As such, a network can easily be disrupted when an
offender with a high betweenness centrality is arrested and thus re-
moved from the network (For an extensive elucidation of network
disruption, see Bichler and Malm, 2015; Duijn, 2016; Duijn et al.,
2014). Prell (2013, p. 107) describes the differences between these two
centrality measures as degree centrality, emphasizing activity, and
betweenness centrality, emphasizing potential control over information
flow. An offender with many co-offenders will be central according to
the degree centrality measures. However, offenders with fewer contacts
may become more central when the betweenness centrality is mea-
sured.

4.2. Monte Carlo simulation

Previous research on the effect of missing data in networks, or
network errors in general, usually performed Monte Carlo simulations
to evaluate bias. This procedure entails six steps: (1) Identify or simu-
late a real-world network G(V, E). This network is assumed to be
complete. (2) Calculate the network measures of interest for this real-
world network. (3) Apply (random or non-random) network errors to
the real-world network by adding or deleting a certain fraction of nodes
and/or edges. The result is the distorted or reduced network G’(V’, E’).
(4) Calculate the network measures of G’(V’, E’). (5) Repeat step 3 and 4
to obtain distributions and confidence intervals of the network mea-
sures. (6) Compare network measures of G(V, E) with those of G’(V’, E’)
to assess the impact of the different error levels (Kossinets, 2006; Smith
and Moody, 2013; Smith et al., 2017; Wang et al., 2012).

In this study, three (instead of two) network types were identified: a
real-world network (G(V,E)), a real-reduced network (G’(V’,E’)) and
different simulated-reduced networks.4 The real-world network is
composed of known offenders from the police database and unknown
offenders from the DNA database. Based on the police database, the
real-reduced network is created. It is a real network as it can be ob-
served, but it is reduced because a lot of unknown offenders are
missing. Finally, the simulated-reduced networks are obtained by ran-
domly removing a certain percentage of nodes from the real-world
network. Eleven different levels of missingness were applied to the real-
world network by randomly removing 2, 5, 10, 15, 20, 25, 30, 40, 50,

Table 2
Data selection of unknown offenders from the NGDB.

Crime Offender

C1 Crime scene profile O1
C1 Reference profile
C2 Crime scene profile O3
C3 Crime scene profile O4
C4 Reference profile
C5 Crime scene profile
C6 Crime scene profile O6
C6 Reference profile
C7 Crime scene profile O6

3 In addition, an analysis on a network composed of 73,837 known offenders
and 16,092 unknown offenders demands significant computational power. To
illustrate, an undirected network with n nodes can contain a maximum of n(n-
1)/2 distinct edges (Scott, 2013). In theory, in the integrated network with
89,929 known and unknown offenders, in total 4,043,567,556 distinct edges
are possible between two offenders.
4 The VSC (Flemish Supercomputer Center) provided the computational re-

sources (Stevin Supercomputer Infrastructure) and services to compute the si-
mulated-reduced networks and the corresponding network measures. The VSC
is funded by Ghent University, the Hercules Foundation and the Flemish
Government – department EWI.
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60, 70% of the nodes of the real-world network. Each error level was
repeated 999 times.

Generally, the impact is assessed by calculating the correlation be-
tween the network measure in G(V,E) and G’(V’,E’) at the network level
(e.g., Costenbader and Valente, 2003) or at the individual node level. In
the latter case, only nodes present in both the real-world network and
the reduced network can be taken into account (e.g., Wang et al., 2012).
In this study, the networks with the random generated errors (i.e., si-
mulated-reduced networks) are compared with the real-reduced net-
work G’(V’,E’). This allowed the impact of random missing nodes versus
non-random missing nodes to be assessed by measuring the degree and
betweenness for each of the different error levels. Furthermore, the
network measures were evaluated at the network level in this study.
Correlations at the individual node level would only take the known
offenders into account, as only these nodes are present in both the re-
duced and the real world network. As the goal of this study is to assess
whether and how the network measures change when integrating un-
known offenders, the analysis was done at the global (i.e., network)
level. The two centrality measures are averaged across the 999 re-
plications for each error level, generating one value for each of the two
measures for each of the eleven error levels.

5. Results

5.1. Descriptives

The characteristics of the real-world network and real-reduced
network are summarized in Table 3. The real-reduced network is
composed of known offenders derived from the police-recorded crime
data. The real-world network contains 16,092 more nodes (21.79%)
than the real-reduced network. All these additional nodes are unknown
offenders from the DNA data. An extra 21,329 edges (43.83%) between
offenders are created by integrating unknown offenders in the network.
These edges can be between an unknown offender and a known of-
fender who have committed a crime together, but also between un-
known co-offenders. Almost half of all the components have a size of
only one node (i.e., isolates), both in the real-world network and the
real-reduced network (43.36% versus 45.41%). These offenders did not
commit any crime with another offender.

The existing components can be supplemented with additional of-
fenders, or several components could be merged, when DNA data is
integrated with police data. This means that the composition of the
44,743 components in the real-reduced network may have changed
after the integration of DNA data. Moreover, the real-world network
contains 8305 more components (18.56%) than the real-reduced

network. These components are composed of only unknown offenders.
The average path length is around 17 for both network. This is quite

large, given the average degree is below 2. However, this mean value
can be distorted as both the real-world network and the real-reduced
network contain one huge component, respectively 5838 and 5282
nodes. The second largest component contains only 144 and 136 of-
fenders respectively. The density or network cohesion, by contrast, is
low, caused by the high number of components in both the real-world
and real-reduced network.

5.2. The effect of missing data on degree and betweenness

Table 4 gives an overview of the impact of missing nodes on the
degree in network analysis. Results on the degree for the real-world
network, the different simulated reduced networks and the real-reduced
network are summarized in the table. Obviously, the real-world net-
work has an error level of 0%. This network contains almost 90,000
nodes or unknown and unknown offenders and almost 70,000 links
between these offenders. On average, every offender in the real-world
network has 1.56 co-offenders. At the bottom of the table, the values for
the real-reduced network, which only includes known offenders from
the police-recorded crime data, are presented. The average degree
(1.32) is lower than in the real-world network (1.56), which includes
both known and unknown offenders. In other words, integrating un-
known offenders also revealed more co-offending relationships in the
real-world network.

When comparing the number of nodes, the real-reduced network
has an error level of about 18% compared to the number of nodes in the
real-world network. Table 4 also presents the results of the eleven
different error levels applied on the real-world network, ranging from
2% to 70% of the nodes being randomly removed. Removing nodes
clearly has an impact on the average degree: the degree decreases as the
error percentage increases. For example, an error percentage of 40 or
higher corresponds with a mean degree below one, illustrating that this
reduced network contains many isolates (i.e., offenders who did not
commit any crime with another offender). Logically, the number of
edges also decreases with an increasing error level. 5

A simulated error level of 15% results in the same value for degree
as the 18% error level in the real-reduced network.6 Randomly

Table 3
Characteristics of the real-world network and the real-reduced network.

Real-world network
G(V,E)

Real-reduced network
G’(V’,E’)

Police data and DNA
data

Police data

Nodes 89,929 73,837
Edgesa 69,995 48,666
Average degree 1.56 1.32
Number of components 53,048 44,743
Size of largest component 5838 5282
Size of smallest component 1 1
Number of isolates 38,989 (43.36%) 33,531 (45.41%)
Density 1.731021e-05 1.785309e-05
Average path length 17.44058 17.50912

a The number of edges corresponds to the number of edges present in the
simplified networks. Simplified networks do not contain multiple edges be-
tween two nodes. In a simplified network, only one edge between two offenders
is possible, even if these offenders may have committed multiple crimes to-
gether.

Table 4
Degree of real-world network and reduced networks.

Network type Error
percentage

Mean
degree

Nodes Mean edge
count

Real-world network
G(V,E)

0 1.56 89,929 69,995

Simulated-reduced
networks

2 1.53 88,130 67,223
5 1.48 85,433 63,181
10 1.40 80,936 56,697
15 1.32 76,440 50,584
20 1.25 71,943 44,793
25 1.17 67,447 39,369
30 1.09 62,950 34,304
40 0.93 53,957 25,206
50 0.78 44,965 17,492
60 0.62 35,972 11,200
70 0.47 26,979 6,305

Real-reduced network
G’(V’,E’)

17.89 1.32 73,837 48,666

5 As different Monte Carlo simulations were performed for degree and be-
tweenness centrality, the number of edges for the different error levels in
Table 4 is different from the number of edges for the different error levels in
Table 5.
6 There is a significant difference between the degree of the real-reduced

network and the other ten simulated error levels.
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removing 15% of the known and unknown offenders from the real-
world network results in the same degree as non-randomly removing
only the unknown offenders from the real-world network. This can also
be deduced from Fig. 1, representing the 95% confidence intervals for
degree of the 11 simulated reduced networks. The vertical dotted line
on the left represents the mean degree of the real-reduced network
(1.32) and the vertical dotted line on the right represents the mean
degree of the real-world network (1.56). The mean degree of the real-
reduced network falls within the 95% confidence interval of the 15%
error level network.

Taking into account that known and unknown offenders have a si-
milar impact on the mean degree centrality and that the average degree
increased in the real-world network, this means that integrating un-
known offenders also changed (i.e., increased) the degree of the known
offenders. In other words, co-offending relationships between known
and unknown offenders become visible when DNA data and police data
are integrated.

The mean betweenness scores across the real-world network, the
different simulated-reduced networks and the real-reduced network are
presented in Table 5. It is remarkable that the betweenness centrality of
the real-reduced network with a non-random error level of about 18% is

about the same as the betweenness in the real-world network (3723.58
and 3715.44 respectively). The integration of unknown offenders seems
not to have affected the betweenness in the real-world network.

Randomly removing a number of nodes, both known and unknown
offenders, has a clear impact on the average betweenness centrality of
the offenders. Fig. 2 illustrates that the mean betweenness decreases as
the error level increases. Furthermore, the dotted line representing the
mean betweenness of the real-world network (3715.44) is not within
the 95% confidence interval of any simulated-reduced network.7

Therefore, the results for betweenness centrality are totally different to
those for degree centrality. Removing about 15% of the offenders
randomly would result in a much smaller average betweenness
(1328.99) than removing the same percentage non-randomly (i.e.,
3723.58 in the real-reduced network). Even randomly removing only
2% of the known and unknown offenders from the real-world network
results in a lower betweenness centrality than the 18% error level in the
real-reduced network with only known offenders (p=0.01). Known
and unknown offenders have a different impact on betweenness cen-
trality.

6. Conclusion and discussion

Criminal networks are a textbook example of hidden networks, as
many registered crimes are unsolved and the offenders remain un-
known. In order to assess the validity of research on criminal networks
it is therefore important to assess the robustness of basic network
measures under the condition of missing data (Borgatti et al., 2006). As
far as is known, this is the first study to integrate forensic DNA data on
unknown offenders with police data on known offenders in order to
study the missing data problem in criminal networks. The DNA data
provides a unique opportunity to integrate missing data into police
networks and is an important advancement over prior research.

This study confirms the findings from previous research. First, the
higher the error level in the simulated networks, the more the network
estimates are affected. This applies both to the degree and to the be-
tweenness centrality. Second, the impact of the error level is not equal
for both centrality measures. Betweenness centrality seems to be more

Fig. 1. Forest plot 95% confidence interval for degree of simulated-reduced
networks.

Table 5
Betweenness of real-world network and reduced networks.

Network type Error
percentage

Mean
betweenness

Nodes Mean edge
count

Real-world network
G(V,E)

0 3715.44 89,929 69,995

Simulated-reduced
networks

2 3368.27 88,130 67,238
5 2845.52 85,433 63,194
10 2029.64 80,936 56,702
15 1328.99 76,440 50,606
20 815.97 71,943 44,811
25 464.79 67,447 39,403
30 241.46 62,950 34,336
40 51.83 53,957 25,208
50 10.30 44,965 17,462
60 2.00 35,972 11,219
70 0.42 26,979 6,317

Real-reduced
network
G’(V’,E’)

17.89 3723.58 73,837 48,666

Fig. 2. Forest plot 95% confidence interval for betweenness of simulated-re-
duced networks.

7 As the mean betweenness of both the real-reduced network (3723.58) and
the real-world network (3715.44) are similar, the dotted lines representing
these values are very close to each other in Fig. 2.
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affected by an increasing error level than does degree centrality. Third,
the nature of the missing data is an important factor to consider.
Although there does not seem to be much of a difference for degree
centrality, there is a difference in randomly and non-randomly re-
moving offenders from the network for betweenness centrality.

The central question in this study is whether and how the image of
offender networks is different in a dataset that integrates police data
and DNA data, compared to the police data only. Offender networks
with both known and unknown offenders may not only be bigger but
also have a different structure to networks with only known offenders
(RQ1). The results of this study show that integrating unknown offen-
ders has an impact on the degree, but not on the betweenness centrality.
The degree is higher in the real-world network, which means that many
offenders stored in the DNA database could be linked to the known
offenders in the police data or to other unknown offenders. As such, the
degree of the known offenders also increased by integrating the data.
Removing only unknown offenders from the real-world network (i.e.,
real-reduced network) had no impact on betweenness. On the contrary,
when known offenders are also removed from the network (i.e., simu-
lated-reduced networks), betweenness decreases. In other words,
known offenders may be more central nodes than unknown offenders in
relation to betweenness (RQ2).

These research findings have implications for both theory and
practice. Including the unknown offenders stored in the NGDB in the
database resulted in an offender image with not only about 22% more
offenders (i.e., nodes) but also about 44% more co-offending relations
(i.e., edges), in comparison with a database solely based on police-re-
corded crime data. Therefore, the generally accepted assertion in
criminology that at least half of all crime involves more than one of-
fender (Andresen and Felson, 2010; Felson, 2003; Lantz and Ruback,
2016; Warr, 2002) and that about two-thirds of all offenders commit
their crimes with others (Reiss, 1988) is probably an understatement.
Furthermore, this research provides a unique view of the position these
offenders may take in the whole offending network. Unknown offenders
may be more peripheral nodes in the network. The question therefore
arises as to whether the unknown offenders remain unidentified by the
police because of their peripheral position, or is it, as Sparrow (1991, p.
256) states, just because they stay unidentified by the police that they
have a more peripheral position in the network, although they may be
more central in reality? This is an important nuance, as in the first case
the integrated dataset would give an accurate image of the centrality of
the unknown offenders, whereas in the latter case the image would be
distorted. It is important to be aware of this uncertainty, because it
could mean that arresting unknown offenders has a bigger impact on
crime prevention than would be assumed based on their peripheral
position in the network.

Some potential limitations of this study need to be acknowledged.
First, it is important to bear in mind that the real-world network is
unlikely to include all unknown offender from police-recorded crime
data. It is, however, an approach that cannot be achieved with any
other data. Second, both the real-world and real-reduced networks
contain many isolates and small components, which limits the network
research possibilities but also has an impact on the mean degree and
betweenness at network level. Third, it is not possible to be certain that
all profiles stored in the database belong to offenders and not to victims,
for example. The impact of this possible error differs according to the
research point of view: operational or criminological research. For ex-
ample, in operational research, an unknown victim connecting two
known offenders can provide new investigative leads. For crimin-
ological research, this only distorts the results. Finally, false dis-
aggregation could also apply to a known offender from the police da-
taset and an unknown offender from the DNA dataset. However,
according to the Belgian DNA law of 2011, offenders of a crime or at-
tempted crime mentioned in a restrictive list of crimes have to provide
their DNA profile upon conviction (Art. 14 DNA law 2011, Belgisch
Staatsblad, 2011). As the four crime types selected for this study are

part of this list, an unknown DNA profile will become ‘known’ when
there is a match with the DNA profile of a convicted offender. Conse-
quently, except for administrative delays in taking reference samples of
convicted offenders or not being able to find the convicted offender to
take a reference sample, for example, this problem does not apply to the
current study.

Future research might progress the work developed here. In this
study only two centrality measures were taken into account. Future
research could explore the possibilities to measure the impact of
missing data on other network measures. The present study could also
be replicated using the traditional approach in missing data research by
studying the correlations of the centrality measures at individual node
level in networks with different error levels. Finally, to address the
limitation of the high degree of isolates mentioned above, future re-
search could focus on only the biggest component(s) present in the real-
world network. All these suggestions for future research could foster the
theoretical insights on known and unknown offenders.
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