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Abstract: Automatic parking path optimization is a key point for automatic parking. However, it
is difficult to obtain the smooth, accurate and optimal parking path by using traditional automatic
parking optimization algorithms. So, based on the automatic parking path optimization model for
cubic spline interpolation, an improved automatic parking path optimization based on the immune
moth flame algorithm is proposed for intelligent vehicles. Firstly, to enhance the global optimization
performance, an automatic parking path optimization model for cubic spline interpolation is designed
by using shortest parking path as optimization target. Secondly, an improved immune moth flame
algorithm (IIMFO) based on the immune mechanism, Gaussian mutation mechanism and opposition-
based learning strategy is proposed, and an adaptive decreasing inertia weight coefficient is integrated
into the moth flame algorithm so that these strategies can improve the balance quality between global
search and local development effectively. Finally, the optimization results on the several common test
functions show that the IIMFO algorithm proposed in this paper has higher optimization precision.
Furthermore, the simulation and semi-automatic experiment results of automatic parking path
optimization practical cases show that the improved automatic parking path optimization based on
the immune moth flame algorithm for intelligent vehicles has a better optimization effect than that of
the traditional automatic parking optimization algorithms.

Keywords: cubic spline interpolation; automatic parking; path optimization; moth flame algorithm;
immune mechanism

1. Introduction

The automatic parking path optimization algorithm for intelligent vehicles is a signifi-
cant means for ensuring safe, comfortable, rapid and accurate parking. The ideal intelligent
automatic parking path optimization algorithm should meet the following requirements.
Once the parking feasibility conditions are met, a smooth automatic parking path without
collision avoidance, with a length as short as possible, will be given efficiently.

Considering the performance in automatic parking, various relative researchers’ stud-
ies have been proposed in the recent literature. Among them, a reinforcement learning-
based end-to-end parking algorithm was proposed to realize automatic parking [1]. An ex-
ponential (epsilon-convergent) control algorithm for chained systems was proposed, and it
was verified to the automatic parking system in [2]. A new adaptive robust four-wheel
positioning method was proposed, and it was verified to the automatic parking system
in [3]. A model-based reinforcement learning method was proposed to learn parking
strategies from the data [4]. A structure of deep neural network-based control for automatic
parking maneuver process was designed and implemented [5]. Obviously, the existing
studies can improve the control effect for automatic parking control.
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The automatic parking path optimization problem is characterized by an unclear
internal mechanism, numerous uncertain factors, etc. Because traditional optimization
algorithms can easily result in a local optimum, obtaining satisfactory methods is difficult.
To solve the aforementioned issue in automatic traditional optimization algorithms, much
of the literature has discussed the improved strategies with traditional optimization algo-
rithms. A hybrid genetic algorithm was proposed, which is composed of two algorithms:
genetic and classic in [6]. An adaptive differential evolution algorithm was proposed
in [7], which selects new mutation and crossover strategies for global search optimization.
An evolutionary multi-objective seagull optimization algorithm for global optimization
(EMOSOA) was proposed in [8]. A modification of the nature-inspired symbiotic search
(MSOS) algorithm was proposed to improve the accuracy of its search and exploration by
introducing adaptive benefit factors and modified parasitic vectors in [9]. A heat transfer
search (HTS) algorithm was proposed to elucidate structural optimization problems with
multi-objective functions (called MOHTS) in [10]. In addition, the improved ant colony opti-
mization (ACO) for path planning in an automated guided vehicle (AGV)-based intelligent
parking system was proposed in [11].

The moth flame algorithm (MFO) is one of the most efficient intelligent algorithms,
and many works in the literature have proposed various improved moth flame algorithms.
In order to determine the optimal multilevel thresholding for image segmentation, the qual-
ity of the whale optimization algorithm (WOA) and moth flame optimization (MFO) were
verified in [12]. A optimal kernel extreme learning machine (KELM) using a chaotic moth
flame optimization (CMFO) was proposed in [13]. A hybrid learning machine using a
new moth flame optimization was proposed in [14]. A new moth flame optimization
algorithm using confrontation learning and position updating mechanism was proposed
in [15]. A moth flame optimization algorithm (IMFO) was proposed to be applied to the en-
gineering practice in [16]. A binary moth flame optimization (B-MFO) algorithm for feature
selection from medical datasets was proposed in [17]. A moth flame optimization algorithm
based on multi-trial vector (MV-MFO) was proposed in [18]. An improved version of the
MFO algorithm based on Lévy flight strategy (LMFO) was proposed in [19]. An enhanced
moth flame optimization (EMFO) technique based on cultural learning (CL) and Gaussian
mutation (GM) was proposed in [20]. However, there is a little related literature published
about the automatic parking path optimization method based on the improved immune
moth flame algorithm.

Compared with studies existing about automatic parking path optimization method,
the main innovations of this paper are as follows:

(I) Innovations of automatic parking path optimization method: Aiming at the problem
that the optimal automatic parking path selected by the optimization method is not ideal
for path length and the tracking trajectory is not smooth enough, a novel automatic parking
path optimization model by using cubic spline interpolation is constructed. In this way,
the complex automatic parking trajectory optimization problem can be simplified.

(II) Innovations of MFO: To solve the problem that traditional intelligent algorithms
are prone to local convergence, this paper proposes an IIMFO. This method solves the
defect that MFO lacks the mechanism of jumping out of local convergence, thus it effectively
improves the balance quality between global search and local development, and it includes
novel improvement strategies proposed. The specific novel strategies are described as
follows: I introduce an immune mechanism in the iterative process and expand the search
space; II introduce Gaussian mutation mechanism to further improve the ability of local
development and anti-local convergence; III introduce adaptive decreasing weight coeffi-
cient, so as to further strengthen local search quality; and IV introduce OBL mechanism for
elite to further improve optimization quality. The numerical results of the test functions
indicate the improved strategies can improve to a certain area for optimization speed
and accuracy. Additionally, the simulation and semi-automatic experiment results of the
automatic parking path optimization practical cases indicate the above facts. The specific
diagrammatic sketch about the improved strategies is shown in Figure 1.
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Figure 1. Diagrammatic sketch about improved strategies.

This paper is organized as follows. Section 2 introduces the automatic parking path
optimization method using cubic spline interpolation. Section 3 introduces the MFO.
Section 4 introduces the IIMFO. Section 5 uses test functions, simulation and semi-automatic
experiment comparison based on intelligent automatic parking, and carries out an analysis.
Section 6 concludes this article.

2. Automatic Parking Path Optimization Method Using Cubic Spline Interpolation
2.1. Cubic Spline Interpolation

The spline is originally a drawing tool used in engineering design. It is a kind of elastic
thin wooden strip, which is used to describe the smooth shape curve in the manufacturing
process of aircraft or ships. When used, it is fixed in several close points with a pressing
iron and left to bend naturally in other places then slightly adjusted to make the curve
conform to a satisfactory shape. Thus a spline curve is formed, and the mathematical model
abstracted from it is called spline interpolation [21].

The specific formula of cubic spline interpolation is described below:
The interval ∆ = [a, b] and its n + 1 interpolation points (x0, x1, · · · · ··, xn) are known,

if the following two conditions of interpolation function s(x) can be satisfied. The function
s(x) is a cubic spline interpolation function for interval ∆ = [a, b].

Condition 1: in any arbitrary subinterval [xi, xi+1], the index i ∈ [0, 1, 2, . . . , n], s(x) is
a cubic polynomial.

s(x) =


s1(x) = d1x3 + c1x2 + b1x + a1 ∈ [x0, x1]
s2(x) = d2x3 + c2x2 + b2x + a2 ∈ [x1, x2]
....
sn(x) = dnx3 + cnx2 + bnx + an ∈ [xn−1, xn]

(1)

where (x0, x1, · · · · ··, xn) is interpolation points; (a0, a1, · · · · ··, an), (b0, b1, · · · · ··, bn), (c0, c1, · ·
· · ··, cn) and (d0, d1, · · · · ··, dn) are polynomial coefficients for the cubic spline interpolation
piecewise function.

Condition 2: in the interval ∆ = [a, b], s(x) and its derivative function s′(x) are continuous.
The free bending curve obtained by cubic spline interpolation is smooth.
The following theorem presents the parameter solution set characteristic of polynomial

coefficients for the cubic spline interpolation piecewise function.
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Theorem 1. Assuming that the following conditions are given, s′1(x0) = B, s′n(xn) = B, there is
only one solvable parameter solution set for polynomial coefficients for cubic spline interpolation
piecewise function, and it can be mathematically expressed.

Proof of Theorem 1. Assuming that s(xi) = yi.
Consider the following equalities, si(x) = di(xi − xi)

3 + ci(xi − xi)
2 + bi(xi − xi) +

ai = yi, thus ai = yi.
In addition, define hi = xi+1 − xi, where hi is the step length because si(xi+1) =

yi. Moreover, s′ i(xi+1) = s′ i+1(xi+1), s′′ i(xi+1) = s′′ i+1(xi+1), make mi = s′′ i(xi) =

2ci + 6di(xi − xi) = 2ci, and mi is the introduced parameters, thus bi =
yi+1−yi

hi
− hi

2 mi −
hi
6 (mi+1 −mi), ci =

mi
2 , di =

mi+1−mi
6hi

.

Make αi =
hi−1

hi−1+hi
, βi = hi

hi−1+hi
, due to ci = 6

(
yi−1+yi

hi
− yi−1−yi

hi

)
1

(hi−1+hi)
, then

αimi−1 + 2mi + βimi−1 = ci, combined with the boundary conditions s′1(x0) = B, s′n(xn) =
B. Introduced parameters mi can be solved by the linear equations solving method.

According to the above theorem, cubic spline interpolation is suitable for various
industrial applications and has low computational complexity.

2.2. Automatic Parking Path Optimization Model Using Cubic Spline Interpolation

Automatic parking path optimization is a necessary calculation link for intelligent
automatic parking. The intelligent automatic parking control system contains a parking
optimization data collection device, track trajectory optimizer and its ancillary program,
parking track controller, parking feasibility in determining device, emergency braker,
parking braker, etc. [22]. The specific design structure diagram of automatic parking control
system is shown in Figure 2.

Figure 2. Design structure diagram of automatic parking control system.

According to the automatic parking path optimization model, the optimization objec-
tive is the shortest parking path, and the decision variables are several parking location
reference points. There are four constraints: no collision between the vehicle and the garage
side line during the parking process; the parking trajectory curve can be derived; the
parking path is obtained by cubic spline interpolation; the parking location reference points
are selected from the collected location reference candidate point set.

There are many forms for automatic parking; among them, reversing into a garage of
automatic parking is a common parking scene. The specific schematic diagram of intelligent
automatic parking is shown in Figure 3.
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Figure 3. Schematic diagram of intelligent automatic parking.

As can be seen from Figure 3, the garage sideline and corner of the parking space are
clear and identifiable, the vehicle is located in the start point initially, and it is necessary to
park at the target point. Meanwhile, the automatic parking control system collects relative
information immediately, and judges whether the parking conditions are met. On the
premise of meeting parking conditions, according to the collected relative information, plan
the optimal parking path and track precisely so as to park at the target point.

The specific automatic parking path optimization model is expressed as follows:

min L =
∫ Tmax

0 v(t)dt ≈
nt
∑

it=1
∆Lit

S.T.


LTX,Y = s(p1, p2, . . . , pis, . . . , pns)
∆Lit ≤ ∆Lmax&∆∠it ≤ ∆∠max
∀pis ∈ PC
∀Pg(i) /∈ Ωc,it
∀Pg(i) ∈ Ωg

(2)

where Pg is location set for the garage collision detection point; the number of set Pg is
ng; Pg(i) is the location of the i-th garage collision detection point, i ∈

{
1, 2, . . . , ng

}
; ∆Lit

and Ωc,it are the i-th time period parking interval distance and vehicle coverage area;
the number of the distinct time period is nt, it ∈ {1, 2, . . . , nt}, thus, the end time of parking
is Tmax = ns∆t, because the vehicles can’t touch the garage edge, ∀Pg(i) /∈ Ωc,it; L is the
length of the parking path, and it is the definite integral parking velocity v(t) about t
from parking start 0 to parking end Tmax, approximately equal to the sum of the parking
interval distances for all time periods; ∆Lmax and ∆∠max are the maximum value of the
parking interval distance and parking attitude angle for any allowed time period; ∆∠it
are the i-th time period parking attitude angle, ∆Lit ≤ ∆Lmax&∆∠it ≤ ∆∠max; LTX,Y
is the parking trajectory in the plane coordinate system composed of the X axis and Y
axis; {p1, p2, . . . , pis, . . . , pns} is the parking location reference point set, is ∈ {1, 2, . . . , ns};
the number of set {p1, p2, . . . , pis, . . . , pns} is ns; s(p1, p2, . . . , pis, . . . , pns) is the cubic spline
interpolation curve for set {p1, p2, . . . , pis, . . . , pns}, and it is the novel assumption; PC =
{pc1, pc2, . . . , pcic, . . . , pcnc} is the parking location reference candidate point set; the num-
ber of set PC is nc, ∀pis ∈ PC; and ns is much smaller than nc.

For the specific reversing into a garage of automatic parking, the following two
constraints should be added. (I) The optimization effect should be compared under fair
comparison conditions. In other words, when the vehicle is finally parked, the error
between the distance between the center of the vehicle and the bottom line of the garage
and the expected distance should be less than the allowable range. (II) At the final stage of
parking, the vehicle body should be parallel to the side line of the garage as far as possible.
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In other words, when the vehicle is finally parked, the error between the distance between
the center of the vehicle and the midpoint of the vehicle bottom and 1/2 of the vehicle
length should be less than the allowable range.

The specific schematic diagram of automatic parking path optimization using cubic
spline interpolation is shown in Figure 4.

Figure 4. Schematic diagram of automatic parking path optimization using cubic spline interpolation.

Generally, the bottom garage corner, far away from vehicle, is set as the reference ori-
gin (0,0), and the length and position unit are m; fixed length binary coding is adopted,
where the coding length is equal to the number of parking location reference point set ns, and
X = TtoB({ic1, ic2, . . . , icis, . . . , icns}) is binary coding for the parking location reference point
set, TtoB(icis) is the binary number of icis, and pcicis is the icis-th element of the parking location
reference candidate point set PC.

3. Moth Flame Optimization Algorithm

The moth flame optimization algorithm (MFO) is an effective optimization algorithm,
proposed by S. Mirijalili in 2015. The algorithm abstracts the optimization algorithm by
observing the phenomenon that moths locate the light source horizontally [23]. In the moth
flame optimization algorithm, the moth population position represents a series of candidate
solution sets, and the flame position represents a series of elite solution sets currently.

The moth population position is represented by matrix M, and it is expressed as
follows.

M =


M11 M12 . . . M1d
M21 M22 . . . M2d

...
...

...
...

Mn1 Mn2 . . . Mnd

 (3)

where n represents the number of moths; d represents the dimension of the solution.
The moth population fitness value is represented by matrix OM, and it is expressed

as follows.

OM =


OM1
OM2

...
OMn

 (4)
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Initially, the flame number is equal to the moth number, and the initial flame group
position is represented by matrix F. It is expressed as follows.

F =


F11 F12 . . . F1d
F21 F22 . . . F2d
...

...
...

...
Fn1 Fn2 . . . Fnd

 (5)

The flame group fitness value is represented by matrix OF, and it is expressed as
follows.

OF =


OF1
OF2

...
OFn

 (6)

The optimization process can be abstracted as a triplet.

MFO = (I, P, T) (7)

where I means the initialization step: generate moth individuals randomly, and obtain their
fitness value. The specific mapping relationship is expressed as follows.

I : φ→ {M, OM} (8)

where P indicates the position updating behavior: according to the logarithmic spiral law,
moth individuals update their positions based on the information of themselves and the
flame group [24]. If a better fitness value than the current one is obtained, the corresponding
flame needs to be updated. The specific mapping relationship is expressed as follows.

P : M→ M (9)

The specific position updating is expressed as follows.{
Mi = S(Mi, Fj) = Dij · eτt · cos(2πt) + Fj
Dij = |Mi − Fj|

(10)

where Mi represents the i-th moth position; Fj represents the j-th flame position; Dij
represents the Euclidean distance between the i-th moth and the j-th flame; τ represents the
parameter for changing the logarithmic spiral waveform; t represents a random number
between −1 and 1; and S(Mi, Fj) represents a logarithmic spiral function.

In addition, aiming at accelerating the convergence speed, the flame number will
be adaptively reduced with the increase in the number of iterations. The specific update
mechanism for the flame number is expressed as follows.

N f lame = round(Nmax
f lame − l

Nmax
f lame − 1

Nmax
int

) (11)

where N f lame is the updated flame number; Nmax
f lame is the maximum number of flames; l is

the iteration current number; and Nmax
int is the iteration maximum number.

4. Improved Immune Moth Flame Optimization Algorithm
4.1. Immune Mechanism

The essence of the immune mechanism is as follows: the global optimal solution to be
found of the population is taken as the antigen, and each individual in the population is
taken as the antibody. Once the antibody is stimulated by an external invasion, it constantly
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produces new antibodies to realize immune function. However, if necessary control mea-
sures are lacking, the immune cells with a higher concentration will monopolize the whole
population. The immune mechanism maintains the population diversity according to the
concentration selection strategy so as to avoid the local convergence of the algorithm and
improve its global optimization ability. If the immune mechanism based on the concentra-
tion selection strategy is introduced into the moth fire fighting algorithm, its optimization
efficiency will be improved. In the concentration selection strategy, the calculation formula
of the antibody concentration and its concentration probability is as follows.

D(xi) =
1

m+N
∑

j=1

∣∣ f (xi)− f
(
xj
)∣∣ (12)

Pd(xi) =

1
D(xi)

m+N
∑

i=1

1
D(xi)

=

m+N
∑

j=1

∣∣ f (xi)− f
(
xj
)∣∣

m+N
∑

i=1

m+N
∑

j=1

∣∣ f (xi)− f
(
xj
)∣∣ (13)

where f (xi), D(xi) and Pd(xi) are the fitness function value, antibody concentration and its
concentration probability of each moth, i = 1, 2, . . . , m + N.

In the concentration selection strategy, the immune system will promote the production
of antibodies with great lethality to the antigen; on the contrary, it will inhibit antibodies
with low lethality and high concentration. So, the balance between global search and local
development can be effectively enhanced.

4.2. Gaussian Mutation for Flame Updating

Gaussian distribution is also called normal distribution. Gaussian disturbance is a kind
of disturbance whose intensity conforms to Gaussian distribution (normal distribution).
The mechanism of realizing mutation by applying Gaussian disturbance is called the
Gaussian mutation mechanism. According to the characteristics of normal distribution,
Gaussian mutation can realize the key search in the local area near the original individual.
Therefore, the introduction of the Gaussian mutation mechanism has two important effects
that cannot be ignored: I It can effectively expand and strengthen the local search range
and intensity of the moth flame optimization algorithm so as to help improve its local
development ability; II When the moth flame optimization algorithm has the risk of local
convergence in a certain local area, the strong local disturbance in this area will significantly
help it escape from local convergence [20]. Obviously, the introduction of the Gaussian
mutation mechanism is an effective strategy to enhance the balance between the global
development and local convergence of the moth flame algorithm. In this paper, a new
flame position updating method based on the moth flame algorithm with Gauss mutation is
adopted. For the flame position Fi with index i, the specific flame position update formula
with Gaussian variation is as follows.

λik =

N
∑

j=1
Fjk

N
Vik = Fik + λik · Gaussian

(
µ, σ2) (14)

where Fjk represents the k-th dimension of the flame selected by the moth with index j, λik
represents the k-th dimension of the weight vector conforming to the flame disturbance
characteristics of the entire moth population, Fik and Vik represent the original value of the
k-th dimension of the flame position Fi with index i and the updated value after Gaussian
mutation. Gaussian

(
µ, σ2) is a Gaussian distribution (normal distribution) random number

with mean µ and standard deviation σ.
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4.3. OBL Mechanism for Elite

Opposition-based learning is abbreviated as OBL. The OBL mechanism is an effective
mechanism to improve the optimization quality of the bionic optimization algorithm,
and it was proposed by Tizhoosh in 2005 [25]. The OBL mechanism has the ability to
generate a certain number of elite opposition-based learning solutions far away from the
local optimum. If the moth flame algorithm is placed in a circumstance of falling into local
convergence, these elite opposition-based learning solutions can make the population move
away from the local region so as to promote the balance quality between the global search
and local development capability.

The specific elite opposition-based learning formula is as follows:
x(t)′ i = k(ai + bi)− x(t)i
x(t)′ i, x(t)i ∈ [ai, bi]
i ∈ [1, 2, . . . . . . , d]

(15)

where ai and bi represent the minimum and maximum values on the boundary of the i-th
dimension; k ∈ [0, 1] is the random generalization coefficient; x(t)′ i and x(t)i represent the
elite opposition-based learning and original solution of the i-th dimension; and d is the
number of dimension.

However, there is a probability of ‘overflow’ for elite opposition-based learning in
the iteration process. If the i-th dimension exceeds the boundary, the overflow solution is
handled by the overflow strategy.

The specific overflow disposal formula is as follows:

x(t)′ i = ai + β(bi − x(t)i) (16)

where β ∈ [0, 1] is the random overflow disposal coefficient.

4.4. Adaptive Decreasing Inertia Weight Coefficient

Since the inertia weight coefficient has a certain impact on the optimization effect of
the algorithm, in order to improve the global search ability of MFO in the initial stage of
iteration, it is necessary to select a larger inertia weight coefficient. On the contrary, in the
late iteration, in order to enhance the local search ability, a smaller inertia weight coeffi-
cient should be selected. Obviously, introducing the adaptive decreasing inertia weight
coefficient is conducive to balance maintenance for global search and local development.
This paper proposes to introduce the adaptive decreasing inertia weight coefficient into the
position updating behavior [26]. The calculation formula of the adaptive decreasing inertia
weight coefficient is expressed as follows.

v=ωmax −ωd ∗
(

l
Nmax

int

)α

(17)

where α is the decreasing decline rate. It makes the decreasing rate in the whole iteration
process have a significant difference. When α = 1, then it is equivalent to linear decline.

The moth update formula using the adaptive decreasing inertia weight coefficient is
expressed as follows.{

Mi = S(Mi, Fj) = Dij · eτt · cos(2πt) + v · Fj
Dij = |Mi − Fj|

(18)

4.5. Design of Improved Immune Moth Flame Optimization Algorithm

The design highlights of the improved automatic parking path optimization based
on the improved immune moth flame algorithm (IIMFO) is the balance maintenance
mechanism for global search and local development. Aiming at improving the balance
quality, the OBL strategy, immune mechanism, and adaptive decreasing inertia weight
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coefficient are integrated into the moth flame algorithm.The flowchart for the improved
immune moth flame algorithm is shown in Figure 5.

Figure 5. The flowchart for improved immune moth flame algorithm.

5. Simulation and Semi-Automatic Experiment
5.1. Test Function Simulation

In order to verify the effectiveness of the improved algorithm in this paper, three test
functions (single objective function: De jong, Schaffer) simulated and compared the fourdif-
ferent optimization algorithms: the improved immune moth flame optimization algorithm
(IIMFO) proposed in this paper, the improved version of the moth flame optimization
algorithm based on Lévy-flight strategy (LMFO), the moth flame optimization algorithm
(MFO), differential evolution (DE), and particle swarm optimization (PSO).

The specific simulation comparison results are as follows:
(I) The sphere function (real optimal minimum function value is 0.0) is expressed as

follows. F(x1, x2) = x1
2 + x2

2.
The specific simulation results of the sphere function are shown in Figure 6 and Table 1.
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Figure 6. The convergence curves of sphere function.

Table 1. Optimization results of sphere function.

Algorithm (x1, x2) F(x1, x2)

IIMFO 4.6× 10−3, 6.0× 10−3 5.7× 10−5

IIMFO 7.9× 10−3, 9.8× 10−3 1.6× 10−4

MFO 9.1× 10−3, 2.3× 10−2 6.1× 10−4

DE 1.6× 10−2, 2.4× 10−2 8.3× 10−4

PSO 2.1× 10−2, 2.7× 10−6 1.2× 10−3

As shown in Figure 6 and Table 1, compared with LMFO, MFO, DE and PSO, the im-
proved immune moth flame optimization algorithm is most ideal, and its optimal min-
imum function value is (x1, x2)=

(
4.6× 10−3, 6.0× 10−3), the optimal function value is

F(x1, x2) = 5.7× 10−5.
(II) De jong function (real optimal minimum function value is 0.0), it is expressed as

follow. F(x1, x2) = 100 ∗ (x1−x2)
2+(1−x1)

2.
The specific simulation results about De jong function are shown in Figure 7 and

Table 2.

Table 2. Optimization results about De jong function.

Algorithm (x1, x2) F(x1, x2)

IIMFO 0.9929, 0.9933 6.7× 10−5

LMFO 0.9922, 0.9938 3.1× 10−4

MFO 0.9796, 0.9809 5.9× 10−4

DE 0.9765, 0.9789 1.1× 10−3

PSO 0.9774, 0.9802 1.3× 10−3
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Figure 7. The convergence curves about De jong function.

As shown in Figure 7 and Table 2, compared with LMFO, MFO, DE and PSO, the im-
proved immune moth flame optimization algorithm is most ideal, and its optimal mini-
mum function value is (x1, x2) = (0.9929, 0.9933), the optimal function value is F(x1, x2) =
6.7× 10−5.

(III) The Schaffer function (real optimal minimum function value is 0.0) is expressed

as follows. F(x1, x2) = 0.5 + ((sin (x1
2+x2

2)
0.5

)−0.5)
(1+0.001×(x1

2+x2
2))

2 .

The specific simulation results of the Schaffer function are shown in Figure 8 and
Table 3.

Figure 8. The convergence curves of Schaffer function.
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Table 3. Optimization results of Schaffer function.

Algorithm (x1, x2) F(x1, x2)

IIMFO 8.7× 10−5, 9.1× 10−5 1.3× 10−4

LMFO 2.9× 10−4, 2.5× 10−4 3.8× 10−4

MFO 5.5× 10−4, 4.0× 10−4 6.8× 10−4

DE 8.9× 10−4, 1.0× 10−3 1.4× 10−3

PSO 1.6× 10−3, 1.3× 10−3 2.1× 10−3

As shown in Figure 8 and Table 3, compared with LMFO, MFO, DE and PSO, the im-
proved immune moth flame optimization algorithm is most ideal, and its optimal min-
imum function value is (x1, x2)=

(
8.7× 10−5, 9.1× 10−5), the optimal function value is

F(x1, x2) = 1.3× 10−4.

5.2. Intelligent Automatic Parking Simulation

The setting situation of coordinate axis for intelligent automatic parking in this paper
is as follows: the bottom edge line of the vehicle garage is the x-axis, the side line of the
vehicle garage away from the vehicle and vertical to the x-axis is the y-axis, the bottom
corner of garage edge away from the vehicle is the reference origin O, and the coordinate
of reference origin O is (0,0). The two automatic parking scenarios are chosen: Volkswagen
UP and Honda XR-V are the simulation object, and the parallel distance between the initial
coverage area and vehicle garage near the corner is 2.2 m, respectively. The specific setting
situation of scenario for Volkswagen UP is described as follows: the parking space is
5.0× 2.5 m2, the vehicle coverage area is 3.5× 1.7 m2, and the distance between initial
coverage area and the side line of vehicle garage is 1 m. The scenario for Honda XR-V is as
follows: the parking space is 5.0× 2.5 m2, the vehicle coverage area is 4.4× 1.8 m2, and
the distance between initial coverage area and side line of vehicle garage is 0.8 m.

The parking path optimization method adopts the improved immune moth flame op-
timization algorithm proposed in this paper (IIMFO), improved version of the moth flame
optimization algorithm based on Lévy-flight strategy (LMFO), the moth flame optimiza-
tion algorithm (MFO), differential evolution (DE) and particle swarm optimization (PSO).
The specific automatic parking path curves and optimization results using Volkswagen UP
and Honda XR-V are shown in Figures 9 and 10 and Tables 4 and 5.

Figure 9. Automatic parking path curves using Volkswagen UP.
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Figure 10. Automatic parking path curves using Honda XR-V.

Table 4. Optimization results about automatic parking using Volkswagen UP.

Algorithm Parking Location Reference Point Set (m) Path Length (m)

IIMFO (1.49, 2.37), (1.41, 3.82), (1.98, 5.73), (4.06, 6.47) 9.27
LMFO (1.30, 2.40), (1.32, 3.80), (1.96, 5.75), (4.05, 6.48) 9.41
MFO (1.20, 2.49), (1.29, 3.85), (1.95, 5.82), (4.12, 6.62) 9.75
DE (1.06, 2.44), (1.09, 3.93), (1.91, 5.84), (3.98, 6.66) 10.27

PSO (1.03, 2.45), (1.07, 3.93), (1.86, 5.87), (3.98, 6.67) 10.35

Table 5. Optimization results about automatic parking using Honda XR-V.

Algorithm Parking Location Reference Point Set (m) Path Length (m)

IIMFO (1.56, 2.21), (1.58, 4.23), (1.64, 5.78), (3.88, 6.42) 9.14
LMFO (1.36, 2.22), (1.50, 4.24), (1.63, 5.79), (3.86, 6.45) 9.33
MFO (1.26, 2.19), (1.46, 4.22), (1.67, 5.91), (3.95, 6.52) 9.72
DE (1.16, 2.19), (1.40, 4.20), (1.70, 5.96), (3.90, 6.54) 10.07

PSO (1.11, 2.20), (1.36, 4.21), (1.70, 5.96), (3.90, 6.65) 10.13

As shown in the automatic parking path curves and related results using Volkswagen
UP and Honda XR-V (Figures 9 and 10 and Tables 4 and 5), compared with MFO, DE and
PSO, under the premise of no collision avoidance of the side line of the vehicle garage
during the parking process, the automatic parking path obtained by IIMFO is smoother
and shorter. This indicates that IIMFO proposed in this paper has a stronger optimization
effect and has more advantages in intelligent parking.

5.3. Intelligent Automatic Parking Semi-Automatic Experiment

Because the ideal automatic experiment environment is not easy to be obtained, a semi-
automatic experiment environment is chosen as the verification environment in this paper.
A commonly used and favored intelligent semi-automatic parking mode was adopted in
the semi-automatic experiment environment. The specific details about the limitations of
the intelligent automatic parking semi-automatic experiment are shown as follows.
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(I) The parking system contains the identification function of extremely bad weather
and road conditions. When it knows that the vehicle is in extremely bad weather and under
different road conditions such as rainstorm, blizzard, heavy uphill and heavy downhill,
it will automatically disable the intelligent semi-automatic parking function and inform
the driver.

(II) The parking system is equipped with both a parking path optimization function
and parking path tracking control performance. In other words, in general, parking systems
have the potential to realize unmanned autonomous parking.

(III) In the process of intelligent semi-automatic parking, it is necessary to configure
a driver familiar with two simple skills. The details are as follows: I according to the
deviation between the optimized path and the tracking control path in the reversing image,
manually and gently control the steering wheel to improve the accuracy of the parking path
tracking control; II it is able to stop parking or apply emergency braking in combination
with the on-site parking situation and the prompt of the parking reminder. In other words,
the driver acts as both a safety officer and an enhanced track control corrector.

(IV) The parking system is equipped with strong safety assurance measures. Once
an accident occurs, the parking vehicle will be parked immediately to ensure the safety of
people and vehicles.

The above intelligent semi-automatic parking mode introduced in this paper will
become a major parking mode in China in the future because of its dual advantages of
convenience and economy.

In the above semi-automatic parking mode, the rearview camera with an optimiza-
tion parking path and track trajectory is used for reference, and a driver with the above
described simple skills is needed. Specifically, the optimization parking path is the capital
driving factor, and the driving experience should not be ignored too. The driving trajectory
tracks the optimization parking path by the rearview camera and corrects by the driv-
ing experience. So, the experiment vehicle need to configure the rearview camera with
the optimization parking path and tracking trajectory, position sensors, driver prompter,
tracking controller, parking feasibility decider, emergency parking device and stopping
parking device.

In this paper, the No. 148 and No. 146 parking areas of Xinghai Square Shell Museum
in Dalian, China are chosen as the semi-automatic experiment area, and the Toyota LeiLing
Shuangqing 185T Sportline and First Automobile Works (FAW) Senya r7 are chosen as the
semi-automatic experiment object. The two automatic parking scenarios are chosen: Toyota
LeiLing Shuangqing 185T Sportline and Honda Accord 15T as semi-automatic experiment
objects, and the parallel distance between initial coverage area and vehicle garage near
corner is 2.2 m, respectively. The specific setting situation of scenario for FAW Senya r7
is described as follows: the parking space is 5.0× 2.5 m2, the vehicle coverage area is
4.7× 1.9 m2, and the distance between initial coverage area and the side line of vehicle
garage is 1 m. The specific setting situation of scenario for Honda Accord 15T is described
as follows: the parking space is 5.0× 2.5 m2, the vehicle coverage area is 4.4× 1.8 m2,
and the distance between initial coverage area and the side line of vehicle garage is 1.2 m.
The main parameters of the calculus complexity for semi-automatic experiments based
on intelligent automatic parking in this paper are as follows: the limit time for collecting
parking path optimization data is 4 s, the time for determining the feasibility of simulated
parking is 1.5 s, the time for obtaining the parking path by the optimization algorithms is
10.5 s, and the limit of the total time for the parking path optimization is 16 s. In general,
the acceptable limit total time is identified as 20 s, thus, the verification for semi-automatic
experiment comparison in this paper is believable and realistic. The integral fitting method
is used to solve the length of the stopping trajectory curve in the control period of 1000 µs
(1 ms). In this paper, the Mavic 2 DJI’s unmanned aerial vehicle (UAV) is chosen as the
camera equipment. The specific physical diagram of Mavic 2 DJI’s unmanned aerial vehicle
is shown in Figure 11.
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Figure 11. Physical diagram of Mavic 2 DJI’s unmanned aerial vehicle.

In this paper, semi-automatic experiment comparison based on intelligent automatic
parking was implemented on several calm, cloudless days. The parking path optimization
method adopts the improved immune moth flame optimization algorithm proposed in this
paper (IIMFO), improved version of moth flame optimization algorithm based on Lévy-
flight strategy (LMFO), moth flame optimization algorithm (MFO), differential evolution
(DE) and particle swarm optimization (PSO). The three vital fixed points were filmed
using the Mavic 2 DJI’s unmanned aerial vehicle. The specific filmed vital fixed points for
the semi-automatic parking process using Volkswagen Toyota LeiLing Shuangqing 185T
Sportline and FAW Senya r7 are shown in Figures 12 and 13.

Figure 12. Filmed vital fixed points for automatic parking process using Volkswagen Toyota LeiLing
Shuangqing 185T Sportline.
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Figure 13. Filmed vital fixed points for automatic parking process using FAW Senya r7.

As can be seen from the filmed vital fixed points for the semi-automatic parking
process using Toyota LeiLing Shuangqing 185T Sportline and FAW Senya r7, compared
with LMFO, MFO, DE and PSO, under the premise of no collision avoidance of the side
line of the vehicle garage during the parking process, the semi-automatic parking effect
obtained by IIMFO is more ideal. It indicates that the IIMFO algorithm is a suitable
algorithm with strong optimization ability and can deal with the actual automatic parking
problem more effectively.

6. Conclusions and Future Work

In view of the disadvantages of the optimization method in the traditional automatic
parking control system, this paper constructs an automatic parking path optimization
model based on cubic spline interpolation and proposes an improved immune moth flame
algorithm for automatic parking path optimization. The following summarizes the main
innovation of the paper:

(I) Innovations of automatic parking path optimization method: aiming at the problem
that the optimal automatic parking path chosen by the optimization method is not ideal for
path length and the tracking trajectory is not smooth enough, an automatic parking path
optimization model based on cubic spline interpolation is constructed.

(II) Innovations of the MFO algorithm: aiming at the problems that the automatic
parking control system needs to optimize the parking path and that the efficiency of the
traditional optimization algorithm is low, this paper proposes to use MFO to optimize
the parking path, and to solve the defect that MFO lacks the effective mechanism of
balance between global search and local development, four improvements are proposed.
Four specific novel strategies are as follows: I introduce a immune mechanism in the
iterative process, which can adjust the distribution of moths in space so as to jump out of
the local optimization and then seek the global optimization; II introduce the Gaussian
mutation mechanism to provide strong local distribution so as to explore the key local space
deeply enough and enhance the ability to jump out of local convergence; III introduce the
adaptive decreasing inertia weight coefficient to further strengthen the global optimization
capabilities; IV introduce the OBL mechanism to further improve the optimization quality.

The numerical results of the test function show that the improved strategies are
excellent for improving the optimization precision, iterative accuracy and stability of the
MFO. Further, the results of simulation and semi-automatic experiment comparison based
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on intelligent automatic parking indicate that IIMFO has a better, improved optimization
effect than was anticipated.

There are several suggestions as future directions for automatic parking path optimization
based on the immune moth flame algorithm: I draw lessons from the existing improved MFO,
such as EMFO, B-MFO or MTV-MFO, to further improve its optimization performance; II
designing a novel automatic parking path optimization model by using other types of spline
interpolation, such as cubic B-spline or high cardinal spline, so as to improve computational
efficiency and accuracy; III enhance the MFO algorithm by integrating into other mechanisms
or methods so as to further improve the optimization quality; IV combine the improved MFO
with other algorithms, such as the differential evolution (DE) algorithm or genetic algorithm
(GA), to further improve its optimization performance; V construct a verification environment
using the automatic parking path experiment and the quantitative method so as to further
improve the verification precision.
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