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Abstract: Accurate and timely traffic flow prediction not just allows traffic controllers to evade traffic
congestion and guarantee standard traffic functioning, it even assists travelers to take advantage of
planning ahead of schedule and modifying travel routes promptly. Therefore, short-term traffic flow
prediction utilizing artificial intelligence (AI) techniques has received significant attention in smart
cities. This manuscript introduces an autonomous short-term traffic flow prediction using optimal
hybrid deep belief network (AST2FP-OHDBN) model. The presented AST2FP-OHDBN model
majorly focuses on high-precision traffic prediction in the process of making near future prediction of
smart city environments. The presented AST2FP-OHDBN model initially normalizes the traffic data
using min–max normalization. In addition, the HDBN model is employed for forecasting the traffic
flow in the near future, and makes use of DBN with an adaptive learning step approach to enhance
the convergence rate. To enhance the predictive accuracy of the DBN model, the pelican optimization
algorithm (POA) is exploited as a hyperparameter optimizer, which in turn enhances the overall
efficiency of the traffic flow prediction process. For assuring the enhanced predictive outcomes of the
AST2FP-OHDBN algorithm, a wide-ranging experimental analysis can be executed. The experimental
values reported the promising performance of the AST2FP-OHDBN method over recent state-of-
the-art DL models with minimal average mean-square error of 17.19132 and root-mean-square error
of 22.6634.

Keywords: intelligent transportation system; smart cities; traffic flow prediction; deep learning;
hyperparameter tuning; autonomous driving

1. Introduction

As a new form of intellectually complex mechanism, with high interaction and in-
tegration among multidimensional heterogeneous physical substances in network atmo-
spheres [1,2], the cyber-physical system (CPS) compiles control, computing, and communi-
cation technologies to offer a practicable solution to and advanced technologies for the new
generation of intelligent transportation system (ITS). This therefore is the key advancement
direction of the CPS and resolves the issues of intellectual real-time target control and
optimal dispatch of ITS [3]. Meanwhile, the issue of dense functions of large-scale data-
computing and optimum control-scheduling methods in large-scale ITS is resolved by the
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speedy advancement of cloud computing (CC) technology. The basic principle of this was
dispensing computing tasks on a great number of cloud-distributed computers; ITS man-
agement departments could then match CC sources to ITS cloud-controlled applications,
evaluating storage systems and computers as required [4]. The implementation of CPS and
CC technology makes it possible to attain, transfer and compute traffic data practically, and
the implementation of the dynamic matrix method and artificial intelligence (AI) method
could forecast traffic data in the next moment in advance [5].

Real-time precise short-time traffic flow forecasting could provide traffic guidance
for traffic participants by selecting a suitable travel route, and aid the traffic controllers to
have a fair control strategy for relieving traffic congestion [6]. Traffic flow becomes a time
sequence data, having robust cyclicity and regularity that were considered as the base for
precise estimation. However, its uncertainty and randomness raise prediction difficulties.
Therefore, short-time traffic flow forecasting becomes necessary and challenging one in
research domains and transport management [7]. Over the last few years, more techniques
were deployed for forecasting short-term traffic flow, such as the autoregressive integrated
moving average (ARIMA), fuzzy theory, artificial neural network (ANN), and Kalman
filter. Such techniques proved to be helpful in deriving traffic flow temporary tendency
and forecasting the future traffic flow. It was discovered from the literature that AI-related
methods have been extensively utilized for object analytics and detection in ITS. However,
such AI-enabled methods need precise perception [8]. However, prevailing approaches
produce several mistakes at the time of execution, which may not applicable for realistic
data analytics in ITS.

During the past few decades, several research proposals were suggested for enhancing
self-learning approaches to dynamic and complex applications of the transport system [9].
Self-learning methods for traffic prediction could be widely split into 2 parts: nonparametric
and parametric. In this context, a nonparametric method termed deep learning (DL) was
found to be helpful for traffic flow forecasting with multidimensional features [10]. DL was
a subset of machine learning (ML) that depends on the idea of deep neural network (DNN)
and it was broadly utilized for object recognition, data classification, and natural language
processing (NLP).

This manuscript introduces an autonomous short-term traffic flow prediction using
an optimal hybrid deep belief network (AST2FP-OHDBN) model. The presented AST2FP-
OHDBN model initially normalizes the traffic data using min–max normalization. In
addition, the HDBN model is employed for forecasting the traffic flow in the near future,
by the use of DBN with an adaptive learning step approach to enhance the convergence
rate. To enhance the predictive accuracy of the DBN model, the pelican optimization
algorithm (POA) is exploited as a hyperparameter optimizer, which in turn enhances the
overall efficiency of the traffic flow prediction process. For assuring enhanced predictive
outcomes of the AST2FP-OHDBN algorithm, a wide-ranging experimental analysis can be
carried out.

2. Related Works

Zhang et al. [11] suggest a short-term traffic flow forecasting technique on the basis
of a CNN-DL structure. In the presented structure, the optimum input duration lags and
spatial data volumes were fixed by a spatio-temporal feature selection algorithm (STFSA),
and the chosen spatio-temporal traffic flow features were derived from actual data and
transformed into a 2-dimensional matrix. The CNN later studied such features for framing
a predictive method. In [12], a hybrid technique compiling FNN and fuzzy rough set (FRS)
can be suggested for imputation of missed traffic data. At first, FNN can be utilized for data
classification; next, the KNN technique can be employed for determining optimal number
of data leveraged to predict missing data in every category; lastly, the FRS was leveraged
for imputing missed values. In [13], deep feature learning techniques were recommended
for predicting short-term traffic flow in the succeeding multiple steps, utilizing supervised
learning approaches. In order to reach traffic flow forecasting for the following day, an
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advanced multiobjective PSO method is implemented for optimizing certain variables in
DBN. The modified method could foster the accuracy of the prediction fallouts and bolster
their multiple step prediction capability.

Huang et al. [14] suggest a single-stage DNN-YOLOv3 (you only look once)-DL, that
depends on the Tensorflow structure for improvising this issue. The network framework
can be maximized by presenting the ideology of spatial pyramid pooling, afterward, the
loss function was redefined, and a weight regularization technique was presented, in which,
the statistics and real-time detections of traffic flow are applied efficiently. The optimization
method uses the DL-CAR dataset for experimentations and end-to-end network training
with datasets in various cases and weathers. In [15], a traffic flow detection method
depending on DL on the edge node is suggested. Initially, the authors suggest a vehicle
detection approach on the basis of the YOLOv3 method trained with a high volume of
traffic data. They subsequently then pruned the method for ensuring competence on the
edge equipment.

In [16], a novel end-to-end hybrid DL network method, termed M-B-LSTM, was
suggested for short-term traffic flow forecasting in this work. In the M-B-LSTM method,
online self-learning networks can be built as a data map layer for learning and equalizing
the traffic flow statistic dispersal to reduce the impact of overfitting issues and distribution
imbalance at the time of network learning. Feng et al. [17] suggest a new short-run traffic
flow forecasting technique depends on an adaptive multikernel SVM (AMSVM) with
spatial–temporal co-relation, termed AMSVM-STC. Initially, explore the randomness as
well as nonlinearity of traffic flow, and hybrid polynomial kernel and Gaussian kernel
for constituting the AMSVM. Secondly, the variables of AMSVM are optimized with the
adaptive PSO method and recommends a new technique to constitute the hybrid kernel’s
weight adjust adaptively in accordance with changing tendency of realistic traffic flow.

Xia et al. [18] presents a short-term traffic flow predictive approach which integrates
community detection-based federated learning with graph convolutional network (GCN)
for alleviating the time consuming trained, superior communication costs, and data pri-
vacy risks of global GCNs as the count of data improves. The federated community GCN
(FCGCN) is attain accurate, timely, and safe traffic state predictive from the period of
big traffic information that is an important for the effective function of intelligent trans-
portation methods. Lin et al. [19] examines a process for screening spatial time-delayed
traffic sequence dependent upon the maximal data coefficient. The selective time-delayed
traffic sequence is changed as to traffic state vector in that traffic flow was predictive
by implementing the integration of SVM and KNN techniques. The authors utilize the
presented infrastructure to real-world traffic flow predictive. Chen et al. [20] introduces a
new location GCN (Location-GCN). The location-GCN resolves this problem with added
a novel learnable matrix as to GCN process, utilizing the absolute value of this matrix
for representing the various control levels amongst distinct nodes. Afterward, the long
short-term memory (LSTM) was utilized in the presented traffic predictive system. Besides,
Trigonometric function encoder was utilized in this case for enabling the short-term input
series for transferring the long-term periodical data.

3. The Proposed Model

Traffic flow prediction is developed by the use of present traffic data, past traffic data,
and other related statistical data for establishing an appropriate mathematical method. An
intellectual computation technique can be employed for making more accurate forecasting
of traffic occurs in the upcoming years. The outcomes could offer a realistic foundation for
vehicle dynamic guidance and urban traffic control. Assumes a provided time interval t
(i.e., every 15 min), V(t) indicates the entire traffic data in time break. After, short run traffic
flow forecasting issue solving methods in this study can be framed as follows. Presented
a historical and present traffic data set D = {V(t), V (t− 1), . . . , V(t− q)}, whereas t
represents the current duration, q indicates time lag. The aim of short run traffic flow
prediction was to forecast Y = V(t + h), where h ≥ 1 denotes the prediction horizon. For
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instance, h = 1 means the predicted traffic flow at t + 1. In this article, a new AST2FP-
OHDBN technique was projected for traffic flow prediction in smart city environments. The
presented AST2FP-OHDBN model employed min–max normalization to scale the input
data and HDBN method can be employed for forecasting the traffic flow in the upcoming
years. Finally, the POA is exploited as a hyperparameter optimizer which in turn enhances
the overall efficiency of the traffic flow prediction process. Figure 1 depicts the overall
process of proposed method.
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3.1. Data Normalization

At the beginning level, the presented AST2FP-OHDBN model normalizes the traffic
data using min–max normalization. The min–max method can be used in this work, given
that the outcome of the linear transformation process of the original data comes up with
the range of [0,1], as:

xscale =
x− xmin

xmax − xmin
(1)

where x represents a recent value, xmin and xmax were the minimum and maximal value of
the attributes, and xscale denotes the measure adjacent to the attribute matching processes.

3.2. Traffic Flow Prediction Using HDBN Model

For forecasting the traffic flow in the near future, the HDBN model is derived. DBN
is a vital process from DL. Restricted Boltzmann Machine (RBM) unit is a generative
stochastic artificial neural network which can learn a probability distribution over the set
of inputs. It is similar to Boltzmann machines. It can be represented as the orientation of all
actions and utilization of resources to accomplish effective results. The RBM improve the
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transparency and accountability, permitting intervention to complement each other and
eliminate overlapping [21]. There is no linking amongst all the neural units from all the
layers of RBM technique, besides, every neural unit from the visible layer (VL) was linked
for every neural unit from the hidden layer (HL). Besides, the resultant of every layers of
RBM was utilized as input for next layer. The bottom layer of DBN approach implements a
multilayer RBM infrastructure. The greedy technique was utilized for training the instance
data layer by layer. Figure 2 showcases the infrastructure of DBN. The DBN composed of
multiple layers of latent variables (“hidden units”), with connections between the layers
but not between units within each layer. The parameters attained with trained the primary
layer RBM were utilized as input of secondary layer RBM, and the parameters of all the
layers were attained by analogy. The trained procedure goes to unsupervised learning. The
joint configuration energy of VL and HL in RBM are demonstrated as:

E(ν, h|θ) = −
n

∑
i=1

aivi −
m

∑
j=1

bihi −
n

∑
i=1

m

∑
j=1

viwijhj (2)

where θ =
{

wij, ai, bj
}

, it can be linking weighted value amongst visible unit i and hidden
unit j, ai refers the internal bias of VL neurons, and bj can be HLs. If the parameter θ is set,
dependent upon the energy function, the joint probability distribution of VL and HL are
attained in Equation (3) and linking it with Equation (4) as follows:

P(ν, h|θ) = e−E(v,h|θ)

Zθ
(3)

Zθ = ∑
v,h

e−E(v,h|θ) (4)
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If the state of VL ν is identified, the activation probability of jth neural unit of HL h
is obtained:

P
(
hj = 1

∣∣ν, θ
)
= σ

(
bj + ∑

i
viwij

)
(5)
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If the HL state h can be recognized, the activation probability of ith neural unit of VL
ν is reached:

P(vi = 1|h, θ) = σ

(
ai + ∑

i
hiwij

)
(6)

In which, σ(x) = 1
1+ exp (−x) refers the activation function, termed the sigmoid func-

tion. Every neuron is defining their state value as one or zero has probability P. For the
unsupervised learning method, the drive of trained RBM can be obtaining the parameter
method that is offered by log-likelihood function as:

L(θ) =
N

∑
n=1

ln(vn, h) (7)

θ = argmaχL(θ) = argmaχ
N

∑
n=1

ln(vn, h) (8)

The HDBN model is presented by the use of DBN with an adaptive learning step
approach to enhance the convergence rate.

Training of the DBN model is difficult, especially in terms of training numerous RBMs.
So, proper learning data requires fixing, which is essential to train the DBN model, by the
use of contrastive divergence. A comparatively high learning rate results in unbalanced
training procedure and low learning rate leads to a poor convergence rate. For addressing
this issue, the HDBN model is derived using adaptive learning step (ALS) for computing
effectual learning rate. The step size is modified based on the sign changes.

uγold
ij i f

(〈
νihj

〉
0 −

〈
νihj

〉
k

)
(
〈
νihj

〉old
0 −

〈
νihj

〉old
0 ) > 0 (9)

dγold
ij i f

(〈
νihj

〉
0 −

〈
νihj

〉
k

)
(
〈
νihj

〉old
0 −

〈
νihj

〉old
k ) < 0 (10)

where u > 1 denotes incremental factor of learning step, d < 1 defines decremental factor
of learning step, γold

ij was individual learning rate. If 2 consecutive upgrades were in the
same direction, the step size would be increased and vice versa. The issues produced by
inappropriate step size are evaded. In addition, convergence rate of the DBN method gets
enhanced.

3.3. Hyperparameter Tuning

At the last stage, the POA is exploited as a hyperparameter optimizer, which in turn
enhances the overall efficiency of the traffic flow prediction process. The presented POA
is a population-based technique, whereas pelicans were members of this population [22].
For the population-based techniques, all the population members imply the candidate
solutions. All the population members suggest values to optimize problem variables based
on their place in relation to the searching space. Primarily, the population member is
arbitrarily initialized based on the lower as well as upper bounds of the problem, utilizing
Equation (11).

xi,j = lj + rand ·
(
uj − lj

)
, i = 1, 2, . . . , N, j = 1, 2, . . . , m, (11)

where xi,j denotes the value of jth variable detailed by the ith candidate solution, N repre-
sents the amount of population members, m implies the amount of problem variables, rand
stands for the arbitrary number from interval of zero and one, lj refers the jth lower bound,
and uj represents the jth upper bound of problem variables. The population members of
pelicans from the presented POA were recognized utilizing a matrix, named as the popula-
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tion matrix in Equation (12). All the rows of this matrix signify the candidate solution, but
the columns of this matrix signify the presented values for the problem variables.

X =



X1
...

Xi
...

XN

 N ×m =



χ1,1 . . . χ1,j . . . χ1,m
...

. . .
...

...
χi,1 . . . χi,j . . . χi,m
...

...
. . .

...
xN,1 · · · xN,j . . . xN,m



′

N×m

(12)

where X refers to the population matrix of pelicans and Xi denotes the ith pelican. For
the presented POA, all the population members are a pelican that is a candidate solution
to the provided problem. Thus, the objective function of provided problem is estimated
dependent upon all the candidate solutions. The value attained to objective function was
defined utilizing a vector named the objective function vector in Equation (13).

F =



F1
...

Fi
...

FN

 N × 1=



F(X1)
...

F(Xi)
...

F(XN)


N×1

(13)

In which F stands for the objective function vector and Fi represents the objective
function value of ith candidate solution.

The presented POA inspires the approach and behavior of pelicans if attack and
hunt prey for updating the candidate solution. This hunting approach was inspired from
2 phases:

(i) Moving to prey (exploration stage).
(ii) Winging on the water surface (exploitation stage).

Exploration Phase
During the primary stage, the pelicans recognize the place of prey, and next moved

to this recognized region. The pelican approach of moving to the place of prey was
mathematically reflected in Equation (14).

xP1
i,j =

{
xi,j + rand ·

(
pj − I · xi,j

)
, Fp < Fi,

xi,j + rand ·
(
xi,j − pj

)
, else,

(14)

where xP1
i,j signifies the novel status of ith pelican from the jth dimensional dependent upon

phase 1, I signifies the arbitrary number that is equivalent to 1 or 2, pj represent the place
of prey from the jth dimensional, and Fp is their objective function value. The parameter
I is a number which is arbitrarily equivalent to one or two. The upgrade procedure was
modeled utilizing in Equation (15).

Xi =

{
XP1

i , FP1
i < Fi;

Xi, else,
(15)

In which XP1
i demonstrates the novel status of ith pelican and FP1

i is their objective
function value dependent upon stage 1.

Exploitation Phase
During the second stage, then the pelicans obtain the surface of water, it is spread

its wings on the surface of water for moving the fish upwards, next gather the prey from
its throat pouch. This approach leads additional fishes from the attacked region that
caught by pelicans. The modeling this behavior of pelicans causes the presented POA for
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converging optimum points from the hunting region. This procedure enhances the local
searching power and the exploitation capability of POA. In the mathematical approach, the
technique must inspect the points from the neighborhood of pelican place for converging
to an optimum solution. This behavior of pelicans in hunting was mathematically reflected
in Equation (16).

xP2
i,j = xi,j + R ·

(
1− t

T

)
· (2 · rand− 1) · xi,j, (16)

where xP2
i,j signifies the novel status of ith pelican from the jth dimensional dependent

upon stage 2, R represents the constant that is equivalent to 0.2, R · (1− t/T) signifies the
neighborhood radius of xi,j but, t refers the iteration counter, and T denotes the maximal
amount of iterations. The coefficient “R · (1− t/T)” implies radius of neighborhood of
population members for searching locally neighboring all the members for converging to
an optimum solution. During this stage, effectual upgrade is also utilized for accepting or
rejecting the novel pelican place that is demonstrated in Equation (17).

Xi =

{
XP2

i , FP2
i < Fi;

Xi, else,
(17)

where XP2
i refers the novel status of ith pelican and FP2

i is their objective function value
dependent upon stage 2. Then, every population member is upgraded dependent upon
the primary and secondary stages, dependent upon novel status of populations and the
value of objective function, an optimum candidate solution so far is upgraded. This tech-
nique enters the next iteration and distinct steps of the presented POA dependent upon
Equations (14)–(17) were repeating still the end of whole implementation. At last, an opti-
mum candidate solution attained in the technique iterations is projected as a quasi-optimal
solution to provided problem. The pseudocode of POA is given in Algorithm 1.

Algorithm 1: Pseudocode of POA.

1. Input
2. Computer POA population size (N) and iterations (T).
3. Initialize pelican location and determine objective function.
4. For t = 1 : T
5. Produce prey location arbitrarily
6. For I = 1 : N
7. Stage 1: Move towards prey (exploration stage).
8. For j = 1 : m
9. Determine new position of the jth dimension
10. End.
11. Upgrade the ith population member.
12. Stage 2: Wing on water surface (exploitation stage).
13. For j = 1 : m.
14. Determine new status of the jth dimension.
15. End.
16. Upgrade the ith population member.
17. End.
18. Upgrade optimal candidate solution.
19. End.
20. Output: Optimal candidate solution attained by POA.
End POA.
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4. Results and Discussion

This section inspects the prediction performance of the AST2FP-OHDBN model in
distinct aspects. The proposed model is tested by the traffic data containing all 30 s raw
sensor data for a duration of 30 days. The traffic data collected during the first 10 days are
used as a training set and the remaining 20 days data are utilized as testing set. In this
experiment, data groups consist of the 15 min of aggregated data in vehicles per 15 min
(veh per 15 min). Thereby, 96 data groups are available for each day. Before the calculation,
the data groups are normalized (as given in Section 3.1), rendering the data in the range of
0 to 1.

Firstly, the mean absolute percentage error (MAPE) analysis of the proposed model is
performed. The MAPE is a widely utilized measure for prediction process. It defines the
ration of the sum of the individual absolute errors to the demand (each period separately).
Table 1 and Figure 3 offer a detailed fitness value examination of the AST2FP-OHDBN
model under varying numbers of iterations. The experimental values implicit in the
AST2FP-OHDBN method have shown effectual outcomes with minimal fitness values.
For instance, with 10 iterations, the AST2FP-OHDBN model has offered best, average,
and worst fitness values of 1.996%, 5.237%, and 8.795% respectively. Meanwhile, with
50 iterations, the AST2FP-OHDBN method has provided best, average, and worst fitness
values of 0.471%, 1.678%, and 5.046%, correspondingly. Eventually, with 100 iterations, the
AST2FP-OHDBN technique has offered best, average, and worst fitness values of 0.471%,
1.013%, and 3.421%, correspondingly.

Table 1. MAPE analysis of AST2FP-OHDBN approach with distinct count of iterations.

MAPE (%)

No. of Iterations Best Fitness Average Fitness Worst Fitness

0 10.828 11.051 10.987

10 1.996 5.237 8.795

20 0.884 3.140 7.302

30 0.471 1.075 5.046

40 0.471 1.583 4.506

50 0.471 1.678 5.046

60 0.471 1.170 4.283

70 0.471 1.138 3.521

80 0.471 1.774 3.870

90 0.471 1.774 3.743

100 0.471 1.013 3.421

Table 2 and Figure 4 provide a detailed prediction results study of the AST2FP-OHDBN
model under varying index. The experimental values highlighted the AST2FP-OHDBN
method have attained closer predicted values under each run. For instance, on run-1 with
an actual value of 190, the AST2FP-OHDBN model has attained the predicted value of
226. Moreover, on run-2 with an actual value of 190, the AST2FP-OHDBN method has
reached the predicted value of 225. Furthermore, on run-3 with an actual value of 190, the
AST2FP-OHDBN technique has gained the predicted value of 247. Finally, on run-5 with an
actual value of 190, the AST2FP-OHDBN approach has reached the predicted value of 268.
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Table 2. Traffic flow analysis of AST2FP-OHDBN approach with distinct runs.

Traffic Flow

Time Index Actual
Predicted

Run1 Run2 Run3 Run4 Run5

0 190 226 225 247 235 268

10 137 143 142 119 80 92

20 883 894 874 878 918 918

30 967 961 976 970 931 932

40 724 707 667 667 660 624

50 766 802 841 807 812 795

60 957 971 994 1003 980 945

70 844 860 832 842 875 902

80 973 1005 1031 1039 1003 1037

90 1030 1024 1032 1012 976 946

100 599 636 609 602 572 557

Table 3 demonstrates an extensive comparative study of the AST2FP-OHDBN model,
with recent models given in terms of different measures [23]. Figure 5 illustrates a compar-
ative scrutiny of the AST2FP-OHDBN method with existing methods in terms of RMSE.
The figure represented the AST2FP-OHDBN technique has gained effectual outcomes over
other models with minimal values of RMSE under all lags. For example, with lag = 1, the
AST2FP-OHDBN technique has offered reduced RMSE of 26.9257. Conversely, the LS-SVM
system, GA-LSSVM approach, PSO-LSSVM method, FFO-LSSVM technique, and hybrid
LSSVM models have offered increased RMSE of 53.8171, 42.6758, 39.5084, 38.0203, and
32.7534 respectively. At the same time, with lag = 5, the AST2FP-OHDBN model has gained
lower RMSE value of 23.4312. Conversely, the LS-SVM system, GA-LSSVM approach,
PSO-LSSVM method, FFO-LSSVM technique, and hybrid LSSVM models have resulted in
ineffectual outcomes with higher RMSE values of 98.8703, 58.9394, 55.5521, 53.4518, and
28.7079 respectively.
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Table 3. Comparative analysis of AST2FP-OHDBN approach with existing methodologies under
various measures.

No. of
Lags

LS-SVM
Model

GA-
LSSVM

PSO-
LSSVM

FFO-
LSSVM

Hybrid-
LSSVM

AST2FP-
OHDBN

Root-Mean-Square Error

Lag = 1 53.8171 42.6758 39.5084 38.0203 32.7534 26.9257

Lag = 2 57.2355 46.9715 42.8572 41.0955 29.5013 23.6656

Lag = 3 61.4591 51.706 47.4003 45.2506 22.8315 16.5139

Lag = 4 95.8237 55.3336 51.0474 49.1178 27.9114 22.7806

Lag = 5 98.8703 58.9394 55.5521 53.4518 28.7079 23.4312

Mean Absolute Error

Lag = 1 38.3663 32.3363 24.7114 22.3607 21.8427 15.4770

Lag = 2 45.7351 39.6895 32.0517 25.2410 19.2498 12.3658

Lag = 3 51.3024 45.2973 39.4341 31.6977 23.5686 17.8232

Lag = 4 59.2069 51.9591 47.1757 37.1099 27.4439 20.5398

Lag = 5 67.0300 57.1088 52.4225 44.5820 24.4347 19.7508

Equal Coefficient

Lag = 1 0.9537 0.9557 0.9569 0.9579 0.9792 0.9835

Lag = 2 0.9518 0.9537 0.9555 0.9574 0.9788 0.9849

Lag = 3 0.9498 0.9513 0.9531 0.9543 0.9854 0.9877

Lag = 4 0.9482 0.9493 0.9513 0.9526 0.9839 0.9863

Lag = 5 0.9462 0.9477 0.9489 0.9507 0.9724 0.9861
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Figure 6 demonstrates a comparative inspection of the AST2FP-OHDBN approach
with existing models in terms of MSE. The figure denoted the AST2FP-OHDBN method
has gained effectual outcome over other models with minimal values of MSE under all lags.
For example, with lag = 1, the AST2FP-OHDBN approach has rendered a reduced MSE
of 15.4770. Conversely, the LS-SVM system, GA-LSSVM approach, PSO-LSSVM method,
FFO-LSSVM technique, and hybrid LSSVM models have offered an increased MSE of
38.3663, 32.3363, 24.7114, 22.3607, and 21.8427, correspondingly. Meanwhile, with lag = 5,



Appl. Sci. 2022, 12, 10828 13 of 16

the AST2FP-OHDBN approach has acquired a lower MSE value of 19.7508. Conversely, the
LS-SVM system, GA-LSSVM approach, PSO-LSSVM method, FFO-LSSVM technique, and
hybrid LSSVM models have resulted in ineffectual outcomes with higher MSE values of
67.0300, 57.1088, 52.4225, 44.5820, and 24.4347, correspondingly.
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A detailed equal coefficient (ECC) inspection of the results presented by the AST2FP-
OHDBN model with existing models is given in Figure 7. The results demonstrated that
the AST2FP-OHDBN model has attained enriched results, with higher values of ECC.
For example, with lag = 1, the AST2FP-OHDBN method has reached increased ECC of
0.9835. Conversely, the LS-SVM system, GA-LSSVM approach, PSO-LSSVM method, FFO-
LSSVM technique, and hybrid LSSVM models have obtained decreased ECC of 0.9537,
0.9557, 0.9569, 0.9579, and 0.9792 respectively. Likewise, with lag = 5, the AST2FP-OHDBN
model has attained improved ECC of 0.9861. Conversely, the LS-SVM system, GA-LSSVM
approach, PSO-LSSVM method, FFO-LSSVM technique, and hybrid LSSVM models have
reached a reduced ECC of 0.9462, 0.9477, 0.9489, 0.9507, and 0.9724 respectively.
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Table 4 and Figure 8 depict a brief inspection of the AST2FP-OHDBN model with
existing methods in terms of running time (RT). The figure implicit in the AST2FP-OHDBN
model has acquired effectual outcomes over other models with minimal values of RT under
all lags. For example, with lag = 1, the AST2FP-OHDBN model has provided a reduced
RT of 3.84 s, whereas the LS-SVM system, GA-LSSVM approach, PSO-LSSVM method,
FFO-LSSVM technique, and hybrid LSSVM models have offered increased RT of 7.26 s,
19.53 s, 11.29 s, 14.25 s, and 9.80 s, correspondingly.

Table 4. RT analysis of AST2FP-OHDBN approach with existing methodologies.

Running Time (sec)

No. of
Lags

LS-SVM
Model

Genetic
Algorithm-

LSSVM

Particle Swarm
Opt.-LSSVM

FruitFly Opt.
Algorithm-

LSSVM

Hybrid-
LSSVM

AST2FP-
OHDBN

Lag = 1 7.26 19.53 11.29 14.25 9.80 3.84

Lag = 2 7.30 20.01 11.64 14.45 9.98 3.56

Lag = 3 7.42 20.33 11.67 15.06 10.02 5.13

Lag = 4 7.78 20.52 12.18 15.28 10.03 5.05

Lag = 5 7.89 22.00 12.24 15.31 10.44 5.07
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Simultaneously, with lag = 5, the AST2FP-OHDBN method has gained lower RT
value of 5.07 s whereas the LS-SVM system, GA-LSSVM approach, PSO-LSSVM method,
FFO-LSSVM technique, and hybrid LSSVM models have resulted in ineffectual outcomes
with higher RT values of 7.89 s, 22 s, 12.24 s, 15.31 s, and 10.44 s, correspondingly. From the
detailed result analysis, it is concluded that the AST2FP-OHDBN model has reached an
effectual traffic flow forecasting performance.

5. Conclusions

In this article, a novel AST2FP-OHDBN model was projected for traffic flow prediction
in smart city environments. The presented AST2FP-OHDBN model follows a three-stage
process: min–max normalization, HDBN-based traffic flow forecasting, and POA-based
hyperparameter tuning. Since the trial-and-error hyperparameter tuning of the HDBN
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model is a tedious process, the POA is applied as a hyperparameter optimizer, which
considerable enhances the overall efficiency of the traffic flow prediction process. For
assuring the enhanced predictive outcomes of the AST2FP-OHDBN algorithm, a wide-
ranging experimental analysis can be executed. The experimental values reported the
promising performance of the AST2FP-OHDBN model over recent state-of-the-art DL
models with minimal average MSE of 17.19132 and RMSE of 22.6634. Therefore, the
AST2FP-OHDBN algorithm can be employed to accomplish high-precision traffic prediction
in the near future prediction on smart cities environment. In future, hybrid metaheuristics
can be designed to enhance prediction outcomes.
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