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Abstract: Biological toxins are a heterogeneous group produced by living organisms. One dictionary
defines them as “Chemicals produced by living organisms that have toxic properties for another
organism”. Toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason
is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and
extraction equipment dedicated to plant toxins are cheap and easily available, and can even be
constructed at home. Many toxins affect the nervous systems of mammals by interfering with the
transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others
are responsible for blockage of main cellular metabolism, causing cellular death. Moreover, most
toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are very often lower
than chemical warfare agents. For these reasons we decided to prepare this review paper which
main aim is to present the high potential of biological toxins as factors of bioterrorism describing
the general characteristics, mechanisms of action and treatment of most potent biological toxins.
In this paper we focused on six most danger toxins: botulinum toxin, staphylococcal enterotoxins,
Clostridium perfringens toxins, ricin, abrin and T-2 toxin. We hope that this paper will help in
understanding the problem of availability and potential of biological toxins.
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1. Introduction

Bioterrorism is a form of terrorism that uses biological agents such as bacteria, viruses and toxins
as weapons against humans, animals and crops. Like other forms of terrorism, the aim of bioterrorism
is to intimidate the civilian population and authorities, as well as to accomplish the terrorists’ expected
political, religious and ideological demands. The main effects of bioterrorism are diseases that often
lead to death, contamination of water, food and soil [1]. What is more, such attacks cause mass panic
and fear among the public, chaos in many spheres of life, economic losses and loss of faith in state
authorities. The potentially massive number of victims exposes inefficiencies in the emergency services
and healthcare system [2–4]. Biological agents used as biological weapons in bioterrorist activities
are classified by the Center for Disease Control in the United States into three categories. Category A
contain factors characterized by high pathogenicity and mortality, as well as ease of dissemination.
These are: Bacillus anthracis, Francisella tularensis, Yersinia pestis, botulinum neurotoxins, haemorrhagic
fever viruses (Ebola virus) and Variola major. Category B pathogens are moderately easy to spread,
with low morbidity and mortality rates, but require specific monitoring and improvement of diagnostic
capabilities. This category includes: ricin, abrin, Brucella species, Clostridium perfringens E toxin, and

Int. J. Mol. Sci. 2019, 20, 1181; doi:10.3390/ijms20051181 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-7838-4097
http://www.mdpi.com/1422-0067/20/5/1181?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20051181
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 1181 2 of 18

Burkholderia mallei. Category C includes emerging pathogens against which the population has little
or no immunity and which could be engineered as bioweapons. These include the Hanta and Nipah
viruses [5].

Toxins are biomolecules produced by bacteria, fungi, insects, plants, vertebrate and invertebrate
animals, mainly for defensive purposes. These molecules induce detrimental effects in other organisms
by inhalation, injection, ingestion or absorption [6]. Many of them affect the nervous system,
disrupting the conduction of nerve impulses, for example by blocking the release of the acetylcholine
neurotransmitter and ultimately the muscle contraction (botulinum toxin). At sublethal doses, the
effect that this causes is temporary. Others toxins cause damage to cell membranes, and as a result lead
to disturbances in the functioning of tissues and organs. The effects of such toxins are often irreversible
and cause permanent damage to health. Compared to pathogens, biological toxins are also classified
as bioterrorism factors, they are not infectious and do not replicate [7–9]. Toxins are significant in the
health, food and in the security sector. Some of them are linked with natural intoxications. They are
the etiologic agents of many food poisoning induced e.g., by staphylococcal enterotoxins [6]. However,
they are extremely dangerous due to their lethal doses. A biological toxin’s lethal potential is measured
in terms of the amount of material required to kill 50% of a group of test animals (usually rats or mice).
This is written as LD50. LD50 < 25 mg/kg means that a substance is very toxic; LD50 < 25 mg/kg
to 200 mg/kg is toxic; LD50 < 200 mg/kg to 2000 mg/kg < LD50 is harmful, while substances of
LD50 > 2000 mg/kg are not classified as toxic agents [10].

Biological toxins have been used by humans for a long time. The first information on natural
poisons and some guidelines on their preparation can be found in the Ebers Papyrus, which dates
back to about 1500 B.C. This paper looks at many of the plants containing poisonous substances [11].
In 50 B.C. Dioskorides, in his Materia Medica, classified toxins to plant, animal and mineral toxins,
depending on their origin [12].

Studies on the potential use of biological toxins in acts of bioterrorism have been carried out for
years. One of the first units conducting research on the development of botulinum toxin as a biological
weapon was the Japanese Unit 731, in Manchuria in the 1930s. During World War II, the United States
also developed methods of mass-producing botulinum neurotoxin [13]. In the 1970s, T-2 mycotoxin
was used in armed conflicts in Laos. The use of T-2 has resulted in death of more than 6000 people.
There, it was dispersed in the form of a cloud of yellow dust. The toxic agent was presented as a yellow,
oily liquid with a relatively large droplet size, which sounded like rain. As such, it was described as
by witnesses as “yellow rain” [14]. In 1978, the Bulgarian dissident Georgi Markov was killed with
ricin placed in the tip of an umbrella, which was then poked into the back of his leg [15]. Between
1990 and 1995, the Japanese Aum Shinrikyo sect, which had several thousand members repeatedly
carried out a series of unsuccessful attacks using botulinum toxin [5]. The Iraqi Biological Program
discovered by UNSCOM (UN Special Commission on Iraq) in 1995 (largely owing to the information
disclosed by Hussain Kamel, an Iraqi general and a Saddam Hussain’s son-in-low, who escaped from
Iraq) and described in detail by the Iraqis in the next of many Full, Final and Complete Disclosures
in 1996 encompassed also production of many tons of botulin toxin and aflatoxin [16]. In 2013, an
envelope of ricin was sent to the then-President of the United States Barack Obama [17]. In June of
2018, a plot involving ricin was foiled in Germany by authorities, the suspect had bought 1000 grains
of ricin, a naturally occurring poison found in castor beans, and an electric coffee grinder online [18].

Biological toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason
is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and
extraction equipment dedicated to plant toxins are cheap and easily available, and can even be
constructed at home. Many toxins affect the nervous systems of mammals by interfering with the
transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others are
responsible for blocking the main cellular metabolism, causing cellular death [19,20]. The psychological
effects of bioterrorism, must also be taken into account. Long-term anxiety may result from bioterrorist
attack. Consequences of such anxiety could include mass sociogenic illness, mass panic and widespread
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behaviors that input pressure on emergency medical system, food and clean water supplies and public
transport. In 2001 envelopes containing anthrax spores resulted in enormous fear, disruption of the
mail service, distrust in the US government’s ability to protect its citizens. Hundreds of million dollars
was spent on remediation with less than 22 clinical anthrax cases and 5 deaths [21].

Moreover, most toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are
very often lower than chemical warfare agents (Table 1).

Table 1. Comparison of biological toxins toxicity with chemical warfare agents.

Agent LD50 Parameter (µg/kg) Molecular Weight (Da)

Botulin toxin 0.001–0.002 150,000 (Protein)
Shiga toxin 0.002 55,000 (Protein)

Tetanus toxin 0.002–0.003 150,000 (Protein)
Abrin 0.01–0.04 65,000 (Protein)
Ricin 0.1–1 65,000 (Protein)

Clostridium perfingens toxins 0.1–5 35,000–40,000 (Proteins)
VX 15 267

Staphylococcal enterotoxin B 27 25,000 (Protein)
Soman 64 182
Sarin 100 140

Aconitine 100 647
T-2 mycotoxin 1210 466

For these reasons we decided to prepare this review paper which main aim is to present the
high potential of biological toxins as factors of bioterrorism describing the general characteristics,
mechanisms of action and treatment of most potent biological toxins. We hope that this paper will aid
in understanding the problem of availability and potential of biological toxins.

1.1. Botulinum neurotoxins

Botulinum neurotoxins (BoNTs) are produced by the spore-forming, anaerobic Gram-positive
bacteria of the genus Clostridium which consists more than 150 species. The disease caused by this toxin
is called botulism. BoNTs comprise 7 serotypes (A to G) and more than 40 subtypes. However, A, B,
C, E and F serotypes are responsible for inducing human botulism. In 2013, a new toxin produced
by bivalent Clostridium botulinum strain was isolated from a human infant botulism case. Toxin was
designated as BoNT/H also known as BoNT/FA and BoNT/HA. Genetic investigation of the toxin
gene disclosed that BoNT/H shares ≈ 84% identity with BoNT/A1 in its binding domain, ≈ 80% with
BoNT/F5 in its catalytic domain and displays a translocation domain similar to BoNT/F1. Another
study showed that BoNT/H can be neutralized by currently used antisera. However, its toxicological
profile is unusual because it displays lower potency and slow progression of botulism symptoms
compared to primary BoNTs. Different investigations show that there are several resemblances between
BoNT/H (i.e., BoNT/FA or BoNT/HA) and BoNT/F or BoNT/A and this is the cause of no consensus
about the designation of the BoNT/H. [22–24]. The improvement of bioinformatics, data-mining tools
and DNA sequencing techniques extended knowledge and understanding on the diversity of Botulinum
neurotoxins. BoNTs and BoNT-related genes have been reported in bacterium Enterococcus feacium or
Weisseria oryzae. These species may have the potential to produce BoNT-like toxins that show similar
features in the multidomain organization of BoNTs but different toxicological features, specificity or
operation principles [24]. BoNT/X is the first serotype of BoNTs identified by bioinformatics approaches
and genomic sequencing. Toxin was identified in a Clostridium botulinum strain. This toxin displayed the
typical BoNTs features including the residues forming a ganglioside binding pocket and metalloprotease
consensus sequence or interchain disulphide bond. A remarkable feature of BoNT/X is its ability to
cleave VAMP4 and atypical SNARE Ykt6. A new serotype, BoNT/X, BoNT/En and Weissella oryzae
BoNT-like toxin (also known as BoNT/Wo) have been computationally-identified in recent years. The
bioinformatics analysis of bacterium Weisella oryzae has led to the identification of an open reading
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frame 1 that has a strong sequence similarity with bont genes, but that lacks the additional genes usually
associated within the bont locus in Clostridia. The sequence identity between BoNT/Wo and other BoNTs
is ~14–16%. What is more the two cysteines that form the essential inter-chain disulfide bond in BoNTs
are not conserved in BoNT/Wo, suggesting a different mode of action. A novel BoNT-like gene was
discovered in the genome of Enterococcus faecium. This BoNT known as BoNT/En contain distinctive for
Botulinum neurotoxins domain architecture, disulfide bond residues, conservation of the zinc peptidase
HExxH motif. BoNT/En shows 29–38.7% identity with the other BoNTs [25,26]. Botulinum toxin
has a protein structure and is one of the metalloproteins (zinc-dependent endopeptidases). BoNTs
are synthetized as single polypeptides cleaved by clostridial or host proteases to its active form. The
C-terminal heavy chain composes the binding and translocation domains of 50 kDa each, and is linked
by a single disulfide bridge to the catalytic light chain forming the N-terminal part (Figure 1) [27].
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Figure 1. Structure of botulinum neurotoxin type A. The crystal structure of protein (PDB: 3BTA) [28]
was taken from the RCSB PDB databank (http://www.rcsb.org/) (access on 05.03.2018). Visualization
of the three-dimensional structure of the protein was performed using the Swiss-PdbViewer (http:
//spdbv.vital-it.ch/) (access on 05.03.2018.) [29].

This protein has three domains responsible for its biological functions. The binding domain is
responsible for attaching the toxin to the receptor on the surface of the cell membrane of the target
cells—nerve cells. The translocation domain is responsible for the transport of toxin through the
plasma membrane into the cell, while the enzymatic domain (with proteolytic activity) causes the
splitting of peptide bonds in the SNARE transmembrane protein (SNAP-25, VAMP-1/2, syntaxin-1/2)
that are integral to vesicular trafficking and neurotransmitters release. Depending on the type of toxin,
the proteolytic effect is directed at different SNARE proteins. BoNT A and BoNT E hydrolysis SNAP-25
membrane protein. Type B, F and G hydrolysis VAMP-1/2, while BoNT C hydrolysis SNAP-25 and
syntaxin-1/2 [30–32].

The mechanism of the toxic action of botulin toxin inhibits the release of neurotransmitters,
including acetylcholine, within neuromuscular junctions, resulting in relaxation and paralysis of
skeletal muscles. The first symptoms occur within a few to 36 h of poisoning with the toxin. Irrespective
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of the type, there are similar clinical manifestations of poisoning. Initially these are speech and
swallowing difficulties, double and blurred vision, anxiety, lack of saliva and tears. There then follows
a loss of control over the body, and atrophy of the throat reflex appears. Respiratory muscle paralysis
then causes respiratory failure, and this is the main cause of death of infected patients [33–35].

Botulinum toxin is calling the most toxic substance in the known world. It is estimated, that
the mice LD50 for parenteral administration is 1 ng/kg [36]. As the only biological toxin, it has been
classified by the CDC in Atlanta as a Category A bio agent. The lethal dose for a human weighing about
70 kg is 0.7–0.9 µg of inhaled toxin, or 70 µg of poison ingested with food. This toxin is not resistant to
chemical and physical agents. It is depredated at 85 ◦C in 5 min, and is destroyed by sunlight within
1–3 h. Additionally, it is immediately decontaminated by chloride or H2O2 [37].

Treatment of botulism is based on the quickest administration of botulinum antitoxin, preferably
24 h after the first symptoms, because antitoxin neutralizes only toxin molecules that are not yet
associated with nerve endings. The use of antitoxin can cause the occurrence of adverse reactions, such
as post-surgical disease, anaphylaxis and hypersensitivity. Additionally, in most cases mechanically-
assisted respiration and supportive treatment (with a return to self-reliance in up to 2–3 months), is also
needed [35,38,39]. Strategies for the development of vaccines against botulism utilize two approaches.
The first is to use a native BoNT to generate chemically-inactivated toxoid and the second is using
recombinant techniques to engineer BoNT derivates [40]. Japanese scientist produced tetravalent
botulinum toxoid vaccine derived from M toxin. Torii et al. demonstrated that the vaccine has the
ability to induce neutralizing antibody above the level necessary for protection for those at risk. Study
has demonstrated that the vaccine can provide immunity against botulism, is safe for the use in
humans [41].

During a bioterrorist attack, botulinum toxin may be deployed in aerosol form or by contaminating
water and food. The efficacy of the neurotoxin is equally high regardless of route of entry, due to
having almost identical disease symptoms. A bioterrorist attack with botulinum neurotoxin is difficult
to identify. Essentially, only an increase in the number of people with symptoms of toxin poisoning
could indicate its use in a bioterrorist attack [42,43].

1.2. Staphylococcal Enterotoxins

Enterotoxins are a kind of exotoxin that is secreted by some pathogens. In nature, this group
is mostly responsible for food poisoning. Enterotoxins include staphylococcal enterotoxins and
AB5 group enterotoxins (i.e., cholera toxins), Shiga toxins and heat-labile enterotoxins produced
by Escherichia coli [44]. However, the most potent of all these types of toxins have enterotoxin produced
by Staphylococcus aureus [45].

Staphylococcal enterotoxins (SEs) are classified as as superantigens able to activate T lymphocytes
(~20–30%), causing overproduction of cytokines, which are responsible for inflammation [46].
Staphylococcus aureus, which is responsible for toxin production, is a very rapidly spreading bacterium.
Usually, the bacteria are present in the throat, nasal cavity, and crotch/anus. There is no vaccine for
staphylococcus, and the disease itself is resistant to antibiotics. Staphylococcus aureus is often found in
meat dishes and dairy products. Wu and Su studies demonstrate, that pre-cooked tuna meat as the
potential to be contaminated with enterotoxin-producing S. aureus during the production of canned
tuna products [47,48]. Its enterotoxins are mainly produced by Staphylococcus microorganisms, which
are also present in food and cause food poisoning in humans. However, it is rare that they cause death.
The symptoms persist for one or two days and mainly include abdominal pain, nausea, diarrhea and
vomiting. They contain 21 serotypes: A, B, C1, C2, C3, D, E, G, G2, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
U2 and V. Serotypes A, B, C1, C2, C3, D and E are known as ‘classic enterotoxins’, while the others are
‘new types’ [49,50].

Staphylococcal enterotoxins are proteins with a mass of 26-35 kDa, having single polypeptide
chains. SEB has 2 distinct unequal domains (composed mainly of β-strands and several α-helices)
which are separated by a shallow groove and have a very complex tertiary structure (Figure 2). The
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smaller domain A These proteins are highly soluble in both water and salt solutions. Staphylococcal
enterotoxins are highly resistant to proteolytic enzymes (pepsin, trypsin, rennin, papain), exhibiting
unchanged biological activity in the gastrointestinal tract. These toxins are also resistant to gamma
radiation, a wide pH range (2 < pH < 12), and dehydration. High thermal stability is characteristic of
staphylococcal enterotoxins, which makes them potential food poisoning agents [51,52].
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Figure 2. Structure of Staphylococcal enterotoxin B. The crystal structure of protein (PDB: 3SEB) [53]
was taken from the RCSB PDB databank (http://www.rcsb.org/) (access on 08.03.2018). Visualization
of the three-dimensional structure of the protein was performed using the Swiss-PdbViewer (http:
//spdbv.vital-it.ch/) (access on 05.03.2018) [29].

All genes coding for SEs are located on accessory genetic elements such as plasmids, prophages,
genomic island vSa, S. aureus pathogenicity islands (SaPIs). Many of these are mobile genetic elements
that is why their expansion among Staphylococcus aureus isolates can contribute to the evolution this
pathogen or can change the ability to cause of diseases [52]. Superantigens are presented by class
II MHC (Major Histocompatibility Complex) molecules but MHC peptide-antigen binding groove
is not involved. They bind to conserved amino acid residues of MHC molecules outside of their
peptide binding grooves and interact mostly with the Vβ domains TCRs (T-cell receptors). The result
is stimulation of the ~20–30% entire population of lymphocytes T. Consequently, superantigens initiate
systemic release of chemokines and proinflammantory cytokines that led to diverse immune-mediated
diseases for example toxic shock syndrome. T lymphocytes are subjected to apoptosis or enter a state
of energy. Natural food poisoning is usually caused by A and D staphylococcal enterotoxins, but less
frequently also by the B and C types [54,55].

The most dangerous enterotoxin, with great potential for use in bioterrorism, is Staphylococcal
Enterotoxin B (SEB). What is more that is the only Staphylococcus enterotoxin that has been examined
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as a biological weapon. It is the most heat resistant toxin, and is detected even in samples of thermally
sterilized food. Enterotoxin B induces toxic shock syndrome in the body, which is a very strong
immune response by the human organism. Strong food poisoning occurring very quickly can lead
to dehydration and death. In the case of SEB being ingested into the body other than through food,
for example by inhalation, it can trigger a septic response throughout the organism. The toxicity
parameters for this type of poisoning are LD50 20 µg/kg and ED50 400 ng/kg. Treatment is mainly
based on conservative treatment, while inhalation intoxication is treated through the administration of
anti-inflammatory steroids [51,56,57].

1.3. Clostridium perfringens Toxins

Clostridium perfringens is a Gram-positive, anaerobic, spore-forming, rod-shaped, bacterium
common in many different microbiotas, and are found in the soil, marine sediment, in decaying
vegetation, and in the intestinal tract of humans and other animals [58,59]. C. perfringens is considered
to be the most widespread pathogenic bacterium in the world [60]. These bacteria are able to produce
more than 15 different toxins. However, four of them (alpha (CPA), beta (CPB), epsilon (ETX) and iota
(ITX)), are the major toxins and have high toxic potential. The Alpha and epsilon toxins have been
classified by the CDC as Category B bioterrorism agents, which suggests their potential in these kinds
of acts [61–63].

CPA is a 43 kDa protein containing two domains, an alpha-helical N-terminal domain harboring the
phospholipase C active site, and an alpha-sandwich C-terminal domain involved in membrane binding.
This toxin is a classic example of a toxin that modifies cell membranes through enzymatic activity. CPA
is zinc-dependent phospholipase C which hydrolyzes sphingomyelin (SM) and phosphatidylocholine
(PC) in the eukaryotic cell membranes. Furthermore, SM metabolism triggered by low CPA doses
is related with the production of pro-apoptotic mediators including N-acylethanolamine, saturated
fatty acid and release of mitochondrial cytochrome C, caspase-3 activation and led to apoptosis of the
cells. This damages the cell membrane which results in cell lysis. Additionally, the lipolysis of the cell
membrane activates an arachidonic cascade resulting in the formation of thromboxanes, leukotrienes
and prostaglandins responsible for activate the inflammation cascade and produce vasoconstriction.
This toxin can reduce leukocytes migration and promotes their aggregation by different mechanisms
such as hyperadhesion with leucostasis at the periphery of lesions. What is more, CPA in combination
with theta toxin allows Clostridium perfingens to escape macrophage phagosomes and survive in the
host organism. The ensuing intravascular haemolysis and capillary damage, platelet aggregation and
hepatic necrosis results in multiple organ failure [64].

ETX is the third most potent biological toxin after botulinum toxin and tetanus toxin, with an
LD50 of about 70 ng/kg. ETX contains three domains that are mainly composed of β-sheet. First
domain consists of α helix followed by a loop, and three short α helices. A cluster of aromatic residues
(Tyr42, Tyr43, Tyr49, Phe212) in this domain can be responsible for in receptor binding. Second domain
contains two stranded sheets with an amphipathic sequence and this domain can be related with
channel forming. Third domain is a β-sandwich and contains the cleavage site for toxin activation [60].
The active toxin is a protein with a molecular mass of 29 kDa, with relative resistance to proteases
in the gastrointestinal tracts of mammals. This toxin is most stable at room temperature for up to a
few weeks, and far longer at lower temperatures [65]. ETX interacts with the cellular membrane and
creates pores within the membrane that modify its porousness and quickly becomes cytotoxic. Epsilon
toxin induces pore formation in eukaryotic cell membranes via detergent-resistant, and cholesterol-rich
membrane domains (lipid rafts). This damage results in very fast degenerative and necrotic changes
in cells, leading to organ failure [66]. ETX can also cross the blood-brain barrier binds to myelin
structures causing death of oligodendrocytes and inducing central nervous system demyelination.
Epsilon toxin acts on a several cell lines including Madin–Darby canine kidney (MDCK), human
renal leiomyoblastoma (G-402) and mouse kidney cells (mpkCCDC14) which have a specific receptor
for ETX. In this cell line toxin binds to the cell surface and recognizes a putative specific membrane
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receptor which not occurs in insensitive cells. The cytotoxicity in MDCK cells is a result of pore
formation and causes loss of intracellular K+, increase Na+ and Cl− [60]. C. perfringens can cause
a wide range of diseases including, amongst others, gas gangrene in man and necrohemorrhagic
enteritis in suckling and veal calves. Most of these diseases follow a very rapid, often fatal course.
Therefore, curative treatment is difficult and control must rely on preventive measures, including
vaccination [60]. The greatest potential for this toxin’s use in bioterrorism is in an aerosolized form
that can be used as a bioterrorist weapon. Additionally, this toxin can be dispersed in food intended
for human consumption [67].

Nevertheless, some C. perfringens strains, mostly type A are able to produce another medically
important C. Perfringens enterotoxin (CPE) CPE producing C. perfringens is a major cause of Clostridium
perfringens type A food poisoning and non-food-borne human gastrointestinal diseases like a sporadic
diarrhea, nosocomial diarrheal diseases and antibiotic-associated diarrhea. CPE damages intestinal
epithelia by pore-forming mechanism disrupting the selective permeability of the plasma membrane.
This toxin consists of a single chain polypeptide of 319 amino acids which has an elongated shape,
composed of three distinct domains, I, II, and III (Figure 3). The first domain is responsible for
binding to the specific receptor claudin—most important components of the tight junctions. The other
domains (II and III) are responsible for creating a pore-forming module. Domain II and domain III
have three short β-strands each, by which they are distinguished. Additionally, in domain II is an
α-helix lying on the β-strands. The sequence of amino acids composing the α-helix and preceding
β-strand is characteristic for transmembrane domains which are forming β-barrel-made pores. There
is a hypothesize that the transmembrane domain of CPE is inserted into the membrane upon the
buckling of the two long β-strands spanning the module, a mechanism analogous to that of the
cholesterol-dependent cytolysins [68].
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Figure 3. Structure of C. Perfringens enterotoxin. The crystal structure of protein (PDB: 3AM2) [68]
was taken from the RCSB PDB databank (http://www.rcsb.org/) (access on 22.02.2019). Visualization
of the three-dimensional structure of the protein was performed using the Swiss-PdbViewer (http:
//spdbv.vital-it.ch/) (access on 05.03.2018). [29].

1.4. Ricin

Ricin is a phytotoxin presented in seeds of Riccinus communis. It can be obtained both from the
native seed as well as waste product obtained during extrusion of castor oil [69]. The castor plant grows
wild in tropical and subtropical climates and the plant is cultivated in large scale for the commercial
production of castor oil, a major component of the castor bean, with almost two million tons of seeds
harvested annually. The major components of castor beans include lipids, proteins and carbohydrates,
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whereas ricin constitutes about 1% of the seed dry weight [70]. Ricin is a member of the AB superfamily
of plant and bacteria protein toxins that exploit retrograde transport as a means to gain entry into
the cytosol of host cells [71]. Pure, extracted ricin is an environmentally stable, white-yellow powder.
Ricin can be prepared and remain stable in various forms: liquid, crystalline, and even aerosol [72].
Ricin was discovered by Hermann Stillmark, who extracted the toxin from castor seeds. During the
study, the scientist also observed that ricin causes agglutination of erythrocytes and precipitation of
serum proteins Ricin is stable in the environment, however, it can be inactivated by heating at 80 ◦C for
10 min, or at 50◦ C for 1 h. Ricin is also sensitive to chlorine solutions [99.8% inactivation by 100 mg/L
free available chlorine (FAC) for 20 min]. The toxin will remain stable in low chlorine concentrations
(10 mg/L FAC) and in iodine at up to 16 mg/L [17].

Ricin is part of a group of proteins called lectins. A lectin is a protein that has a strong affinity to
sugar residues. Ricin is a 60–64 kDa heterodimer consisting of two protein chains: A and B, connected
to each other by a disulphide bridge (Figure 4). The B chain is a galactose-specific lectin that binds
to mannose containing glycoprotein, which is found in the outer layer of the cell membrane, and
facilitates the endocytosis of the ricin to the endoplasmic reticulum (ER). Within the ER lumen, a
resident protein disulfide isomerase facilities reductive separation of A and B subunit. Chain A exhibits
N-glycosidase RNA activity and depurinates an adenine residue of the 28 S ribosomal RNA loop
contained within the 60 S subunit. This irreversible process inactivates elongation of polypeptides
and leads to cell death. It is believed that Chain A exploit cellular pathways that function to transport
misfolded proteins through the endoplasmic reticulum membrane into the cytosol for degradation
by proteasomes. Next utilizes specific components of the ER associated degradation pathway to
dislocation [73,74].
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Figure 4. Structure of Ricin. The crystal structure of protein (PDB: 2AAI) [75] was taken from the RCSB
PDB databank (http://www.rcsb.org/) (access on 06.03.2018). Visualization of the three-dimensional
structure of the protein was performed using the Swiss-PdbViewer (http://spdbv.vital-it.ch/) (access
on 05.03.2018). [29].

The result is the inactivation of ribosomes in the cell and the blocking of protein synthesis,
leading to cell death. A single ricin A chain is capable to inactivate approximately 1500 ribosomes per
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minute [69]. Toxicity results from the inhibition of protein synthesis, but other mechanisms are noted
including apoptosis pathways, direct cell membrane damage, alteration of membrane structure and
function, and release of cytokine inflammatory mediators [76].

The clinical manifestations of toxin poisoning depend on the route of entry into the organism.
Following ingestion of castor bean plant seeds or food contaminated with the toxin, the alimentary
tract is the first to be affected and damaged. The symptoms do not occur immediately upon ingestion
but after a few days of vomiting and diarrhea, as a result of the alimentary tract irritation. This
causes bodily dehydration, which is followed by alimentary tract bleeding and necrosis of the liver,
kidneys and pancreas. Vascular collapse tends to follow next. Intramuscular administration of the
toxin causes edema in the injection area and necrosis of local lymph nodes, while other typical
symptoms include gastrointestinal bleeding and renal necrosis. If the toxin enters via the respiratory
tract, the symptoms that occur within several hours following inhalation include fever, coughing and
progressive respiratory insufficiency and tightness in the chest. In more severe cases, pulmonary edema,
hypotension and vascular collapse are observed. [77,78]. Pulmonary ricin intoxication is considered
most hazardous [79]. No effective treatment is available for toxin intoxication [80]. Treatment is
mainly supportive and minimizes the effects of the poisoning. Treatment consists of hydration of
the organism, restoration of the proper level of electrolytes, and respiratory support. Dialysis is not
effective. Victims of ricin poisoning are not dangerous to their environment, because the illness it
causes cannot be spread from person to person There is no American FDA-approved medication for
ricin poisoning. However, there is a vaccine called RiVax, based on genetically inactivated subunit-A
chains. Immunogen is enzymatically inactive and there is no residual holotoxin toxicity. Tests on
animal models show high efficacy and safety of use in humans [33].

Ricin can be used in acts of bioterrorism in several forms, as it has many ways to penetrate the
organism. It can be used as an aerosol and by poisoning water and food. The toxicity of ricin depends on
different factors, such as the route of entry into the body, the dose and species (Table 2). The LD50 value
for humans after ingestion is estimated at about 22–25 µg/kg body weight. Just 5-6 grains of castor
bean plant seeds are considered a lethal dose to children, while for adults it is about 20 grains [81–84].

Table 2. Lethality of ricin (based on [83]).

Exposure Inhalation Intravenous Injection Ingestion Subcutaneous Injection

Human LD50 3 µg/kg 3 µg/kg 22–25 µg/kg 500 µg/kg
Mice LD50 3–5 µg/kg 5 µg/kg 20 mg/kg 24 µg/kg

Time to death 36–72 hrs 36–72 hrs 6–8 days 3–4 days

Ricin as also characterized by its stability in the environment and relative ease of extraction.
Despite having a well-understood mechanism of action, treatment is still based on supporting the
organism, which in a bioterrorist attack with a high casualty count, can cause chaos in the local
healthcare system. As such, more research is needed on more accurate, effective treatments [82]. Due
to its ease of production, good stability, availability and high lethality, ricin exhibits potential as a
biological weapon. Ricin is listed in the US Centers for Disease Control (CDC) as a second highest
priority biothreat agent [85].

1.5. Abrin

Abrin same as ricin is a phytotoxin isolated from the Abrus precatorius. Plant is commonly known
as the ‘rosary pea’ or ‘jequirity bean’ [86]. This plant is indigenous to is found in South Africa, China,
West Indies, India, Brazil, but is also now widespread and can be found in other parts of the world,
such as Florida, Alabama, Georgia and Hawaii in the United States, and Puerto Rico [87]. Abrin can
be use by aerosolization as a dry powder or liquid droplets, or by addition to food and water as a
contaminant [88].
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Abrin is a protein with molecular mass of approximately 60–65 kDa. It is also heterodimer
consisting of two disulfide-linked polypeptides, known as the A–chain and B-chain (Figure 5) [89].
The B chain (30 kDa, 263 amino acids), which has the properties of lectin, acts as a binding domain.
Its task is to connect to the glycoprotein receptors on the cell surface. Toxin is transferred into the cell
through endocytosis. A chain (28 kDa, 251 amino acids) is also RNA N-glycosidase (like ricin). Its
mechanism of action also consists in blocking the process of translation into the penetrated cells. In the
cells’ cytosol, chain A cleaves the C-N bond in adenines, located in the small subunit of the ribosome
28S rRNA at the position A4324. Adenine depurination destabilizes the rRNA preventing the binding
of ribosomes to elongation factors, and this results in inhibition of protein synthesis [90].
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Abrin has the similar structure, properties and mechanism of toxic action with ricin, but it is 75
times more toxic than ricin [92]. Abrin poisoning as a result of ingestion of seeds or contaminated
food causes severe abdominal pain, vomiting and diarrhea. These symptoms result in kidney failure.
In most cases, bleeding from the gastrointestinal tract is also observed. If abrin enters the organism as a
result of inhalation, symptoms such as pulmonary edema, hypertension in the pulmonary arteries and
hemolysis of red blood cells will appear. Death usually occurs 36-72 h after exposure, depending on
the route of entry and dose. Because there are no drugs or vaccines available against abrin poisoning,
the treatment is supportive and based on minimizing the effects of the poisoning. The type of medical
care depends on several factors, the most important being based on the route of infection. Measures
include respiratory support, intravenous fluid administration and blood pressure stabilization. Possible
neurological symptoms after exposure include hallucinations, reduced consciousness and convulsions.
Recognition of the poisoning as well as its medical treatment are identical to the response to ricin
poisoning [93].

Abrin is the strongest plant toxin, which means it can be potentially used as a biological weapon.
Abrus precatorius seeds are very popular around the world. They are used as rosary beads, and beads
in bracelets and other jewelry. This makes access to abrin easy to obtain. Abrin toxin can be used in
several forms: aerosol, pellets or dissolved in water. Abrin is about 30 times more toxic than ricin.
There are no reported cases of the use of abrin in bioterrorist activities, but natural poisoning with
abrin indicates its high potential for such use [9]. Owing of its stability, extreme toxicity and ease of
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purification abrin is classified as select agent by CDC. LD50 dose is only 0.04 µg/kg body weight of
mice [94]. Estimated fatal dose for humans is 0.1–1 µg kg −1 body weight. No antidote or vaccine
for abrin has been described except a neutralizing antibody inhibits abrin toxicity both in vitro and
in vivo [95].

1.6. T-2 Toxin

T-2 toxin is a one type-A trichothecene mycotoxin, produced by the metabolism of Fusarium species,
such a F. tricinctum, F. sporotrichiella, F. sporotrichioides, F. poae and F. sulphureum. T-2, which is harmful to
human health and animal husbandry, is often found in cereals, particularly in oats, barley, wheat, feed
and animal feed, especially in the cold climate or wet storage conditions. Pleadin et al. reported that in
unprocessed cereals, food and feed coming from Croatia and Bosnia & Herzegovina, the incidence
of T-2 toxins, ranged from 26.9% to 81.6% [96]. In Kashin-beckdisease (KBD) endemic villages in
China, T-2 toxin contamination is relatively high with an average level of 78.91 µg/kg in wheat and
47.47 µg/kg in flour [97].

Chemically, T-2 toxin is a low-molecular organic compound with a mass of 466 Da. The structure
of this molecule is a tetracyclic sesquiterpenoid 12,13-epoxytrichothec-9-ene ring in common, and a
12,13-epoxy ring responsible for the toxicological activity. Its chemical structure is characterized by
a hydroxyl (OH) group at the C-3 position, acetyloxy (-OCOCH3) groups at C-4 and C-15 positions,
an atom of hydrogen at C-7 position and an ester-linked isovaleryl [OCOCH2CH(CH3)2] group at
the C-8 position (Figure 6) [98]. This chemical structure is part of the Trichothecenes group. This
group includes various toxins such as neosolaniol, saratoxin, diacetoxyscirpenol, crocetin and HT-2.
However, T-2 possesses the highest potential [99].
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T-2 toxin is resistant to heat and ultraviolet light-induced inactivation, and is very stable and
relatively insoluble in water [97]. T-2 toxin has a wide toxic effect on the organism. The mechanism of
action of this molecule stems from the presence of an epoxy ring in the structure, which is capable of
intracellular reactions with nucleophilic groups. T-2 reacts with membrane phospholipids, damaging
cellular structures [100]. This mycotoxin has the high affinity for the 60S ribosomal subunit, resulting in
inhibition of the activity of peptidyltransferase. Therefore, the primary known toxicity mechanism of
the T-2 toxin is its inhibitory effect on protein synthesis. Additionally, some research has reported that
T-2 toxin can affect DNA and RNA synthesis, mitochondrial electron transport system, mitochondrial
function, and cell division and membrane function [97]. T-2 mycotoxin is about 400-fold more potent
than sulphur mustard in producing skin injury. Dermatotoxic effects of T-2 toxin are characterized
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as enterohaemorrhagic dermatitis. T-2 produces edema, intradermal hemorrhage and necrosis of the
skin [101]. It’s also toxic to the digestive system, nervous system, genital dermis and is teratogenic and
carcinogenic [102]. T-2 also targets the immune system. Several studies described that this mycotoxin
could decrease the production of interleukin (IL)-2 and the expression of plasma interferon-gamma
(IFN-γ) and can upregulate the mRNA expression of IL-6, IL-1β and tumor necrosis factor-α (TNF-α)
in a dose-dependent manner in RAW264.7 cells [97].

T-2 mycotoxin can penetrate into the body with food, or as a smoke or aerosol sprayed by different
dispersive systems. The first symptoms of T-2 mycotoxin poisoning can appear just a few minutes
after exposure [98]. Severe poisoning results in prostration, weakness, ataxia, collapse, reduced
cardiac output, shock and death. Meningeal hemorrhage in brain and nervous disorders has been
reported for T-2 mycotoxin exposure in humans [101]. Exposure to this Trichotecene induces also
inhibition of erythropoiesis in bone marrow and spleen [103]. Because of the lack of drugs for treating
poisoning with T-2 mycotoxin, treatment is based on maintaining the functions of the respiratory,
circulatory and digestive systems. Activated charcoal is recommended for removing the toxin from
the gastrointestinal tract. In the case of skin contact with mycotoxin, it is necessary to remove it from
the skin’s surface [104].

T-2 toxin has a high mortality rate. LD50 is approximately 1 mg/kg body weight. In addition,
this mycotoxin has a strong irritant effect on the skin and also causes systemic toxicity, which is not
characteristic of biological toxin [105]. Because of its anti-personnel properties, ease of large-scale
production, and apparent proven delivery by aerial dispersal systems, the T-2 mycotoxin has an
excellent potential for weaponization. An accidental exposure of T-2 extract (200 mg/kg) to two
laboratories workers is also reported with similar symptoms, which lasted for 4–5 days. Based on
above published reports the possibility of human exposure to this mycotoxin at higher concentrations
by dermal exposure either by intentional use (bioterrorism), accidental or by handling contaminated
agricultural products cannot be ruled out [106]. The many possible routes of toxin ingress into the
organism make it a potential biological weapon. A potential bioterrorist could use food and water or
other systems to disperse mycotoxin, e.g., in the form of aerosols or droplets, in order to poison the
population. It is important to note that the T-2 toxin has already been used in armed conflicts, and that
thousands of people have died as a result. The symptoms of toxin poisoning appear quickly and death
occurs within a few minutes, hours or days. An additional attribute of T-2 mycotoxin as a biological
weapon is the lack of medicine and detailed treatments, which can significantly delay or prevent the
recovery of humans exposed to T-2 toxin [104].

T-2 toxin, considering the lack of accurate data on its action mechanisms in the human body,
could become a perfect B weapon. Moreover, studies of T-2 have not gone beyond the laboratory level
and information on its lethal doses or effects are estimates and based on animal reactions. Another
advantage of the toxin in biological warfare is the lack of drugs counteracting it, which greatly delays
or prevents recovery. Additionally, this toxin was used in biological warfare in Iraq (by Saddam
Husain), as well as by Soviet forces in Kampuchea and Afghanistan (1979-81). There were also reports
of “yellow rain” in Laos during the Vietnam War [107].

2. Conclusions

Many toxins produced by various plants and microorganisms are highly toxic. Therefore, they
may be potential biological weapon for terrorist or military use. Some biotoxins, such as botulinum
neurotoxin, are used as therapeutic agents and have a wide spectrum of effects. BoNT has been used
in the treatment of cervical dystonia, eyelid contracture and migraine. However, the characteristic
properties of these types of compounds, like a high toxicity, ease of production and stability in
the environment, all favor their use in bioterrorist attacks. Toxins as a botulinum neurotoxin, ricin
and abrin are a unique group of compounds that have been listed by the United States’ CDC as
potential agents of biological weapons. Bioterrorism and its effects can impose heavy demands on
the public health care system which will be called upon to handle the consequences. It is important
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to develop effective countermeasures to enable rapid epidemiological and laboratory investigation,
disease surveillance and efficient medical management. Knowledge about the clinical symptoms
associated with the poisoning of highly dangerous toxins is also important, in order to understand the
mechanisms of action of individual biotoxins and thus improve our general knowledge of them.
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