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Abstract: Hydroxyapatite (HA) has been widely used in fields of materials science, tissue engineering,
biomedicine, energy and environmental science, and analytical science due to its simple preparation,
low-cost, and high biocompatibility. To overcome the weak mechanical properties of pure HA, various
reinforcing materials were incorporated with HA to form high-performance composite materials.
Due to the unique structural, biological, electrical, mechanical, thermal, and optical properties,
graphene has exhibited great potentials for supporting the biomimetic synthesis of HA. In this review,
we present recent advance in the biomimetic synthesis of HA on graphene supports for biomedical
applications. More focuses on the biomimetic synthesis methods of HA and HA on graphene supports,
as well as the biomedical applications of biomimetic graphene-HA nanohybrids in drug delivery,
cell growth, bone regeneration, biosensors, and antibacterial test are performed. We believe that this
review is state-of-the-art, and it will be valuable for readers to understand the biomimetic synthesis
mechanisms of HA and other bioactive minerals, at the same time it can inspire the design and
synthesis of graphene-based novel nanomaterials for advanced applications.
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1. Introduction

Hydroxyapatite (HA) is one of the important inorganic components of the human teeth and bone,
and it has shown wide applications in the fields of biomaterials science [1], tissue engineering [2],
biomedicine [3], energy and environmental science [4–6], and analytical science [7] due to its simple
preparation, low-cost, and high biocompatibility. Previously, several main synthesis strategies, such
as hydrothermal synthesis [8], electrochemical deposition [9], chemical vapor deposition [10], in-situ
biomimetic synthesis [11], and biomimetic mineralization [12,13], have been demonstrated to create
various HA nano-/micro-materials with different structures and properties, in which the biomimetic
strategies exhibited great advantages comparing to other synthesis methods. For instance, the
reaction condition of biomimetic synthesis is very mild and easy to control, the biomimetic HA-based
nanomaterials showed higher stability and biocompatibility, and the biomimetic HA materials exhibited
highly ordered structures and architectures by parameter adjustment of mineralization.

However, it is difficult to apply the pure HA for bone tissue engineering and biomedical implant
due to its relative weak toughness and tensile strength. To solve this problem, the combination of HA
with other kinds of bioactive tough materials, such as Ti alloys [14], polymer matrix [15], self-assembled
peptide/protein nanofibers [16,17], carbon materials (carbon nanotubes and graphene) [18,19], and
others [20,21], have been performed to improve the mechanical properties of HA-based materials. It is
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obvious that the introduction of these reinforcing materials to HA extended the potential applications
of HA in biomedical fields.

Graphene has attracted great attention in the fabrication of various novel nanomaterials due to
its unique two-dimensional (2D) structure and innovative biological, electrical, mechanical, thermal,
and optical properties [22–26]. Graphene revealed several advantages as the reinforcing material for
promoting the biomedical applications of HA. First, it provides a 2D flat support for the nucleation and
growth of HA with ordered structure. Secondly, graphene-based materials, especially graphene oxide
(GO) and reduced GO (RGO), have a large number of functional groups on the surface of graphene,
which can be easily modified for the formation/binding of HA. Thirdly, graphene has been reported
to have good biocompatibility and can mediate bone repair and regeneration. Fourthly, graphene has
been proven to have a strong mechanical strength, high elasticity, and good flexibility. Thanks to the
development of both graphene synthesis and biomimetic mineralization techniques, a lot of studies have
been carried out to create HA on graphene supports to inspire the potentials of the synthesized hybrid
materials in biomedical engineering [19,27]. For example, Wang and co-workers reported the synthesis of
GO-incorporated collagen/HA composites for bone repair applications [27]; Murugan et al. demonstrated
the mineralization of HA on GO/carbon nanofibers (CNFs) for anti-bacterial and anti-osteoblast cells
applications [28]; Wei and co-workers reported the peptide/protein nanofibers-induced biomimetic
synthesis of HA on GO supports for cell adhesion and growth [19,29].

Previously, a few review papers on the biomimetic graphene-HA hybrid composites for biomedical
applications have been reported [30–32]. For instance, Li and co-workers presented the formation of
graphene-HA composites for orthopedic applications [30] and Basirum et al. provided an overview on
the preparation of graphene-HA nanocomposites for bone graft substitute applications [31]. Although
great achievements have been made, there are still other spaces that could be extended to promote and
inspire the development of this research field. Here, we would like to contribute an overview of recent
advancement in the biomimetic synthesis of HA on graphene supports (GO and RGO) for biomedical
applications. More focus on the biomimetic synthesis methods of HA and HA on graphene supports
are introduced in Part 2 and 3, and then the biomedical applications of biomimetic graphene-HA in
drug delivery, cell growth, bone regeneration, biosensors, and antibacterial test are demonstrated and
discussed in Part 4 in great detail, as shown in Figure 1. We believe that this work is the state-of-the-art
and it will be valuable for readers to understand the biomimetic synthesis of HA and other bioactive
minerals, at the same time as inspiring the design and synthesis of graphene-based novel materials for
advanced applications.
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2. Biomimetic Strategies of HA

Inspired by nature, biomimetic strategies have been widely utilized for the facial synthesis
of various bioactive nanomaterials without using high temperature, high pressure, and hazard
chemicals [33,34]. Typically, various HA structures (nanoparticles, nanoneedles, nanowires, and porous
microspheres) can be biomimetic synthesized via in-situ biomimetic chemical synthesis and biomimetic
mineralization in simulated body fluid (SBF) solution, as shown in Figure 2 [35–37].
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Figure 2. Biomimetic synthesis strategies of HA: (a) In-situ biomimetic chemical synthesis of HA in
the presence of Ca2+ and HPO4

2−. Reprinted with the permission from [35]. Copyright 2018 Royal
Society of Chemistry. (b) HA biomineralization in simulated body fluid (SBF). Reproduced with the
permission from [36]. Copyright 2017 American Chemical Society. (c) HA biomineralization in 1.5×SBF.
Reproduced with the permission from [37]. Copyright 2016 Royal Society of Chemistry.

It is possible to directly create HA within a short term (about 30 min) through in-situ biomimetic
chemical synthesis, in which the presence of diluted Ca2+ and HPO4

2− mediated the nucleation
and growth of HA crystals on various inorganic or organic templates with the surface groups of
–COOH, –NH2, and –OH [38]. By using this method, for the first time, Hartgerink et al. reported
the biomimetic synthesis of HA on self-assembled peptide nanofibrils [39]. It was found that the
crystallographic c axes of HA were aligned along the long axes of peptide nanofibrils, which is
similar to the alignment between collagen fibers and HA in human bone. Recently, more studies
have been carried out for in-situ biomimetic synthesis of HA by using biomacromolecules [40] and
polymers [35,41] as nucleation supports. In a typical study, Xu and co-workers demonstrated the
in-situ biomimetic synthesis of nanoscale HA crystals in the presence of a zwitterionic polymer
poly(3-carboxy-N,N-dimethyl-N-(3′-acrylamidopropyl) propanaminium inner salt) (PCBAA) [35],
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and found that PCBAA was the key factor to modulate the nucleation and growth of HA, as shown
in Figure 2a. The negative –COOH group of PCBAA first adsorbed Ca2+ along the polymer chain
by electrostatic and coordination (Ca2+–CONH–) interactions when CaCl2 was added, and then the
addition of (NH4)2HPO4 solution promoted the deposition of PO4

3− ions onto the polymer chain via
their electrostatic interactions with –R3N+ groups and Ca2+. Due to the PCBAA-mediated nucleation
and growth, HA nanocrystals could be formed quickly (0.5 h). With the increasing mineralization
period to several days, HA nanocrystals were further adsorbed and assembled to form rod-like HA
crystals. Their study provided new ideas for studying the mechanism of protein-inspired biomimetic
mineralization due to the similar chemical structure of PCBAA to proteins.

In order to mimic the mineralization of HA in biological environment, SBF was developed as an
organic-free salt buffer to replace the in-situ chemical synthesis [42]. With this strategy, the structure
and Ca/P ratio of the mineralized HA (or apatite) can be adjusted by changing the mineralization
period (from hours to days). In addition, to mimic the biological ion condition precisely, it is necessary
to replace the used SBF solution daily. Previously, Su et al. demonstrated the protein-mediated
biomimetic mineralization of HA on electrospun poly (ε-caprolactone) (PCL) nanofibers [43], and
found that the biocompatible bone protein 2 (BMP2) could improve the HA mineralization efficiency
obviously. In another case, Li and co-workers reported the biomimetic mineralization of bone-like
HA by incubating supramolecular porous fiber networks in SBF solution [36], as shown in Figure 2b.
In their study, 2-ureido-4[1H]-pyrimidone-modified glycerol molecules (UPy-Gly) were self-assembled
into a porous nanofiber network, which was utilized as a support for HA mineralization. It was found
that apatite nuclei were first created in the pores of substrate and then HA crystals were formed after 7
days incubation in SBF. The formed HA crystals exhibited high elasticity as well as bone-like structure
and properties, showing potential applications for bone tissue implantation and regeneration.

To accelerate the nucleation and mineralization process, the buffer solution with 1.5-folder ionic
strength to SBF (named as 1.5× SBF) has also been widely utilized for biomimetic synthesis of HA
crystals [12,18,21,37,44]. For example, previously, Wei et al. demonstrated that proteins could mediate
the quick biomimetic mineralization of HA in 1.5× SBF (about 7 days) [12,18]. Cui and co-workers
reported the biomimetic mineralization of HA on polydopamine (PDA)-functionalized polystyrene
(PS) particles [37] by using 1.5× SBF. As show in Figure 2c, PDA on the surface of PS particles adsorbed
the mineral ions and anchored the nucleation and growth of HA nanocrystals on the surface of PS
particles, as indicated in Figure 2c. It was found that HA nanocrystals were formed after incubating
in 1.5× SBF for three days. In addition, supersaturated SBF solutions, such as 5× SBF [45,46] and
10× SBF [47] have also been utilized to obtain the nucleation and crystallization of HA nanocrystals
on various mineralization substrates in a few days. All the above studies indicate that biomimetic
strategies play important roles in the synthesis and biomedical applications of HA-base materials.
However, the constitute, structure, and properties of mineralized HA are ascribed to the type and
concentration of ions in the mineralization environment.

3. Graphene-Supported Biomimetic Synthesis of HA

In this section, we would like to present the biomimetic synthesis strategies of HA on both
graphene supports and graphene-based nanohybrids.

3.1. Graphene for Biomimetic HA

The surface groups (such as –COOH, –OH, –NH2) on support materials are crucial for the
biomimetic synthesis of HA crystals as introduced above in the cases in Part 2. To overcome the
problem of hard mineralization towards pure graphene support, GO and chemically modified GO
surfaces were utilized for in-situ biomimetic synthesis and mineralization [48–52].

Li et al. reported the in-situ biomimetic synthesis of HA on pristine GO surface [48]. As shown in
Figure 3a, when Ca2+ ions were added onto the GO surface under pH 10, the oxygen-active groups
of GO adsorbed Ca2+ via the electrostatic interactions, and subsequent addition of HPO4

2− into
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the mineralization system caused the formation of nanoscale HA crystals. The reaction period of
24 h promoted the formation of nanorod-like HA crystals. In a similar case, Tang and co-workers
reported the preparation of HA nanoplates on GO support through the in-situ biomimetic synthesis
method [49]. Maser and co-workers introduced a novel rapid in-situ biomimetic synthesis method
to create nanocrystalline HA on GO support [50], in which CaCO3 and H3PO4 were mixed with GO,
and NH4OH solution was added under pH 10. It was found that HA crystals could be formed within
30 min.
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In addition to in-situ biomimetic synthesis, the biomimetic HA mineralization of GO can be
achieved in the SBF system [51,52]. For instance, Wen et al. demonstrated a simple biomimetic
strategy to fabricate 3D hierarchical GO-HA nanocomposites by incubating GO in a modified SBF
solution [51]. As indicated in Figure 3b, Ca2+ ions were first adsorbed onto GO surface in SBF by the
electrostatic interactions with oxygen-active groups and then small apatite cyrstals were formed in a
short mineralization period. After further nucleation and crystal growth, nanoscale and microscale HA
crystals were formed by adjusting the mineralization period. The formed GO-HA nanocomposites with
this method exhibited a high adsorption and ion-exchange capacity, and therefore, can be potentially
used for water purification applications. In another study, Gao et al. reported the biomimetic synthesis
of HA on GO-coated Mg alloy in SBF [52]. It was found that GO greatly promoted the formation of
dense HA crystals on Mg alloy, which improved the anti-corrosion resistance of materials greatly.



Nanomaterials 2019, 9, 1435 6 of 20

3.2. Graphene-Based Nanohybrids for Biomimetic HA

In addition to pure GO, chemically modified GO, and RGO, other composite materials such
as GO and RGO-based nanohybrids could be potential supports for biomimetic synthesis of HA
crystals. Previously, various building blocks, including apatite [53], small molecules [54–56],
biomacromolecules [50,57], self-assembled peptide/protein nanostructures [19,29,58], and cells [59,60]
have been widely used to create graphene-based nanohybrids for biomineralization of HA.

For instance, Fan et al. investigated the modification of carboxylated GO with casein
phosphopeptide, and further studied the created graphene-peptide biocomposites for HA
biomineralization in SBF [54]. It was found that casein phosphopeptide could not only improve the
bioactivity and biocompatibility of GO, but also promote the nucleation and growth of HA crystals
on GO support. Li and co-workers demonstrated that chitosan (CS)-modified GO could serve as
an excellent template for biomimetic synthesis of HA [48], which provided new ideas for creating
functional GO-HA materials for bone tissue engineering and bio-coating applications.

To promote the formation of bioactive and functional HA nano/micro crystals on GO supports,
Wang and co-workers introduced self-assembled protein [29] and peptide nanofibers (NFs) [19], as well
as peptide nanosheets [58] to modify GO for further biomineralization of HA. For instance, previously,
they utilized a layer-by-layer assembly method to create three-dimensional (3D) GO-fibrinogen
nanofibers (GO-NFs) nanohybrids [29], which were further mineralized in SBF solution to form 3D
bio-scaffolds (Figure 4a). After short-term mineralization (a few hours), HA nanocrystals with a
diameter of several nm were created on the GO-NFs (Figure 4b) to form GO-NF-HA nanohybrids
(Figure 4c), while the long-term mineralization (two weeks) caused the formation of HA microspheres
with a diameter of a few µm (Figure 4d) on GO surface. Through multi-characterizations of mineralized
HA, the potential nucleation and growth mechanism of HA biomineralization on GO-NFs nanohybrids
was proposed, which provides new guidance for designing and synthesizing functional reinforced
biomaterials for biomedical applications.
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Figure 4. GO-nanofibers (NFs) for HA biomimetic mineralization: (a) Synthesis process, (b) AFM
image of GO-NFs, (c) AFM image of GO-NFs after mineralization for 2 h, (d) SEM image of GO-NFs
after 14 days mineralization, and (e) possible biomimetic synthesis mechanism of HA on GO-NFs.
Reproduced with the permission from ref. [29]. Copyright 2014 Royal Society of Chemistry.

Cells can also mediate the biomimetic mineralization of HA on graphene supports. In a typical
study, Liu and co-workers reported the MC3T3-E1 cell-mediated biomimetic HA formation by using
carrageenan (Car)-functionalized GO (GO-Car), as shown in Figure 5a [59]. Their results revealed that
Car facilitated the attachment of cells and the GO-Car surface promoted the binding of Ca2+ ions and the
nucleation of HA, which was first nucleated within the cell vesicles and then the growth of HA crystals
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broken the vesicles and exposed to the extracellular fluid. Finally, individual HA minerals consisting
of calcium phosphate and collagen fibers were formed. The SEM characterizations indicated that
minerals with a microporous structure and 3D channels were formed on the GO-Car support without
cells after 14 days mineralization (Figure 5b), while the introduction of cells to the GO-Car support
caused the formation of the complex of organic bundles and embedded calcium phosphate (Figure 5c).
In another similar study [60], Cheng et al. presented the MC3T3-E1 cell-mediated biomimetic HA
mineralization on the PDA-modified GO. Their study further proved that MC3T3-E1 cells exhibited
higher cellular activities compared to both bare glass and GO substrates, revealing their potential
applications for bone tissue regeneration.
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Based on the above case studies, it can be concluded that the functionalization (especially biological
modification) of graphene supports is the most effective strategy to create biomimetic graphene-HA
materials, which showed controllable structure, high mechanical properties, and high biocompatibility
that suitable for biomedical applications.

4. Biomedical Applications

In this section, the biomedical applications of biomimetic graphene-HA materials in drug
delivery, cell culture, bone repair and growth, biosensors, and anti-bacteria fields are introduced and
discussed further.

4.1. Drug Delivery

In recent years, great interest has been focused on the drug delivery and release due to increasing
demands for cancer therapy [61]. Graphene can be served as a novel 2D biocompatible platform for
drug delivery, which was attributed to special adsorption between GO and biomolecules and drugs via
the non-covalent interactions [62]. Although these biomolecules, including drugs (such as doxorubicin
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(DOX)), glucose oxidase (GOx), horseradish peroxidase (HRP), lysozyme, and proteins (such as bovine
serum albumin (BSA)), can be immobilized onto the GO surface through non-covalent interactions,
some factors, such as the pH-dependent delivery and the release of drugs and biomolecules, the
capacity of drugs, toxicity, and stability of delivery materials, should be further studied.

To introduce biomolecules into the drug delivery systems, GO-HA nanocomposites have been
widely applied in drug delivery due to their unique affinity with biomolecules with a large adsorption
capacity and pH-controlled release in various biomedical applications [63,64]. For example, Yao and
co-workers reported a facile in-situ synthesis method to build GO-HA hybrids as drug carriers by
using GO and creatine phosphate disodium (CPDS) as dual templates [65]. In their study, CPDS salt
served as a phosphorus source and nucleation site for the mineralization of calcium phosphate and HA
particles. The synthesized HA particles showed bubble-like aggregated shape with a wall thickness
of about 300 nm and a hollow structure with a diameter range from 500 nm to 2 µm. The drug
delivery-release behavior was also investigated by using ibuprofen as a drug model and the results
showed that the sustained release capacity of GO-HA hybrids was better than pure HA particles due
to the hierarchically and flower-like structure of GO-HA hybrids.

In another case, Bharath and co-authors developed a novel biomimetic approach to synthesize HA
nanorods on the GO surface by using CPDS as phosphorus source for drug delivery [66], as shown in
Figure 6. CPDS was first absorbed onto GO surface via the electrostatic interactions between carboxyl
and amino groups. Subsequently, Ca2+ ions were introduced to bind with the remaining epoxy and
hydroxyl functional groups of GO sheets through the electrostatic interactions. The PO4

3− ions were
slowly released from the CPDS molecules and then reacted with Ca2+ ions to form HA nuclei through
the electrostatic interactions (Figure 6a). The obtained transmission electron microscope (TEM) results
showed that the HA nanorods were uniformly dispersed on the GO surface with an average length of
20–85 nm and a diameter of 20 nm (Figure 6b). In addition, the adsorption and release of drugs were
estimated by using BSA as a model and the results indicated that the BSA adsorption was up to 97.5%
when the adsorption occurred at a neutral condition. The BSA release was up to 91% after 50 h at pH 4.4
compared with 32% and 38% release at pH 7.4 and 9.0, respectively (Figure 6c). Their study indicated
that the biomimetic GO-HA nanohybrids had a high drug loading efficiency, a good biocompatibility,
and excellent pH sensitivity for the drug delivery system.

GO can also be modified with biomolecules, including peptides, proteins, DNA, and CS to
promote the nucleation and growth of HA crystals. For instance, Gholibegloo et al. prepared
carnosine-conjugated GO hybrids via the covalent interactions between 1-ethyl-3-(3-dimethylaminop
ropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) reagents to promote the nucleation and
growth of HA on multi-functionalized GO surface (GO-carnosine/HA) [67]. Improved indocyanine
green (ICG) loading was obtained and the multi-functional nanocarriers had a high loading capacity of
57.52% and long-term stability.



Nanomaterials 2019, 9, 1435 9 of 20

Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 20 

 

 

Figure 6. Biomimetic graphene-HA nanohybrids for drug delivery: (a) Synthesis of HA and drug 

delivery mechanism; (b) TEM image of graphene-HA nanohybrids; (c) drug delivery tests. 

Reproduced with the permission from ref. [66]. Copyright 2017 Royal Society of Chemistry. 

GO can also be modified with biomolecules, including peptides, proteins, DNA, and CS to 

promote the nucleation and growth of HA crystals. For instance, Gholibegloo et al. prepared 

carnosine-conjugated GO hybrids via the covalent interactions between 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) reagents to promote 

the nucleation and growth of HA on multi-functionalized GO surface (GO-carnosine/HA) [67]. 

Improved indocyanine green (ICG) loading was obtained and the multi-functional nanocarriers had 

a high loading capacity of 57.52% and long-term stability. 

4.2. Cell Culture 

Biomimetic graphene-HA nanohybrids are excellent scaffolds for the adhesion and growth of 

various cells due to their strong mechanical properties, high biocompatibility, and unique structures 

[68–72]. 

Previously, Kim et al. demonstrated that biomimetic HA can be formed on GO surface for 

improving the adhesion and proliferation of osteoblast cells [73]. To enhance the bioactivity of GO-

Figure 6. Biomimetic graphene-HA nanohybrids for drug delivery: (a) Synthesis of HA and drug
delivery mechanism; (b) TEM image of graphene-HA nanohybrids; (c) drug delivery tests. Reproduced
with the permission from ref. [66]. Copyright 2017 Royal Society of Chemistry.

4.2. Cell Culture

Biomimetic graphene-HA nanohybrids are excellent scaffolds for the adhesion and growth
of various cells due to their strong mechanical properties, high biocompatibility, and unique
structures [68–72].

Previously, Kim et al. demonstrated that biomimetic HA can be formed on GO surface for
improving the adhesion and proliferation of osteoblast cells [73]. To enhance the bioactivity of GO-HA
based biomaterials for cell culture, bioactive protein and peptide have been incorporated for creating
novel functional hybrid materials [19,29,69,74,75]. For instance, Wang et al. found that the addition of
protein and peptide NFs onto GO supports could promote the biomimetic synthesis of HA nano/micro
crystals for enhanced cell culture [19,29]. Nair and co-workers demonstrated the synthesis of GO that
modified with gelatin-HA crystals, which exhibited enhanced osteogenic adhesion and differentiation
of human stem cells [74].
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Recently, Wang et al. demonstrated the -COOH group-medicated biomimetic synthesis of GO/HA
scaffolds (Figure 7a), which could be further utilized to conjugate with silk fibroin (SF) to improve
the cell culture performance [75]. Their results indicated that the –COOH group on GO surface
contributed great effects to the biomimetic formation of HA crystals on GO. HA nanorods with a length
of 80–120 nm and a width of 12 nm were synthesized, as indicated in the TEM image of Figure 7b.
The cell test experiments revealed that the designed GO-HA/SF scaffolds stimulated the adhesion and
proliferation of mouse mesenchymal stem cells (Figure 7c).
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Copyright 2017 Elsevier Ltd.

By using the mineralization of polymers, biomimetic GO-HA nanocomposites have also been
utilized for cell culture [76,77]. For instance, Ramani and Sastry reported that cellulose was helpful
for reinforcing the biomimetic formation of HA on GO support, and the fabricated GO-cellulose-HA
scaffold was highly bioactive for promoting the adhesion and growth of both MG-63 and NIH-3T3
cells, making the designed biomimetic material a very good candidate for in vitro osteoinductive
application [77].

4.3. Bone Repair and Regeneration

Due to the high potential of HA for bone tissue engineering and the strong mechanical strength
of graphene support, biomimetic graphene-HA materials exhibited wide applications in the fields of
bone repair and regeneration [78–80].

Wang et al. reported collagen (Col)-mediated biomimetic synthesis of HA on GO support for the
formation of bioactive Col/GO-HA composites, which exhibited improved hydrophilic and mechanical
properties, as well as the ability to promote the bone repair by testing the osteoblastic cells [27].
Besides osteoblastic cells, other cells, such as MC3T3-E1, human mesenchymal stem cells, and
osteosarcoma play important roles in the bone growth, repair, and regeneration [81–85]. For instance,
Zhang and co-workers presented the biomineralization of HA crystals with a size of tens nm on 3D
graphene foams (GFs) in 10× SBF containing 10 mM HCO3

− ions [82]. The mesenchymal stem cells
growth test indicated that the created 3D GF-HA materials exhibited faster osteogenic commitment and
stronger osteogenic differentiation than HA materials, revealing their promising application for bone
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regeneration. In another case, Liu and co-workers reported a facile gelatin-mediated mineralization of
HA on GO support, which showed higher cell adhesion, proliferation, and alkaline phosphatase activity
compared to GO and glass surface [85]. The in vitro osteogenic differentiation with MC3T3-E1 cells
proved the suitability of the fabricated GO-gelatin-HA nanohybrids for bone regeneration and surgery.

In addition, biomimetic graphene-HA nanohybrids can be utilized as regeneration medicines
for bone repair [83,86]. For instance, Sumathra et al. reported a novel GO-HA based regeneration
medicine tool for osteosarcoma-affected bone regeneration [83]. In their study, HA crystals were first
biomineralized on GO surface and CS was then conjugated onto the formed GO/HA hybrids to create
GO/HA/CS composites. It was found that the fabricated GO/HA/CS composites could load an anticancer
drug, cisplatin (CDDP), to act as a promising tool for bone tissue engineering applications, as indicated
in Figure 8a. The quantification analysis of cell viability of MG63 osteoblast-like cells (Figure 8b) and
A549 cancer cells (Figure 8c) indicated that the synthesized GO/HA/CS/CDDP composites exhibited
promising performances for not only promoting the growth of MG63 osteoblast-like cells, but also
killing cancer cells (A549) and replacing the bone-cancer-affected tissues with fresh-grown healthy
ones. This study provides a novel strategy to achieve in multi-functional applications of biomimetic
graphene-HA materials. In another study, Zhang et al. designed a free-standing flexible membrane
based on biomimetic hexagonal bars of HA on mesoporous graphene/single-walled carbon nanotubes
(MG/SWCNT) hybrid membrane [86]. The fabricated MG/SWCNT-HA membrane promoted the
adhesion and proliferation of human fetal osteoblast osteoprogenitor cells and enhanced in vitro
biomineralization, showing great promise as regeneration medicine for spine fusion, bone repair, and
restoration of tooth enamel.
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4.4. Biosensors

Due to its unique properties, such as an excellent biocompatibility and a good adsorption ability,
HA has become an attractive material for the fabrication of biosensors [87].

Previously, Pang and co-workers developed a simple and sensitive method for detecting luteolin
by using graphene nanosheets (GNs)-HA composite as modified electrode materials [88]. In their study,
the fabricated GNs-HA modified glassy carbon electrode (GCE) exhibited excellent electrocatalytic
activity in the redox process of luteolin compared with GNs-GCE electrode, attributing to the enhanced
electron transfer and electrocatalysis toward luteolin. In another case, an electrochemical sensor based
on GO-HA composites-modified GCE was fabricated for simultaneous determination of 4-aminophenol
(4-AP), uric acid (UA), and nitrite ions (NO2−) by cyclic voltammetry (CV) and square wave voltammetry
measurements [89]. They found that the formed GO-HA nanocomposite exhibited synergistic effects
with high sensitivity, low detection limits, good stability, and high reproducibility. The fabricated
GO-HA hybrids-based biosensors showed a dynamic linear detection range of 0.1–425, 1–1000, and
3–950 µM with detection limits of 0.29, 0.03, and 0.025 µM for 4-AP, UA, and NO2−, respectively.

Recently, Gao et al. designed an electrochemical sensor based on RGO-HA for the oxidation of
hydrazine [90]. To fabricate the biosensor architecture, Ca(OH)2 was added into the as-prepared GO
solution with stirring for 1 h and H3PO4 solution was then added into the mixed solution, which
was aged in an air oven at 85 ◦C for 24 h to obtain RGO-HA nanocomposites, as shown in Figure 9a.
In the next step, the formed RGO-HA nanocomposites were added into 1.0% acetic acid solution
containing CS to prepare RGO-HA-CS nanocomposites, which were then dropped onto a GCE to
fabricate biosensors (Figure 9b). It was found that RGO-HA materials exhibited fast and significant
catalysis towards the oxidation of hydrazine compared to GO and HA. Furthermore, the fabricated
biosensors showed a linear detection of 2.5 µM–0.26 mM and 0.26–1.16 mM with a detection limit of
0.43 µM.

In another study, Alam and co-workers developed a selective chemical biosensor based on
RGO-HA nanocomposites, and further investigated the electrochemical detection of Bis-phenol A
(BPA) by current-voltage (I–V) measurement [91]. The fabricated biosensor exhibited fast and highly
sensitive detection towards BPA with a detection limit of 60.0 pM and wide linear detection range from
0.2 nM to 2.0 mM. The excellent electrochemical response properties could be attributed to the higher
specific surface area, excellent adsorption ability, high electrocatalytic activity, and biocompatibility of
the porous RGO-HA nanomaterials towards BPA.

In addition, based on enzymatic recycling amplification and metal NPs, graphene-HA based
electrochemical biosensors have been reported. For instance, Bharath and co-workers fabricated a
glucose sensor based on GOx-modified GCE [92]. The as-prepared glucose biosensor showed a linear
detection range from 0.1 to 19.2 mM with a detection limit of 0.03 mM. In another case, they also
developed a new strategy to synthesize magnetite HA NPs on the edge-carboxylated GO surface
and further fabricated a electrochemical biosensor for the detection of 4-nitrophenol (4-NP) through
CV and differential pulsed voltammetry measurements [93]. A linear detection range from 0.2 to
994 µM and a low detection limit of 0.27 µM were obtained. In addition, the fabricated biosensor
exhibited an excellent electrocatalytic performance, including high sensitivity, good selectivity, and
long-term stability.
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4.5. Antibacterial Effects

Antibacterial effects are crucial for evaluating the potential of implant biomaterials.
Graphene-based nanomaterials have been widely utilized for long-term antibacterial
applications [94–96].

Murugan et al. demonstrated the biomimetic synthesis of HA on GO/CNF nanohybrids for
the formation of functional GO/CNF-HA composites, which revealed high mechanical strength and
similar characteristics to natural bone [28]. It was found that the synthesized composites exhibited
good antibacterial activity against both Staphylococcus aureus and Escherichia coli (E. coli). In a further
study, they investigated the biomimetic mineralization of HA on PCL-modified GO substrate [97].
The antibacterial tests towards Staphylococcus aureus and Escherichia coli indicated that the formed
GO/PCL-HA also exhibited a high performance for killing both bacteria due to the release of Mg2+ and
Zn2+ from the biomineralized HA.

Biomimetic GO-HA nanohybrids can also be conjugated with other bacteria-killing components
(such as AgNPs and SiO2) to improve their antibacterial activity. For instance, Xie and co-workers
reported the biomimetic mineralization of CS-functionalized GO (GO/CS) for the formation of HA-like
octacalcuim phosphate (OCP) [98]. The mineralized OCP-GO/CS was further utilized to bind with
AgNPs and CS-BMP2-BSA (CBB) NPs, which were formed by stabilizing BMP2-encapsulated BSA
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NPs with CS via the electrostatic interactions, as shown in Figure 10a. The antibacterial tests indicated
that the formed CBB-Ag-OCP-GO/CS composites have high antibacterial activity against E. coli and
S. epidermidis with bactericidal ratios of 94% and 91%, respectively. It is clear that the addition of
AgNPs to the scaffold enhanced the antibacterial activity of OCP-GO/CS materials. It is interesting that
both OCP-GO/CS and GO/CS revealed relative antibacterial activity towards E. coli and S. epidermidis,
as shown in Figure 10b,c. The quantitative analysis demonstrated that the OCP-GO/CS and GO/CS
composites contributed about 34% and 47% to the antibacterial effects of materials against E. coli,
meanwhile 89% and 90% against S. epidermidis, respectively. The excellent antibacterial activity of the
created CBB-Ag-OCP-GO/CS composites was ascribed to the synergistic effects of AgNPs, GO, and CS.
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permission from [98]. Copyright 2016 American Chemical Society.

Besides the material effects for antibacterial activity, drugs with antibacterial activity can also
be adsorbed onto/into GO-HA nanohybrids for inhibiting the growth of bacteria. In a typical study,
Gholigegloo and co-workers reported the biomimetic synthesis of HA on GO-carnosine conjugates for
loading an antibacterial drug, ICG, to enhance the antibacterial effects against Streptococcus mutans [67].
It was found that the fabricated GO-carnosine@ICG caused high performance for inhibiting bacterial
survival with 86.4%, which proved that carnosine was very effective for killing bacteria. By using a
photodynamic therapy, the synthesized GO@ICG, GO-carnosine@ICG, and GO-carnosine/HA@ICG
could decreased the counts of bacterial strains to 91.2%, 95.5%, and 93.2%, respectively.

5. Conclusions

In summary, we presented recent advances in the biomimetic synthesis of HA crystals on various
graphene supports, and further demonstrated and discussed the potential biomedical applications
of biomimetic graphene-HA nanohybrids in the fields of drug delivery, cell culture, bone repair and
regeneration, biosensors, and antibacterial materials. Previous studies indicated that the functional
modification of graphene with various groups, polymers, biomolecules, cells, and others can mediate
the biomimetic formation of HA, as well as improve the mechanical strength, bioactivity, and
biocompatibility of hybrid materials. A lot of case studies have proven that both graphene supports
and biomimetic HA crystals exhibited their unique effects towards improved biomedical applications.
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We believe that this overview will be helpful for readers to understand the design, synthesis, and
mechanisms of biomimetic minerals on graphene supports and explore the biomimetic materials in
biomedical engineering, nanotechnology, materials science, analytical science, as well as energy and
environmental science. In our opinion, future studies on the following topics could be studied in
depth, for instance, the design of 3D porous graphene-HA based materials for cell growth and drug
delivery, the combination of NPs like TiO2, ZnO, and SiO2 with graphene-HA hybrids for improved
antibacterial activity, and the synthesis of multi-functional materials for simultaneous performances
(such as drug delivery, cancer cells killing, and cell growth promotion), and the development of novel
synthesis methods for graphene-HA materials.
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