
Citation: Polychronaki, M.; Kogias,

D.G.; Leligkou, H.C.; Karkazis, P.A.

Blockchain Technology for Access

and Authorization Management in

the Internet of Things. Electronics

2023, 12, 4606. https://doi.org/

10.3390/electronics12224606

Academic Editors: Ashwin Ashok,

Yue Zhang, Yinghui Zhang,

Gang Han and Ming Li

Received: 29 September 2023

Revised: 28 October 2023

Accepted: 7 November 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Blockchain Technology for Access and Authorization
Management in the Internet of Things
Maria Polychronaki 1 , Dimitrios G. Kogias 1 , Helen C. Leligkou 2 and Panagiotis A. Karkazis 3,*

1 Department of Electrical and Electronic Engineering, University of West Attica, 122 43 Athens, Greece;
m.polychronaki@uniwa.gr (M.P.); dimikog@uniwa.gr (D.G.K.)

2 Department of Industrial Design and Production Engineering, University of West Attica,
122 43 Athens, Greece; e.leligkou@uniwa.gr

3 Department of Informatics and Computer Engineering, University of West Attica, 122 43 Athens, Greece
* Correspondence: p.karkazis@uniwa.gr

Abstract: The Internet of Things (IoT) continues to suffer from security issues, even after 20 years
of technological evolution and continuing efforts. While the decentralization of the IoT seems
to be a solution for improved resource management and scalability, most of the services remain
centralized, exposing IoT systems to malicious attacks. As a result, this leads to functionality
failures and endangers user and data integrity. Identity and Access Management (IAM) has the
ability to provide defense against a great number of security threats. Additionally, blockchain
is a technology which can natively support decentralization, as well as access and authorization
management techniques, using the corresponding programmable logic and leveraging cryptographic
mechanisms for privacy and security. Using standardized frameworks (e.g., Decentralized Identifiers
and Verifiable Credentials), a blockchain-based access and authorization solution can present the
basis for a uniform decentralized IAM framework for the IoT. To this end, this paper presents a
proof-of-concept design and implementation of an IAM solution based on Solidity smart contracts,
targeting two areas: firstly, supporting the fact that blockchain can seamlessly provide the basis for
a decentralized IAM framework, while secondly (and most importantly) exploring the challenge
of integrating within existing IoT systems, avoiding redesigning and redeveloping on behalf of
IoT manufacturers.

Keywords: Internet of Things; blockchain; security; accessibility; authorization; identity and access
management; decentralized identities; smart contracts

1. Introduction

Recently, smart technological applications have found great adoption by the consumer
public, mostly in the (smart) home/city and industry automation sectors, without leaving
other sectors untouched, such as the automobile and health industries. However, the
Industry 4.0 revolution has presented a great number of challenges [1–3] and requirements
for integration and communication with custom-needed systems. IoT-based technology
combined with blockchain seems also a very promising match, as it holds the potential of
integrating with almost every state-of-the-art technology at the present time (e.g., artificial
intelligence, machine learning, robotics, etc.) [4–8].

Unfortunately, despite the research and development, the topic of security continues
to set challenges that may compromise IoT systems. Lin et al. [5], after studying edge
computation integration in IoT, presented an analysis on the importance of security as well
as privacy within the context of IoT. They managed to identify six core pillars which define
IoT security:

(a) Data confidentiality exclusively to authorized users;
(b) Data integrity over communications;

Electronics 2023, 12, 4606. https://doi.org/10.3390/electronics12224606 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12224606
https://doi.org/10.3390/electronics12224606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2007-4782
https://orcid.org/0000-0001-8985-6136
https://orcid.org/0000-0002-1489-1495
https://orcid.org/0000-0003-4971-826X
https://doi.org/10.3390/electronics12224606
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12224606?type=check_update&version=2

Electronics 2023, 12, 4606 2 of 20

(c) The continuous availability of services and data on demand;
(d) The identification of authorized devices and applications as well as the authentication

of incoming data to be legitimate;
(e) Data privacy and control over them exclusively for authorized users;
(f) Trust between different things, layers and applications to preserve and obey all of

the above.

Inspecting the available literature regarding blockchain solutions targeting to improve
IoT security, one will realise that the majority of the research aims to cover only points a,
b and e, of the above pillars (data integrity, confidentiality and privacy). Some definitive
examples are in [9–12] where the research is revolved around data integrity and confiden-
tiality, while the rest of the points are left unattended. The exception lies on a relatively
small number of papers, presenting a very high-level conceptualization, which, however,
focus exclusively on meeting security needs on a customized way and measuring perfor-
mance indicators. A common factor of these solutions is interfering with the authorization
processes, as is indicated by [13–18].

On the other hand, looking at the state of the art in the blockchain industry, besides
the fact that there are no market-ready authorization solutions, every other solution to be
found which supports IoT security demands a level of client customization. This proves the
fact that there is a lack of consistency in how security challenges are met, leading to chaotic
and unstable integrations. Both the research and industry sectors can greatly benefit from
uniformity, which would come from putting in use a number of standards designed for
decentralized systems and authorization purposes, such as the Decentralized Identifiers
(DID) and Verifiable Credential (VC) standards.

Moreover, the question asked considering all of the above is how can this combination
of standards and technologies happen in order for it to be easier for the IoT industry to
integrate them without needing to rebuild already-established IoT systems or requesting
customized, and hence costly, solutions? While this question possibly has more than one
correct answer, our objective in this paper is to propose one possible approach, through
presenting a Proof-of-Concept (PoC) solution. The target of the presented PoC is to target
security in practice in IoT environments and, more specifically, access and authorization
management using blockchain.

Starting with explaining how the solution can be integrated into IoT systems (Section 2),
the software tools used in this PoC (Section 3) follow, while Section 4 presents the integration
process of the PoC with IoT. Section 5 presents the architecture and flow of the solution,
while in Section 6, the PoC implementation follows with the description of the Smart
Contracts’ structure and logic, as well as an IoT scenario topology for putting in use the
designed solution (Section 7). Lastly, in Section 8, the results of this experimental attempt
are thoroughly explained. Finally, a discussion for future research is presented in Sections 9
and 10, which conclude this research paper.

2. Related Work

Related literature has been studied, in order to gain in-depth understanding and
knowledge of the subject of IAM, as well as frameworks and implementations based on
blockchain technology related to IoT. High complexity, the need for scalability and the
diversity of tools and communication protocols which need to be used expose IoT systems
to various external threats.

In this section, we focus on the topic of Identity and Access Management (IAM), which
is the core framework on which most of the authentication and authorization ser-vices are
based. Understanding the core concepts of IAM implementations is crucial for designing
a blockchain-based access management tool for IoT-enabled devices and ser-vices. We
have also studied the standardization of related frameworks, which is of great value and
key importance for the scalability of systems and solutions for access and au-thorisation
management. Through using standardized frameworks, the scalability of different so-
lutions can be increased, while through defining universal interfaces, the compatibility

Electronics 2023, 12, 4606 3 of 20

of different components is ensured. Lastly, related work is presented regarding existing
block-chain based IAM solutions within IoT systems, and the key point where our solution
is differentiated is pointed out.

2.1. Identity and Access Management—IAM

Most of the cyber-attacks which threaten an IoT system and were mentioned in the
introduction can be dealt with through applying an Identity and Access Management
(IAM) model.

In more practical terms, this means the creation of a roles and rules framework which
is designed and adjusted to the corresponding system, in order to ensure the authentication
and access of users, services and devices by demand. Integrating tools using technologies
such as Public Key Infrastructure (PKI) and Certificate Authorities (CAs) is the most
common solution for authentication and access management in computing environments.

In 2019, Kettani et al. [13–19], in an effort to build an access management system
based on RFID, PKI and blockchain technologies, presented the four principles an IAM
model should follow. The first three of these principles can be fulfilled efficiently using
blockchain technology:

1. Authentication: Ensures the identity of a user or device in the context of an orga-
nization through validating their authentication credentials (username/password,
fingerprint, etc.).

2. Authorization: Roles and rules policies are engaged, defining different access levels
which correspond to the application’s user access hierarchy.

3. Identity Management: A system responsible for registering as well as managing an
entity’s (user, service or device) identity within the application’s environment.

4. Federated Identity Management: Third-party services which act independently of a
system while providing the certification of both a user’s identity and their access level
to various services and platforms (Single Sign On—SSO, Open Authorization—OAuth
and OpenID).

2.2. Blockchain Standards

Centralized environments enforce IAM in a system through using a centralized server
as a proxy, to which entities are forwarded in order to authenticate themselves. At the same
time, services also use this centralized server to validate the authorization of an entity using
its unique id (usually a token). In the contrary, in a decentralized environment, all nodes of
the network must be in agreement regarding the state of the shared information and do
not rely on a single entity. Blockchain, being a technology that inherently operates based
on a consensus algorithm between nodes, is considered to be one of the best technologies
to support IAM models [19]. Thus, the shared information (commonly known as the
ledger) can revolve around IAM policies and data. Consequently, some standards have
been defined specifically for the purposes of security systems (whether they are an IAM
implementation or different).

Decentralized Identifiers (DIDs) [20] and Verifiable Certificates (VCs) [21] are the most
well-known standards for decentralized environments, developed and proposed by the
World-Wide Consortium (W3C). Both of these standards are defined by their characteristics
and the information they represent, as well as their functionalities in the context of a de-
centralized environment, regardless of whether it is considered a blockchain, a Distributed
Ledger Technology (DLT) or any other. They both rely on the existence of a verifiable data
registry, in which information is written and can be cryptographically verified.

A DID is defined by an alphanumeric string of characters, unique within the reg-
istry’s lifecycle, which consists of three parts: the DID scheme followed by the specific
implementation, the DID method through which one can verify the specific DID and the
Method-specific Identifier. Moreover, each DID must be able to be connected with one DID
document (available in JSON or JSON-LD form) containing all the necessary information

Electronics 2023, 12, 4606 4 of 20

regarding the entity which it represents, as well as all the possible cryptographic methods
that can be used for verification.

On the other hand, VCs are intertwined with the creation of DIDs for the reason that
VCs can only be used to authenticate a property corresponding to an entity holding a DID
in the same decentralized registry environment. VCs hold all the cryptographic material
which can validate a property, with the purpose of preserving as much as possible the
corresponding entity’s privacy. An exceptional example of such cryptographic method
is the use of Zero-Knowledge Proofs (ZKPs). For this purpose to be achieved, a VC is
composed of two parts: the VC itself, which contains any sensitive (or not) information
regarding a certain certificate (e.g., driver’s license, etc.), and the second part, which is the
verifiable presentation, a cryptographically encrypted presentation of the VC allowing a
third entity to digitally verify (or prove) a claim regarding the corresponding entity.

2.3. Blockchain-Based IAM

Rayna et al. [22], targeting the analysis of the weaknesses as well as the benefits of
combining blockchain and IoT, present a number of improvements which can be achieved
while integrating IoT and blockchain. More specifically, both the authentication and autho-
rization of users and devices can benefit from the decentralization feature that blockchain
offers; the autonomy of the devices can also be improved when no intermediaries are
involved, while the security of IoT can surely be benefited by the strong cryptographic
methods used by blockchain.

Furthermore, after studying some of the experimental architectures designed exclu-
sively for IAM with blockchain, such as the ones from [23,24], it becomes obvious that
integrating blockchain-based solutions in an appropriate way can significantly increase
the defence of the IoT system against some of the most common cyber-attacks, which
inherently threaten IoT systems. These are the DoS or DDoS attacks which occur usually
when there is a Single Point of Failure (SPoF), as well as the Link Attack, during which an
attacker attempts to backtrace a user’s public key, giving him/her access to personal and
possibly sensitive information.

When an ecosystem is dependent on centralized services, the scalability can be expo-
nentially decreased, contrary to a distributed or decentralized-based ecosystem. The more
nodes a network consists of, the more integrity it gains, making it extremely difficult for an
attacker to attack all nodes simultaneously.

In [25], Novo presents, with details, an architecture and its implementation, where
access management is achieved through “Management Hubs”. These essentially com-prise
the blockchain network, while, at the same time, they also act as interfaces for devices’
interconnection. Both in this example and in those showed in [23,24], it is proven that the
transaction execution presents certain delays (of milliseconds), in contrast with a centralized
implementation, due to the nature of the distributed network and the consensus algorithms
which must run by all nodes. However, these delays can be improved through changing
the algorithm model, depending on the implementation use case and the governance type
of the corresponding blockchain network.

Further focusing on the IoT sector, for the last three years, the topic of blockchain-
based access control and authorization has been given a lot of attention. In [26], the
authors present a blockchain-based authorization solution for the IoT cloud, in their effort
to overcome the resource limitations of existing solutions, introducing a solution to replace
the classic IoT cloud framework for authorization exclusively. In [27], a double-layer
blockchain solution is presented for ensuring the high network performance of ABAC-
based authorization for IoT devices. However, this solution does not ensure the ability for
wide integration and adoption.

Mishra et al. introduce in their work [28] a decentralized authorization model, based
on blockchain technology, which showcases the usability and benefits of implementing a
blockchain-based solution for IoT data sharing. Their proposed architecture takes under
consideration all possible actors for an authentication management system, while it also

Electronics 2023, 12, 4606 5 of 20

provides token-based generation and verification processes. Lastly, Chen et al. [29] present
a fine-grained solution, Policychain, which is a blockchain-based ABAC system for the
decentralized management of access and authorization policies, targeted for Industry 4.0.

However, none of the aforementioned solutions include any standardized framework
that introduces adoption and integration limitations, such as the DID and VC frameworks.

3. Software Tools

Related literature [30–33] regarding the different software tools which are used for
blockchain development showed that the most popular platforms for non-DeFi applications
but which, at the same time, are appropriate for IoT applications, are the Ethereum Ecosys-
tem, Hyperledger Fabric, IBM Blockchain and R3 Corda. However, the most complete
framework of tools is offered by the Ethereum Ecosystem, since there are software tools
and development kits for end-to-end solutions, starting from the network itself, reaching
all the way to the end user’s wallet.

For the access and authorization management solution presented in this paper, the
following components were considered:

• Ethereum 2.0 Blockchain Platform (https://ethereum.org/en/, accessed on 27 Septem-
ber 2023): Offers a number of different public Ethereum networks. However, only
the Mainet is the one which records and traces the crypto-coin Ether. There are also
solutions which provide private networks where transaction fees are significantly
decreased. It should be mentioned that any EVM-compatible platform is suitable, due
to the fact that solidity and therefore smart contracts are not platform-specific but
EVM-dependent.

• Solidity v.0.8.12 (https://soliditylang.org/, accessed on 27 September 2023) program-
ming language: A Javascript-like syntax programming language, flexible and evolved
to the point that it has been proven to be Turing-complete. It offers smart contract
developers the means to build and implement business and programmable logic which
aims to validate or change the state of the blockchain ledger. Variables and data are
controlled and manipulated via smart contracts, but their full history is logged in
the ledger.

• Remix IDE v.0.37.2 (https://remix-project.org/, accessed on 27 September 2023): A
complete web-based and open-source development environment for writing, com-
piling and debugging solidity smart contracts. A desktop version of the IDE is also
available.

• Metamask v.11.4.1 (https://metamask.io/, accessed on 27 September 2023): A popular,
open-source wallet for the Ethereum network for managing crypto-coins and storing
the cryptographic keys of an Ethereum account.

• DID Standard v1.0 (https://www.w3.org/TR/vc-data-model/, accessed on 27 Septem-
ber 2023): A DID is defined by an alphanumeric string of characters, unique within
the registry’s lifecycle, which consists of three parts: the DID scheme followed by the
specific implementation, the DID method through which one can verify the specific
DID and the method-specific identifier.

4. Integration with IoT

The solution presented in this paper is created in the context of being easily integrated
with IoT systems. This is achieved through providing smart contract interfaces for man-
aging authorization and access rights for “things”. In favour of presenting the following
solution, we assume an IoT system based on a five-layer architecture [34], as seeing in
Figure 1 [34]. The ability for internet communication is vital for the functionality of this
solution, since the interaction with a blockchain network is based on it. However, bearing in
mind that most IoT systems, regardless of the heterogeneity of the protocols used, provide
Internet connectivity at some point, the risk of integration failure is considered low for this
particular reason.

https://ethereum.org/en/
https://soliditylang.org/
https://remix-project.org/
https://metamask.io/
https://www.w3.org/TR/vc-data-model/

Electronics 2023, 12, 4606 6 of 20Electronics 2023, 12, 4606 6 of 20

Figure 1. Access and authorization management solution in a 5-layer IoT architecture.

One crucial factor for the design process of the presented blockchain-based access
and authorization management solution is the need to reach the Internet. Therefore, it
should be integrated at least within the application and middleware layers (see Figure 1),
where it is more likely that Internet connectivity will be available (Figure 1). However, if
it is possible for all the components of the network and perception layers to access the
Internet, either directly or using a secure proxy component (e.g., a gateway for extremely
low-end sensors), the blockchain-based solution can be integrated with them as well.

Moreover, this referenced architecture is able to offer control regarding the authori-
zation of both devices and services, thus giving the provider or stakeholder of applications
the possibility to also integrate it with the business layer. One such way would be through
offering different access and authorization levels based on a subscription plan (e.g., num-
ber of controlled devices, multiple user roles or custom-made roles).

The main goal of our design is to deliver the basis of a set of blockchain interfaces for
converting traditional server–client IoT applications to partially decentralized applica-
tions. The term “partially” is used to define the fact that applications can integrate it in the
back end (Figure 2) through adding only the functionalities which manage access and au-
thorization services via the blockchain network. This results in applications modified in
such a way that the end users will be already familiar with the user interface (UI), but, at
the same time, the IoT environment will be enhanced with blockchain functionalities con-
trolling access and authorization policies for all entities in the system.

Figure 2 explains this kind of integration, where each high-level blockchain compo-
nent is mapped to a respective IoT layer in the five-layer architecture. It is important to
note that, in contrast with the solutions that can be found in recent or older literature,
blockchain is not considered as one separated component, but its main sub-components
are integrated in IoT.

Figure 2. Partial integration of blockchain in IoT.

Figure 1. Access and authorization management solution in a 5-layer IoT architecture.

One crucial factor for the design process of the presented blockchain-based access and
authorization management solution is the need to reach the Internet. Therefore, it should
be integrated at least within the application and middleware layers (see Figure 1), where
it is more likely that Internet connectivity will be available (Figure 1). However, if it is
possible for all the components of the network and perception layers to access the Internet,
either directly or using a secure proxy component (e.g., a gateway for extremely low-end
sensors), the blockchain-based solution can be integrated with them as well.

Moreover, this referenced architecture is able to offer control regarding the authoriza-
tion of both devices and services, thus giving the provider or stakeholder of applications
the possibility to also integrate it with the business layer. One such way would be through
offering different access and authorization levels based on a subscription plan (e.g., number
of controlled devices, multiple user roles or custom-made roles).

The main goal of our design is to deliver the basis of a set of blockchain interfaces for
converting traditional server–client IoT applications to partially decentralized applications.
The term “partially” is used to define the fact that applications can integrate it in the
back end (Figure 2) through adding only the functionalities which manage access and
authorization services via the blockchain network. This results in applications modified
in such a way that the end users will be already familiar with the user interface (UI), but,
at the same time, the IoT environment will be enhanced with blockchain functionalities
controlling access and authorization policies for all entities in the system.

Electronics 2023, 12, 4606 6 of 20

Figure 1. Access and authorization management solution in a 5-layer IoT architecture.

One crucial factor for the design process of the presented blockchain-based access
and authorization management solution is the need to reach the Internet. Therefore, it
should be integrated at least within the application and middleware layers (see Figure 1),
where it is more likely that Internet connectivity will be available (Figure 1). However, if
it is possible for all the components of the network and perception layers to access the
Internet, either directly or using a secure proxy component (e.g., a gateway for extremely
low-end sensors), the blockchain-based solution can be integrated with them as well.

Moreover, this referenced architecture is able to offer control regarding the authori-
zation of both devices and services, thus giving the provider or stakeholder of applications
the possibility to also integrate it with the business layer. One such way would be through
offering different access and authorization levels based on a subscription plan (e.g., num-
ber of controlled devices, multiple user roles or custom-made roles).

The main goal of our design is to deliver the basis of a set of blockchain interfaces for
converting traditional server–client IoT applications to partially decentralized applica-
tions. The term “partially” is used to define the fact that applications can integrate it in the
back end (Figure 2) through adding only the functionalities which manage access and au-
thorization services via the blockchain network. This results in applications modified in
such a way that the end users will be already familiar with the user interface (UI), but, at
the same time, the IoT environment will be enhanced with blockchain functionalities con-
trolling access and authorization policies for all entities in the system.

Figure 2 explains this kind of integration, where each high-level blockchain compo-
nent is mapped to a respective IoT layer in the five-layer architecture. It is important to
note that, in contrast with the solutions that can be found in recent or older literature,
blockchain is not considered as one separated component, but its main sub-components
are integrated in IoT.

Figure 2. Partial integration of blockchain in IoT. Figure 2. Partial integration of blockchain in IoT.

Figure 2 explains this kind of integration, where each high-level blockchain component
is mapped to a respective IoT layer in the five-layer architecture. It is important to note that,
in contrast with the solutions that can be found in recent or older literature, blockchain is
not considered as one separated component, but its main sub-components are integrated
in IoT.

Electronics 2023, 12, 4606 7 of 20

Starting from the bottom, the blockchain network can be part of the network layer
of the IoT, especially if common infrastructure is chosen (same hardware hosting both
blockchain nodes and IoT servers). Moving one layer up, the smart contracts and the ledger
are integrated within the middleware layer as this is where communication services and
databases are. IoT services can also communicate with the smart contracts and the network
in order to retrieve or add ledger information. Finally, the IoT applications can integrate
Web3 technology in order to acquire the ability to make RPC calls towards the blockchain
network and host the user’s account (public and private key).

5. Implementation Context, Components Structure and Flow Diagram

Let us consider a simple IoT system where smart home automations take place in
a workplace environment. For example, people working in an office room have several
smart devices (e.g., smart plugs, light switches and an air conditioner) and smart hubs
(e.g., SmartThings hub, Philips, Google Home and Amazon) in order to control environ-
mental conditions within the room. Using smartphone applications, people can easily set
and delete rules regarding automation for controlling light, room temperature and humid-
ity. Our PoC is designed in such a way that manufacturers can integrate the blockchain
functionalities of our smart contracts in their application, making it Web 3.0-compatible,
seamlessly for the end users. Ideally, the user experience (UX) of manufacturers’ applica-
tions should not be altered at all, whereas the functions behind the scenes of the graphical
interface can create and send transactions when the user performs an action that should be
recorded in the common ledger anonymously (e.g., adding a new device in their smart hub
or creating a new automation rule).

In this section, the components of an authorization system based on blockchain technol-
ogy are presented and described, designed in such a way targeting the seamless integration
with existing IoT systems and aiming at verifying user and device certificates. At the
same time, the proposed solution integrates standardized frameworks, in order to achieve
consistency and the capability for wider-scale adoption.

Assuming the existence of an IoT system that takes advantage of blockchain for access
and authorization, we recognize at least four different entities within it:

A. Users: These are the end users who interact with the system, usually via a mobile
application, and either send through it a command or receive feedback (an alert) for
an event.

B. Gateways: Devices placed mostly in the middleware layer, acting as an intermediary for
other devices which cannot perform certain functions (e.g., communicate via the Internet).

C. Devices: Any device acting like a sensor or actuator and participating in the system
through either providing or consuming data. Many low-end devices cannot reach
the Internet, in which case, they use a gateway for performing their functionalities
(e.g., sending data to the cloud or communicating with the blockchain network).

D. Blockchain: A decentralized network of nodes which run smart contracts in order
to share a distributed and immutable ledger. All data concerning the authorization
and access management (tools, policies and keys) are logged onto the ledger and the
information can be verified by any of the network nodes.

Additionally, Figure 3 depicts a flow diagram with the different roles/components
which exist in our PoC scenario, as well as the ways with which they can interact with
each other. Moreover, the steps which components can and must complete are numbered.
These steps form a guideline for creating Decentralized Identifiers (DIDs) [20] for all system
components (users, gateways and devices), but also any verifications needed for each one
of them. A DID is defined by an alphanumeric string of characters, unique within the
registry’s lifecycle, which consists of three parts: (i) the DID scheme followed by the specific
implementation, (ii) the DID method through which one can verify the specific DID and
(iii) the method-specific identifier.

Electronics 2023, 12, 4606 8 of 20Electronics 2023, 12, 4606 8 of 20

Figure 3. Access and authorization management architecture and flow diagram.

Moreover, each DID must be able to be connected with one DID document (available
in JSON or JSON-LD form) containing all the necessary information regarding the entity
which it represents, as well as all the possible cryptographic methods that can be used for
verification. DIDs play a crucial role in the broader movement toward self-sovereign iden-
tity, where individual entities have greater control and ownership of their digital identi-
ties, reducing reliance on centralized identity providers and enhancing security and pri-
vacy [35–37].

In this implementation, the creation of a “softhub” is mandatory, which acts as a dig-
ital equivalent of the physical IoT system. Softhub is a term formed specifically to describe
the need for a digital equivalent of an IoT system, in the context of the solution described
in this paper. In other words, when a physical device is part of an IoT system, the block-
chain network will log that the device’s DID is bound in the corresponding softhub, also
characterised by a DID.

The following further describes the steps shown in Figure 3:
1. Users create for themselves a unique DID, by executing the corresponding smart con-

tract (DIDs) using their account.
2. Users create or join a softhub, by executing the corresponding smart contract (IoT

SoftHub) using their account.
3. Gateways and devices also acquire a DID, by executing the same smart contract as

step 1 while softhub administrators claim them by executing the Device Management
smart contract.

4. Attention should be given if devices do not have the capability of directly communi-
cating with the Blockchain. If there are gateways representing limited functionality
devices, they repeat steps 1–3, on behalf of them.

5. Every time a process needs to be completed by any component of the softhub, the
permission to do so must be verified through querying the ledger via the verification
smart contract.

6. Finally, when necessary, the execution of certain smart contract functions can pro-
vide feedback to the user via events, informing them of the new status of the softhub

Figure 3. Access and authorization management architecture and flow diagram.

Moreover, each DID must be able to be connected with one DID document (available
in JSON or JSON-LD form) containing all the necessary information regarding the entity
which it represents, as well as all the possible cryptographic methods that can be used
for verification. DIDs play a crucial role in the broader movement toward self-sovereign
identity, where individual entities have greater control and ownership of their digital
identities, reducing reliance on centralized identity providers and enhancing security and
privacy [35–37].

In this implementation, the creation of a “softhub” is mandatory, which acts as a
digital equivalent of the physical IoT system. Softhub is a term formed specifically to
describe the need for a digital equivalent of an IoT system, in the context of the solution
described in this paper. In other words, when a physical device is part of an IoT system, the
blockchain network will log that the device’s DID is bound in the corresponding softhub,
also characterised by a DID.

The following further describes the steps shown in Figure 3:

1. Users create for themselves a unique DID, by executing the corresponding smart
contract (DIDs) using their account.

2. Users create or join a softhub, by executing the corresponding smart contract (IoT SoftHub)
using their account.

3. Gateways and devices also acquire a DID, by executing the same smart contract as
step 1 while softhub administrators claim them by executing the Device Management
smart contract.

4. Attention should be given if devices do not have the capability of directly communi-
cating with the Blockchain. If there are gateways representing limited functionality
devices, they repeat steps 1–3, on behalf of them.

5. Every time a process needs to be completed by any component of the softhub, the
permission to do so must be verified through querying the ledger via the verification
smart contract.

6. Finally, when necessary, the execution of certain smart contract functions can provide
feedback to the user via events, informing them of the new status of the softhub

Electronics 2023, 12, 4606 9 of 20

(e.g., a device’s ownership changed, or an unauthorized device attempted to commu-
nicate within the softhub).

By the end of this experiment, it is expected that three different kinds of proofs are to
be provided for each entity, which will be demonstrated in the Section 8:

1. Proof of membership in a particular IoT system (softhub);
2. Proof of authorization management rights over the IoT system (mostly concerns users

rather than devices);
3. Proof of control over a device.

6. Programmable Logic—Smart Contracts

In this section, the logic behind the smart contract functionalities is described in detail.
These are divided in four smart contracts based on the context in which they operate and the
state which they manipulate. Two smart contracts function as factories, meaning that they
hold state variables and create instances, while the other two smart contracts act as services,
containing only functions for manipulating the state and providing authorization services.
Each smart contract is characterized by its variables’ definition and how their content
changes based on the contract’s functions, while everything is recorded as transactions.

Let us keep in mind that one of the key factors of authentication frameworks is the
logging capability of any process. Even administrative processes are recorded and can be
available to users only at the top layer of the security hierarchy. Thus, in this particular PoC,
the ledger contains two crucial pieces of information supporting access and authorization:

• The current state of the authorization policies;
• The history of the variables’ content, or else the logging of all processes altering the

authorization policies.

The pseudocode for all four smart contracts described below is given in Appendix A
of this paper.

6.1. DidFactory Smart Contract

The first smart contract is responsible for creating unique Decentralized Identifiers—DIDs.
Each and every entity within the IoT system using this solution must be represented by a
personal DID which corresponds strictly to one and only one Ethereum account. Table 1
shows all the variables which the DidFactory smart contract uses for that end, following
the W3C standard. These variables aim to keep a record of correspondence between the
Ethereum accounts, softhubs, devices and the DIDs, while also checking if an account has
already registered or not.

Table 1. Variables used by the DidFactory smart contract.

Variables—DidFactory.sol

Name Type Description Input Fields

Did struct Holds the did of the
corresponding entity.

scheme, method, path,
property, registrationNo

dids array
Lists all the DIDs
created with this
smart contract.

none

identityToAccount mapping
Maps the did object to

the owner’s
ethereum account.

None

accountIsRegistered mapping
Flags as true every

account which
gets a Did.

None

Electronics 2023, 12, 4606 10 of 20

Regarding functionality, this smart contract has a constructor which initializes the
first DID string, which belongs to the smart contract itself, while there is one more function
for creating DIDs on call, which takes a single parameter as an input and that is the
property of the entity being registered (e.g., administrator, user, softhub, device, etc.). The
pseudocode of this smart contract is given in Table A1.

6.2. SofthubFactory Smart Contract

Similarly, with the DidFactory smart contract, SofthubFactory contains all the neces-
sary variables for the creation as well as the logging of all the softhubs. As stated earlier,
the logic of this solution to map each real IoT system to one softhub. Table 2 lists all the
variables used by the SofthubFactory smart contract. These aim to map each softhub with
every device registered and one owner. Also, they map each device with one and only one
serial number and create and maintain a record of softhub history for every device.

Table 2. Variables used by the SofthubFactory smart contract.

Variables—SofthubFactory.sol

Name Type Description Input Fields

Device struct
creates a Device object

corresponding to a
physical device

deviceID, hubID, deviceType

Softhub struct
creates a Softhub object

corresponding to a
physical IoT system

DID, ownerDID, name

deviceHubHistory mapping

maps each Device with
an array of softhubs

which it was claimed
from in the past

none

OwnerToHub mapping maps each Softhub to its
owner’s Ethereum account none

rnToHub mapping maps each device to its
unique serial number none

devToHub mapping maps each device to a
softhub (if claimed) none

Regarding functionality, this smart contract has one constructor and two differ-
ent functions for creating softhubs and registering devices. The constructor creates the
first softhub, whose administrator is the smart contract itself, which exists for hosting any
device after being registered and before being claimed by any user. This way, the devices’
history is always being recorded, whether it is claimed by a softhub or not.

Moreover, there is also a function for creating a softhub through an external call by any
administrator, while the commands within the function manipulate the first three variables
of Table 2 accordingly. The second function also changes the remaining variables, with the
purpose of registering a new device in the ledger. Two input parameters are needed for
device registration, which are the device’s type (e.g., temperature_sensor, smode_detector,
etc.) and the device’s registration number. The reason for using and inserting a parameter
such as the registration number is to offer a way for the end user to quickly query and
insert a device using a QR code containing its unique product number. The pseudocode of
this smart contract is given in Table A2.

6.3. DeviceManagement Smart Contract

The third smart contract is responsible for all operations regarding device management.
Through using the inheritance capability of the solidity language, the DeviceManagement
smart contract can access and manipulate the state of every variable mentioned in the

Electronics 2023, 12, 4606 11 of 20

previous smart contracts. Users can invoke four different functions in order to claim a
device, remove one from a softhub or transfer it to another.

While claiming and removing a device requires the invocation of only one function,
the process to transfer one from a softhub to another requires two functions. For enhancing
the integrity of the transferability, the process itself is divided into two phases. The first
part is for ensuring that the device is to be transferred to a specific softhub, through using
the Ethereum account of the next owner (claimer) to bind the device. After the first owner
executes this transaction, the second phase follows, where the next owner must claim it
using the special function made for this purpose (“claimTransferedDevice”). This way, the
account claiming a transferred device is ensured to be the one which the device is already
bound to.

These four functions can be invoked only externally, meaning that other contracts
cannot invoke them, not even contracts inheriting from the DeviceManagement smart
contract. This is a definitive example of how solidity language provides programmers with
native tools for low-level security, while the code design should be carefully examined to
prevent unwanted exploitation or exposed security gaps. The pseudocode of this smart
contract is given in Table A3.

6.4. Verification Smart Contract

The fourth and final smart contract of the proposed solution is the one used for
verification between entities. In contrast with the DeviceManagement smart contract, the
Verification contract, while not initializing new variables, only reads the already existing
variables from the DidFactory and SofthubFactory contracts. There are four public and
external functions within this smart contract which are used for providing the callers with
the information, whether an entity is allowed or not, for an action. The functions require
two mandatory inputs (the DIDs of two entities), and they return a Boolean value for these
four statements:

• The device with the DID [_deviceDID] is currently claimed by (and thus belongs to) the
softhub whose administrator is represented by the Ethereum address [_address].

• The softhub with the DID [_hubDID] is bound (thus can only be controlled) by the
user represented by the Ethereum address [_address].

• The device with the DID [_deviceDID] is part (and thus can interact with) of the
softhub with the DID [_hubDID].

• The Ethereum account which just executed a function is an administrator of the softhub
with the DID [_hubDID].

These four functions can be called by any entity within an IoT system, in order to get
confirmation that another entity has indeed the permission and authorization to perform an
action (e.g., user access to data; configuration changes by either users, services or devices; etc.).
The importance of this smart contract is that an entity is able to confirm access and autho-
rization for other entities, but only using their DIDs or users’ public Ethereum accounts.
Both DIDs and the Ethereum accounts are information which are considered public and do
not expose any information regarding the characteristics of the corresponding entities. The
pseudocode of this smart contract is given in Table A4.

7. Scenario Topology

In order to extract results, a topology (Figure 4) was designed to test the functionalities
of the smart contracts. We have assumed the existence of three simple IoT systems, which
are represented by three softhubs with the names “Softhub1”, “Softhub2” and “Softhub3”,
respectively. Each one of these can be controlled by one and only one user, who is con-
sidered the administrator of the corresponding softhub. It is also assumed that there are
two different sensor devices (Device 1 and Device 2) which have access to the Internet
and are fully qualified to communicate directly with the blockchain, having their own
Ethereum accounts.

Electronics 2023, 12, 4606 12 of 20

Electronics 2023, 12, 4606 11 of 20

contract. This is a definitive example of how solidity language provides programmers
with native tools for low-level security, while the code design should be carefully exam-
ined to prevent unwanted exploitation or exposed security gaps. The pseudocode of this
smart contract is given in Table A3.

6.4. Verification Smart Contract
The fourth and final smart contract of the proposed solution is the one used for veri-

fication between entities. In contrast with the DeviceManagement smart contract, the Ver-
ification contract, while not initializing new variables, only reads the already existing var-
iables from the DidFactory and SofthubFactory contracts. There are four public and exter-
nal functions within this smart contract which are used for providing the callers with the
information, whether an entity is allowed or not, for an action. The functions require two
mandatory inputs (the DIDs of two entities), and they return a Boolean value for these
four statements:
• The device with the DID [_deviceDID] is currently claimed by (and thus belongs to)

the softhub whose administrator is represented by the Ethereum address [_address].
• The softhub with the DID [_hubDID] is bound (thus can only be controlled) by the

user represented by the Ethereum address [_address].
• The device with the DID [_deviceDID] is part (and thus can interact with) of the

softhub with the DID [_hubDID].
• The Ethereum account which just executed a function is an administrator of the

softhub with the DID [_hubDID].
These four functions can be called by any entity within an IoT system, in order to get

confirmation that another entity has indeed the permission and authorization to perform
an action (e.g., user access to data; configuration changes by either users, services or de-
vices; etc.). The importance of this smart contract is that an entity is able to confirm access
and authorization for other entities, but only using their DIDs or users’ public Ethereum
accounts. Both DIDs and the Ethereum accounts are information which are considered
public and do not expose any information regarding the characteristics of the correspond-
ing entities. The pseudocode of this smart contract is given in Table A4.

7. Scenario Topology
In order to extract results, a topology (Figure 4) was designed to test the functionali-

ties of the smart contracts. We have assumed the existence of three simple IoT systems,
which are represented by three softhubs with the names “Softhub1”, “Softhub2” and
“Softhub3”, respectively. Each one of these can be controlled by one and only one user,
who is considered the administrator of the corresponding softhub. It is also assumed that
there are two different sensor devices (Device 1 and Device 2) which have access to the
Internet and are fully qualified to communicate directly with the blockchain, having their
own Ethereum accounts.

Figure 4. Testing softhub topology. Figure 4. Testing softhub topology.

The procedure of the experiment aims at forming the topology described and shown
in Figure 4 through executing a series of transactions invoking all functions from the
first three smart contracts of the access and authorization management PoC. After those
transactions, the fourth smart contract will be invoked in order to verify the state the access
and authorization rules.

During the execution of the experiment, the state of the ledger was recorded, and
changes before and after each transaction were noted. The exact transactions which
were executed, after the deployment of the smart contracts in the Remix IDE using the
first available account, are:

1. Select the second account available by Remix IDE (0xAb8483F64d9C6d1EcF9b849Ae-
677dD3315835cb2) and create a personal user DID with the property of “Administrator”.

2. Using the same account, create a softhub with the name “testhub1”.
3. Regardless of the account selected, register (create DIDs for) two devices:

i. One temperature sensor device with the serial number “abc1234”
ii. One smoke detector device with the serial number “def5678”

4. With the second account selected, claim both registered devices into “testhub1”.
5. Create two more personal user DIDs with the property of the “Administrator” using

the next two (third and fourth) available Ethereum accounts of Remix IDE:

i. 0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db
ii. 0x78731D3Ca6b7E34aC0F824c42a7cC18A495cabaB

6. Repeat step two, to create two more softhubs corresponding to the administrators of
step 5:

i. “testhub2”
ii. “testhub3”

7. With the second account selected, execute phase 1 for transferring Device1
(serial number: abc1234) from softhub1 to softhub2.

8. With the fourth account selected, make one attempt to claim Device1 to softhub3,
while the device is bound to softhub2 (transaction should fail).

9. With the third account selected, complete the transfer of Device1 and claim it
to softhub2.

10. With the first account selected, remove Device2 (serial number: def5678) from softhub2.
11. With the fourth account selected, claim Device2 (serial number: def5678) to softhub3.
12. Verify that Device1 (serial number: abc1234) belongs to softhub1.
13. Verify that Device1 (serial number: abc1234) belongs to softhub2.
14. Verify that Device2 (serial number: def5678) belongs to softhub1.
15. Show softhub history of Device2 (serial number: def5678).
16. Verify that Device1 (serial number: abc1234) can be controlled by the account address

which corresponds to softhub1.

Electronics 2023, 12, 4606 13 of 20

17. Verify that Device1 (serial number: abc1234) can be controlled by the account address
which corresponds to softhub2.

18. Verify that softhub1 can be controlled by the account address which corresponds
to softhub2.

19. Verify that softhub1 can be controlled by the account address which corresponds
to softhub3.

8. Results

After deploying the four smart contracts within the Remix environment, the trans-
actions from the list above were executed, with the intention of observing the response
after each one and the way the ledger state is formed. The console provided by Remix
(version number: v0.37.1) offers the opportunity to observe exactly what happens when a
transaction is minted by an Ethereum node. A transaction response is very similar to an
HTTP response since it also has headers which indicate certain metadata.

For example, Table 3 shows all the execution metadata for transaction 1: create a
personal user DID with the property of “Administrator”. The “status” field indicates
whether the transaction is succeeded or not after running and execution, while from the
fields “to” and “decoded input”, we can understand how the ledger’s state variables
are formed.

Table 3. Execution of transaction 1 (create a personal user DID with the property of “Administrator”).

Status Transaction Mined and Execution Succeed

transaction hash 0xb6d05334b6082. . .23142afb7daf45
from 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2
to DeviceManagement.createdid (string)
gas 309545
transaction cost 269169
execution cost 269169
input 0xa83. . .00000
decoded input {“string _property”: “administrator”
decoded output {}
logs []
val 0 wei

After the execution of transactions 1 through 11, the state variables have been formed
in a way which reflects the topology of Figure 3. Altogether, there are eight entities
(three administrators, three softhubs and two devices) which all have a unique personal
DID, while the administrators also are mapped with their Ethereum account. It is worth
noting that transaction 8, which has a purpose of testing the integrity of the smart contract
design, indeed fails. This transaction is made by an unauthorized user who attempts to
claim a device after phase one of its transfer has been completed and before the authorized
and bound administrator claims it.

The response in the failed transaction has a status message of “false Transaction
mined but execution failed”, while below the response metadata, the message “transact to
verification.claimTransferedDevice errored: VM error revert. The transaction has been
reverted to the initial state” appears. This message states that whatever code was executed
by the smart contract function which was not approved by the node has been reverted and
no changes in the ledger state are recorded. Nonetheless, the action of a failed transaction
is also recorded in the network logs.

The final state of the ledger, as shown in Table 4, contains all the DIDs of the
eight entities registered, as well as the mappings for Ethereum accounts corresponding to
administrators, the administrators to each softhub, the devices’ registration numbers and
which softhub they are claimed to.

Electronics 2023, 12, 4606 14 of 20

Table 4. Final state of ledger forming Figure 4 topology.

Data Type Data Value

Struct DID did:. . ./administrator91101
Struct DID did:. . ./administrator98868
Struct DID did:. . ./administrator54989
Struct DID did:. . ./softhub53703
Struct DID did:. . ./softhub37899
Struct DID did:. . ./softhub92253
Struct DID did. . ./device89873
Struct DID did:. . ./device47235
Struct Softhub Testhub1, did:. . ./softhub53703
Struct Softhub Testhub2, did:. . ./softhub37899
Struct Softhub Testhub3, did:. . ./softhub92253
Struct Device temp_sensor, abc1234
Struct Device Smoke_detect, def5678

Mapping identityToAccount
0xAb84. . .35cb2 => did:. . ./administrator91101
0x4B20. . .C02db => did:. . ./administrator98868
0x7873. . .cabaB => did:. . ./administrator54989

Mapping OwnerToHub
did:. . ./administrator91101 => Testhub1
did:. . ./administrator98868 => Testhub2
did:. . ./administrator54989 => Testhub3

Mapping rnToDev abc1234 => did:. . ./device89873
def5678 => did:. . ./device47235

Mapping DevToHub did:. . ./device89873 => Testhub2
did:. . ./device47235 => Testhub3

Lastly, transactions 12 through 19 aim to prove the verification functionality of the
smart contracts. These eight transactions are not recorded to the ledger, due to the fact that
they do not provide any kind of changes to the state of the variables mentioned. They rather
provide confirmation (or disapproval) regarding the four statements of the Verification
smart contract. The response of these transactions is simply a true or false statement,
responding to the verification query. Table 5 shows the response for transactions 12–19 as
well as the input parameters of the query made each time. The results truthfully verify the
ledger state through returning a Boolean value, allowing for further programming logic to
be developed based on it regarding access permissions.

Table 5. Verification transactions (12–19).

Verification Function Parameter 1 Parameter 2 Response

verifyDeviceToSofthub did:. . ./softhub53703 . . ./device89873 false
verifyDeviceToSofthub did:. . ./softhub37899 . . ./device89873 true
verifyDeviceToSofthub did:. . ./softhub53703 . . ./device47235 false
verifyDeviceOwnership did:. . ./device89873 0xAb8483. . .835cb2 false
verifyDeviceOwnership did:. . ./device89873 0x4B2099. . .2C02db true
verifySofthubOwnership did:. . ./softhub53703 0x4B2099. . .2C02db false
verifySofthubOwnership did:. . ./softhub53703 0x78731D. . .5cabaB false

Observing the implementation of this PoC, it is evident that a blockchain ledger
can be used as a policy keeper in order to provide a trustless but transparent source of
access and authorization information and verification. The standard frameworks of DIDs
(and extensively VCs) protect private information from leaking while, at the same time,
uniquely characterizing all entities which participate in an IoT hub, the equivalent of an
IoT system in real life. Devices, users and services acquire a DID and enrol in the ledger
policy, while all communication processes can add one more step of verification throughout
the whole IoT system. Thus, the components communicating can all verify each other and
choose whether to proceed or not with their execution processes.

Electronics 2023, 12, 4606 15 of 20

9. Discussion and Future Research

Using a blockchain-based solution for enhancing IAM functionality offers a variety of
advantages regarding the security of an IoT system. Depending on the architecture and
solidity techniques used, blockchain is able to counteract some of the most common attacks
threatening IoT. Indicatively, some of these are as follows:

• Enhancing security mechanisms for securely updating hardware firmware;
• Device and access management on larger-scale networks where there is a large number

of identical devices (e.g., smart cities);
• Add one more authorization layer on off-chain data accessibility;
• Design more secure high-level applications, especially when devices cannot be fully

protected and secured;
• Counteract the device impersonating attack using unique DIDs in combination with

blockchain’s public key cryptography.

One of the research topics which can be further developed is the possibility of using
solidity’s Events functionality, in order to build a multi-factor authentication process for
applications’ accessibility. Events are a solidity function which is able to send feedback
from the smart contract to the front-end decentralized application, upon triggering within
the code. Thus, it is possible to design a group of smart contract functions which allow
multi-factor authentication.

Moreover, in order to enhance even more the privacy of the presented solution, ZKP
cryptography can be used for the proper implementation and integration of the Verification
Credentials (VCs). In such a case, the Verification smart contract can be replaced by a
custom-made and softhub-targeted smart contract, which could be designed to verify
specific ZKPs, instead of having simple solidity functions querying the ledger with human-
readable information. ZKPs will represent the access or authorization rights of an entity,
which, as an information, piece is not human-readable. This way, the solution can be scaled
and extend its capabilities regarding access and authorization management.

Moreover, the performance of this solution should not be neglected in any way. Cur-
rently, the PoC described in this paper is not deployed in any public mainet or testnet. The
deployment of such a solution should be tested in different blockchain networks where the
consensus and communication of its nodes is differentiated. Performance can be tested in
terms of transaction rate as well as the network’s defence against malicious nodes, depend-
ing on the number of nodes and the type of consensus they use in order to ensure the state
of the ledger and whether it complies with the smart contracts’ logic.

Finally, although it can be considered resource-costly, using one top-layer smart
contract for the users, the four smart contracts presented above could be programmed and
tailored to the end users’ needs. This way, customizations of the user roles, the softhub
properties and accessibility levels would be defined as an end user wishes. This would
result in an exponential increase in smart contracts which a network must manage and run,
therefore affecting network and system performance. However, it would also offer end
users hardcoded privacy and blockchain control, meaning that the variables and functions
mentioned in the DIDFactory and SofthubFactory contracts would be visible, controlled
and invoked exclusively by each corresponding user only.

10. Conclusions

In this paper, a blockchain-based access and authorization PoC was presented. The
main purpose of our research was to examine whether a blockchain-based authorization
system can be designed in such a way, providing easy integration with already existing
IoT environments. Our hypothesis was that, similarly to the oAuth framework, if certain
standards are used in order to build a uniform framework for blockchain-based IAM in the
IoT, then integration in IoT systems will be seamless. Those standards include DIDs and
VCs. The PoC presented in this paper is the first step intending to verify this hypothesis. Its
architecture is designed based on the fact that the ledger’s state can be utilized as an IAM
policy keeper, as well as its history as an immutable and undeletable logging system. At

Electronics 2023, 12, 4606 16 of 20

the same time, solidity functions can be used as programmable interfaces for accessing and
authorizing services. This way, the blockchain can be used as a decentralized Certificate
Authority, while smart contracts contain custom policies, defined at the end-user level.

Blockchain can make a positive contribution to enhancing the security of not only IoT
but internet applications and services. It is possible to design a blockchain solution in such
a way that it can be integrated into already-operating systems. The way to achieve this, lies
in the adoption of a specific logic when designing the smart contracts. This logic can be
compared to that of APIs, with the difference that instead of giving remote access to data
and resources, access to limited and specific solidity executable code is given, thus forming
a stable and concrete access and authorization system, which is built using cryptographic
mechanisms. Needless to say, blockchain is currently the most suited technology to natively
integrate them.

In conclusion, a blockchain-based IAM solution is able to offer a great variety of
benefits in IoT systems, especially given the latest tends toward decentralization using
edge computing. Of course, the biggest question which arises after this research is whether
blockchain has the potential of being the basis for a new cutting-edge decentralized and
universal IAM framework standard, such as the OAuth or OpenID solutions that exist
currently and are universally used over the digital industry and Internet.

Author Contributions: Conceptualization and methodology, M.P.; writing—original draft prepara-
tion, M.P.; writing—review and editing, M.P.; supervision, D.G.K., H.C.L. and P.A.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Data Availability Statement: Our work is open in Gitlab and can be accessed via this link: https://gitlab.
com/maria204/blockchain-based-iam-for-iot.git, accessed on 27 September 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, the pseudocode of the four smart contracts explained in Section 5
is shown.

Table A1. DID Factory smart contract pseudocode.

DID FACTORY SOL
INIT MAPPING identityToAccount, accountIsRegistered
SET nonce <- 0
SET identifierLenth <- 5
SET modulus <- CALCULATE power (10, identifierLength)
INIT STRUCT did (scheme, method, path, property, registrationNo, did)
CONSTRUCTOR

SET accountIsRegistered[contract account] <- TRUE
CALL createDid(“contract”)

END CONSTRUCTOR
FUNCTION createDid (INPUT property)

IF account of sender IS registered THEN
break transaction

ELSE
SET accountIsRegistered[sender account] <- TRUE
SET random <- generateRandomDigits
SET didString <- CONCATENATE(“did:”,”ethblockchain:”,”/application/”, property, random)
SET did <- CREATE STRUCT INSTANCE did
SET identityToAccount[account of sender] <- did

END FUNCTION
FUNCTION generateRandomDigits

SET input <- CONCATENATE (block.timestamp, msg.sender, nonce)
SET castUint <- CALCULATE KECCAK256 (input)
INCREASE nonce
OUTPUT castUint % modulus

END FUNCTION

https://gitlab.com/maria204/blockchain-based-iam-for-iot.git
https://gitlab.com/maria204/blockchain-based-iam-for-iot.git

Electronics 2023, 12, 4606 17 of 20

Table A2. Softhub Factory smart contract pseudocode.

SOFTHUB FACTORY SOL
INIT STRUCT device(deviceID, hubID, deviceType), softhub (did, ownerDid, friendlyName)
INIT MAPPING deviceHubHistory, ownerToHub, rnToDev, devToHub, hubDeviceCount,
didToSofthub, didToDevice
CONSTRUCTOR

IF msg.sender did property IS NOT “contract”
break transaction

ELSE
SET contractSofthubDid <- CALL createDid (“softhub”) FROM didfactorycontract
SET contractSofthub <- CREATE STRUCT INSTANCE softhub
SET ownerToHub[contract account] <- contractSofthub
didToSofthub[contractSofthubDid] <- contractSofthub
SET hubDeviceCount[contractSofthub] <- 0

END CONSTRUCTOR
FUNCTION createSofthub (INPUT name)

IF sender IS NOT registered as administrator THEN
break transaction

ELSE
SET softhubdid <- CALL createDid (“softhub”) FROM didfactorycontract
SET softhub <- CREATE STRUCT INSTANCE softhub
SET didToSofthub[softhubdid] <- softhub
SET ownerToHub[msg.sender] <- softhub
SET hubDeviceCount[softhubdid] <- 0

END FUNCTION
FUNCTION registerDevices (INPUT type, deviceRN, softhub)

SET deviceDid <- CALL createDid (“device”) FROM didfactorycontract
SET device <- CREATE STRUCT INSTANCE device
SET didToDevice[deviceDid] <- device
SET rnToDev[deviceRN] <- device
PUSH deviceHubHistory[device] <- 0
INCREASE hubDeviceCount[contractSofthub]

END FUNCTION

Table A3. Device Management smart contract pseudocode.

DEVICE MANAGEMENT SOL
FUNCTION claimDevice (INPUT deviceRN)

IF the hubId property of the device IS NOT 0
OR
IF the device’s hub IS NOT 0
THEN

break transaction
ELSE

SET rnToDev[_deviceRN].hubID <- identityToAccount[msg.sender];
SET devToHub[rnToDev[_deviceRN]] <- ownerToHub[msg.sender];
INCREASE hubDeviceCount[ownerToHub[msg.sender]]
PUSH deviceHubHistory[rnToDev[_deviceRN]] <- ownerToHub[msg.sender]

END FUNCTION
FUNCTION changeHub (INPUT deviceRN, targetOwner)

IF the device’s hub IS NOT the hub of the msg.sender THEN
break transaction

ELSE
SET rnToDev[_deviceRN].hubID <- identityToAccount[_targetOwner]
SET devToHub[rnToDev[_deviceRN]] <- 0
DECREASE hubDeviceCount[ownerToHub[msg.sender]]

END FUNCTION
FUNCTION claimTransferedDevice (deviceRN)

Electronics 2023, 12, 4606 18 of 20

IF the binded address of the device IS NOT the same as the msg.sender THEN
SET rnToDev[_deviceRN].hubID <- identityToAccount[msg.sender]
SET devToHub[rnToDev[_deviceRN]] <- ownerToHub[msg.sender];
INCREASE hubDeviceCount[ownerToHub[msg.sender]]
deviceHubHistory[rnToDev[_deviceRN]] <- ownerToHub[msg.sender]

END FUNCTION
FUNCTION removeFromHub (deviceRN)

IF device DOES NOT belong to the hub of the sender
break transaction

ELSE
SET rnToDev[_deviceRN].hubID <- 0
SET devToHub[rnToDev[_deviceRN]] <- 0
DECREASE hubDeviceCount[ownerToHub[msg.sender]]
PUSH deviceHubHistory[rnToDev[_deviceRN]] <- 0

END FUNCTION

Table A4. Verification smart contract pseudocode.

VERIFICATION SOL
FUMCTION verifyDeviceOwnership (INPUT deviceDID, address)

IF devToHub[didToDevice[deviceDID]] I == ownerToHub[address]
OUTPUT TRUE

ELSE
OUTPUT FALSE

END FUNCTION
FUMCTION verifySofthubOwnership (INPUT hubDID, address)

IF ownerToHub[address] == didToSofthub[hubDID]
OUTPUT TRUE

ELSE
OUTPUT FALSE

END FUNCTION
FUMCTION verifyDeviceToSofthub (INPUT softhubDID, deviceDID)

IF devToHub[didToDevice[deviceDID]] == didToSofthub[softhubDID]
OUTPUT TRUE

ELSE
OUTPUT FALSE

END FUNCTION
FUMCTION verifyAdminToSofthub (INPUT softhubDID, address)

IF address == didToSofthub[softhubDID]
IF identityToAccount[address].property IS “administrator”

OUTPUT TRUE
ELSE

OUTPUT FALSE
ELSE

OUTPUT FALSE
END FUNCTION

References
1. Jepsen, S.C.; Mork, T.I.; Hviid, J.; Worm, T. A Pilot Study of Industry 4.0 Asset Interoperability Challenges in an Industry 4.0

Laboratory. In Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management
(IEEM), Singapore, 14–17 December 2020; pp. 571–575. [CrossRef]

2. Rikalovic, A.; Suzic, N.; Bajic, B.; Piuri, V. Industry 4.0 Implementation Challenges and Opportunities: A Technological Perspective.
IEEE Syst. J. 2021, 16, 2797–2810. [CrossRef]

3. Zalozhnev, A.Y.; Ginz, V.N. Industry 4.0: Underlying Technologies. Industry 5.0: Human-Computer Interaction as a Tech Bridge
from Industry 4.0 to Industry 5.0. In Proceedings of the 2023 9th International Conference on Web Research (ICWR), Tehran, Iran,
3–4 May 2023; pp. 232–236. [CrossRef]

4. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]

5. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies,
Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [CrossRef]

https://doi.org/10.1109/ieem45057.2020.9309952
https://doi.org/10.1109/JSYST.2021.3101673
https://doi.org/10.1109/icwr57742.2023.10139166
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/JIOT.2017.2683200

Electronics 2023, 12, 4606 19 of 20

6. Vashi, S.; Ram, J.; Modi, J.; Verma, S.; Prakash, C. Internet of Things (IoT) A Vision, Architectural Elements, and Security
Issues. In Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), Palladam, India,
10–11 February 2017. [CrossRef]

7. Granjal, J.; Monteiro, E.; Silva, J.S. Security for the Internet of Things: A Survey of Existing Protocols and Open Research Issues.
IEEE Commun. Surv. Tutor. 2015, 17, 1294–1312. [CrossRef]

8. Atlam, H.; Alenezi, A.; Alassafi, M.; Alshdadi, A.; Wills, G. Security, Cybercrime and Digital Forensics for IoT. In Intelligent
Systems Reference Library; pp. 551–577. Available online: https://link.springer.com/chapter/10.1007/978-3-030-33596-0_22
(accessed on 27 September 2023).

9. Wu, W.; Liu, E.; Gong, X.; Wang, R. Blockchain Based Zero-Knowledge Proof of Location in IoT. In Proceedings of the ICC
2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [CrossRef]

10. Chuang, I.-H.; Guo, B.-J.; Tsai, J.-S.; Kuo, Y.-H. Multi-graph Zero-knowledge-based authentication system in Internet of Things. In
Proceedings of the ICC 2017-2017 IEEE International Conference on Communications, Paris, France, 21–25 May 2017; pp. 1–6.
[CrossRef]

11. Muthamilselvan, S.; Praveen, N.; Suresh, S.; Sanjana, V. E-DOC Wallet Using Blockchain. In Proceedings of the 2018 3rd Inter-
national Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 15–16 October 2018; pp. 989–993.
[CrossRef]

12. Naik, N.; Jenkins, P. Self-Sovereign Identity Specifications: Govern Your Identity Through Your Digital Wallet using Blockchain
Technology. In Proceedings of the 2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud), Oxford, UK, 3–6 August 2020; pp. 90–95. [CrossRef]

13. Carnley, P.R.; Kettani, H. Identity and Access Management for the Internet of Things. Int. J. Futur. Comput. Commun. 2019, 8,
129–133. [CrossRef]

14. Vallois, V.; Mehaoua, A.; Amziani, M. Blockchain-based Identity and Access Management in Industrial IoT Systems. In
Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France,
17–21 May 2021; pp. 623–627.

15. Wan, Z.; Liu, W.; Cui, H. HIBEChain: A Hierarchical Identity-Based Blockchain System for Large-Scale IoT. In IEEE Transactions
on Dependable and Secure Computing; IEEE: New York, NY, USA, 2023; Volume 20, pp. 1286–1301. [CrossRef]

16. Mohanta, B.K.; Dehury, M.K.; Kalidindi, S.V. Identity Management in IoT using Blockchain. In Proceedings of the 2022
13th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India,
3–5 October 2022; pp. 1–6. [CrossRef]

17. Siris, V.A.; Dimopoulos, D.; Fotiou, N.; Voulgaris, S.; Polyzos, G.C. OAuth 2.0 meets Blockchain for Authorization in Constrained
IoT Environments. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT’19), Limerick, Ireland,
15–18 April 2019; pp. 364–367. [CrossRef]

18. Tong, F.; Chen, X.; Huang, C.; Zhang, Y.; Shen, X. Blockchain-Assisted Secure Intra/Inter-Domain Authorization and Authentica-
tion for Internet of Things. IEEE Internet Things J. 2022, 10, 7761–7773. [CrossRef]

19. Polychronaki, M.; Kogias, D.; Patrikakis, C. Identity Management in Internet of Things with Blockchain. In Blockchain based
Internet of Things; Springer: Berlin/Heidelberg, Germany, 2022; pp. 209–236. Available online: https://link.springer.com/
chapter/10.1007/978-981-16-9260-4_9 (accessed on 27 September 2023).

20. W3, “Decentralized Identifiers (DIDs) v1.0”, W3.org, 2021. Available online: https://www.w3.org/TR/did-core/ (accessed on
18 August 2021).

21. W3, “Verifiable Credentials Data Model 1.0”, W3.org, 2021. Available online: https://www.w3.org/TR/vc-data-model/ (accessed
on 18 August 2021).

22. Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On blockchain and its integration with IoT. Challenges and opportunities. Futur.
Gener. Comput. Syst. 2018, 88, 173–190. [CrossRef]

23. Dorri, A.; Kanhere, S.S.; Jurdak, R.; Gauravaram, P. Blockchain for IoT security and privacy: The case study of a smart home.
In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), Kona, HI, USA, 13–17 March 2017; pp. 618–623. [CrossRef]

24. Huh, S.; Cho, S.; Kim, S. Managing IoT devices using blockchain platform. In Proceedings of the 2017 19th International Conference
on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 19–22 February 2017; pp. 464–467.
[CrossRef]

25. Novo, O. Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. IEEE Internet Things J. 2018, 5, 1184–1195.
[CrossRef]

26. Tapas, N.; Merlino, G.; Longo, F. Blockchain-Based IoT-Cloud Authorization and Delegation. In Proceedings of the 2018 IEEE
International Conference on Smart Computing (SMARTCOMP), Taormina, Italy, 18–20 June 2018; pp. 411–416. [CrossRef]

27. Li, Z.; Hao, J.; Liu, J.; Wang, H.; Xian, M. An IoT-Applicable Access Control Model Under Double-Layer Blockchain. IEEE Trans.
Circuits Syst. II Express Briefs 2020, 68, 2102–2106. [CrossRef]

28. Mishra, R.K.; Yadav, R.K.; Nath, P. Blockchain-Based Decentralized Authorization Technique for Data Sharing in the Internet
of Things. In Proceedings of the 2021 5th International Conference on Information Systems and Computer Networks (ISCON),
Mathura, India, 22–23 October 2021; pp. 1–6. [CrossRef]

https://doi.org/10.1109/I-SMAC.2017.8058399
https://doi.org/10.1109/COMST.2015.2388550
https://link.springer.com/chapter/10.1007/978-3-030-33596-0_22
https://doi.org/10.1109/ICC40277.2020.9149366
https://doi.org/10.1109/ICC.2017.7996820
https://doi.org/10.1109/CESYS.2018.8724054
https://doi.org/10.1109/MobileCloud48802.2020.00021
https://doi.org/10.18178/ijfcc.2019.8.4.554
https://doi.org/10.1109/tdsc.2022.3152797
https://doi.org/10.1109/ICCCNT54827.2022.9984498
https://doi.org/10.1109/WF-IoT.2019.8767223
https://doi.org/10.1109/JIOT.2022.3229676
https://link.springer.com/chapter/10.1007/978-981-16-9260-4_9
https://link.springer.com/chapter/10.1007/978-981-16-9260-4_9
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/
https://doi.org/10.1016/j.future.2018.05.046
https://doi.org/10.1109/PERCOMW.2017.7917634
https://doi.org/10.23919/ICACT.2017.7890132
https://doi.org/10.1109/JIOT.2018.2812239
https://doi.org/10.1109/SMARTCOMP.2018.00038
https://doi.org/10.1109/TCSII.2020.3045031
https://doi.org/10.1109/ISCON52037.2021.9702297

Electronics 2023, 12, 4606 20 of 20

29. Chen, E.; Zhu, Y.; Zhou, Z.; Lee, S.-Y.; Wong, W.E.; Chu, W.C.-C. Policychain: A Decentralized Authorization Service with
Script-Driven Policy on Blockchain for Internet of Things. IEEE Internet Things J. 2021, 9, 5391–5409. [CrossRef]

30. Lawton, G. Top 9 Blockchain Platforms to Consider in 2022. SearchCIO. 2022. Available online: https://www.techtarget.com/
searchcio/feature/Top-9-blockchain-platforms-to-consider (accessed on 27 September 2023).

31. Macdonald, M.; Liu-Thorrold, L.; Julien, R. The Blockchain: A Comparison of Platforms and Their Uses Beyond Bitcoin. Work.
Pap 2017, 1–18. [CrossRef]

32. Lao, L.; Li, Z.; Hou, S.; Xiao, B.; Guo, S.; Yang, Y. A Survey of IoT Applications in Blockchain Systems. ACM Comput. Surv. 2020,
53, 1–32. [CrossRef]

33. Suvitha, M.; Subha, R. A Survey on Smart Contract Platforms and Features. In Proceedings of the 2021 7th International Confer-
ence on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021; pp. 1536–1539.
[CrossRef]

34. Ara, T.; Shah, P.G.; Prabhakar, M. Internet of Things Architecture and Applications: A Survey. Indian J. Sci. Technol. 2016, 9, 106507.
[CrossRef]

35. Han, S.; Kim, J.; Lee, H.; Hwang, E. Signature Analysis of SRAM-PUF for IoT Decentralized Identifier in Large-Scale Networks.
In Proceedings of the 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), Paris, France, 4–7
July 2023; pp. 103–105. [CrossRef]

36. Tcydenova, E.; Seok, B.; Cho, M.; Lee, C. Decentralized Access Control for Internet of Things Using Decentralized Identifiers
and Multi-signature Smart Contracts. In Proceedings of the 2022 International Conference on Platform Technology and Service
(PlatCon), Jeju, Republic of Korea, 22–24 August 2022; pp. 66–70. [CrossRef]

37. Yoon, D.; Moon, S.; Park, K.; Noh, S. Blockchain-based Personal Data Trading System using Decentralized Identifiers and
Verifiable Credentials. In Proceedings of the 2021 International Conference on Information and Communication Technology
Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021; pp. 150–154. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JIOT.2021.3109147
https://www.techtarget.com/searchcio/feature/Top-9-blockchain-platforms-to-consider
https://www.techtarget.com/searchcio/feature/Top-9-blockchain-platforms-to-consider
https://doi.org/10.13140/RG.2.2.23274.52164
https://doi.org/10.1145/3372136
https://doi.org/10.1109/ICACCS51430.2021.9441970
https://doi.org/10.17485/ijst/2016/v9i45/106507
https://doi.org/10.1109/icufn57995.2023.10200238
https://doi.org/10.1109/platcon55845.2022.9932120
https://doi.org/10.1109/ictc52510.2021.9621153

	Introduction
	Related Work
	Identity and Access Management—IAM
	Blockchain Standards
	Blockchain-Based IAM

	Software Tools
	Integration with IoT
	Implementation Context, Components Structure and Flow Diagram
	Programmable Logic—Smart Contracts
	DidFactory Smart Contract
	SofthubFactory Smart Contract
	DeviceManagement Smart Contract
	Verification Smart Contract

	Scenario Topology
	Results
	Discussion and Future Research
	Conclusions
	Appendix A
	References

