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Simple Summary: Diagnostic approaches and chemotherapeutic delivery based on nanotechnolo-
gies, such as nanoparticles (NPs), could be promising candidates for the new era of cancer research.
Recently great attention has been received by carbon-based nanomaterials such as Carbon Dots
(CDs), due their variegated physical-chemical properties that makes these systems appealing for
multiple use from bioimaging, biosensing, nano-carriers for drug delivery systems to innovative
therapeutic agents in photodynamic (PDT) and photothermal therapy (PTT). In this review, we report
the last evidence on the application and prospects of CDs as useful nano theranostics tools for cancer
diagnosis and therapy.

Abstract: Carbon Dots (CDs) are the latest members of carbon-based nanomaterials, which since
their discovery have attracted notable attention due to their chemical and mechanical properties,
brilliant fluorescence, high photostability, and good biocompatibility. Together with the ease and
affordable preparation costs, these intrinsic features make CDs the most promising nanomaterials for
multiple applications in the biological field, such as bioimaging, biotherapy, and gene/drug delivery.
This review will illustrate the most recent applications of CDs in the biomedical field, focusing on
their biocompatibility, fluorescence, low cytotoxicity, cellular uptake, and theranostic properties to
highlight above all their usefulness as a promising tool for cancer diagnosis and therapy.

Keywords: carbon dots; cancer diagnosis cancer therapy; bioimaging; drug delivery; photodynamic
therapy; photothermal therapy

1. Introduction

Cancer is one of the major health problems affecting the world population, with high
incidence and mortality. It has been estimated that 9.6 million people died from cancer
in 2017 and that every sixth death in the world is due to it, making it the second leading
cause of death after cardiovascular disease [1]. Although significant advances have been
achieved in cancer treatment during recent years, aggressive tumors such as those in the
lung, breast, and pancreas are still inducing significant low survival of patients suggesting
many efforts to be spent on improving the patient’s outcome [2].

Every year, about 1.5 million people in the USA and 300,000 people in the UK [3] are
diagnosed with cancer. Cancer therapy and diagnosis remain the major problem in the
world. In fact, a correct diagnosis is crucial for the accurate and effective treatment, because
all tumors need for specific treatments such as the surgery, radiotherapy, and chemotherapy.
However, to date the main problems of oncologists are the correct identification of the
type of cancer, as well as the identification of the right pharmacological dose that provides
the maximum therapeutic effect with the minimum toxicity [4]. In addition, there is no
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single treatment for the several types of cancer and each treatment has advantages and
disadvantages, which often affect the patient’s quality of life [5]. Most chemotherapy drugs
affect not only cancer cells but also healthy cells causing many of the symptoms related to
the chemotherapy patients, including vomiting, hair loss, pale skin, etc. [6]. In this context,
diagnostic approaches and chemotherapeutic delivery based on nanotechnologies, such as
nanoparticles (NPs), could be promising candidates for the new era of cancer research.

In recent decades, nanotechnology dominates most of the frontier research in many
fields including biomedicine [7], molecular diagnostic [8], pharmaceutic [9], optoelec-
tronic [10], and environmental care [11]. Among the nanosystems, nanoparticles (NPs) are
the most exploited. They are structures ranging from 1 to 100 nm in size that give rise to
peculiar physical-chemical properties distinguished for many purposes. In the biomedical
field, NPs are widely exploited for bioimaging [12], drug delivery systems [13], therapeu-
tic agents for photodynamic (PDT) [14], photothermal therapy (PTT) [15], regenerative
medicine [16,17], smart biomaterials [18], and sensing [19]. Metal nanoparticles (MNPs)
are the most studied, especially noble metal NPs, including Gold (AuNPs) [20], Silver
(AgNPs) [21], Platinum (PtNPs) [22] and Palladium (PdNPs) [23]. Also, polymeric [24]
and lipids [25] NPs, liposomes [26], and nanohybrids represent other members of this
large family.

Recently great attention has been paid to carbon-based nanomaterials such as Carbon
Dots (CDs), fullerenes, Carbon nanotubes (CNTs) and Graphene Quantum Dots (GQD)
that have attracted significant interest over recent years due to their excellent electrical
conductivity and luminescence with broadband optical absorption and photostability, high
chemical stability, low toxicity and great biocompatibility [27].

In particular, CDs are featured by a graphitic core mainly constituted of sp2 or sp3

carbon and size ranging from less than 20 nm to up 60 nm [28]. Synthetic methods for
the preparation of CDs are based on two main approaches: top-down and bottom-up.
In the former, CDs are obtained by breaking large carbon materials through laser ablation,
acid oxidation, ultrasonic/electrochemical or hydrothermal/solvothermal exfoliation, arc
discharge methods. In the bottom-up approaches, the nanostructures are prepared by
carbonization of molecular precursors via microwave, hydrothermal, and thermal pyrolysis
methods [29].

Quantum confinement and surface state governs the CDs properties [30] and they can
be tuned by the synthetic strategy using different precursors or methods [31,32]. Actually,
CDs can be designed to exhibit various functional groups including amine, carboxyl,
carbonyl, hydroxyl, ether, epoxy, and heteroatoms acting also as chemical groups to graft
additional materials including organic, polymeric, and biological systems. The variegated
design capability to obtain several size and surface functional groups confers to these
systems the possibility to modulate their chemical-physical properties, particularly the
photoluminescence (PL) that exhibits a wide range of emission wavelengths as function on
both size (quantum effect), surface states and groups. All these variegated properties make
CDs very appealing materials in cancer application with multiple use from bioimaging to
nano-carriers for drug delivery systems and promising agents for photodynamic (PDT) and
photothermal therapy (PTT). In this review, we report the last evidence on the application
and prospects of CDs as useful nanotheranostics tools for cancer diagnosis and therapy.

2. CDs Material Preparation and Properties
2.1. Preparation and Chemical-Physical Properties

CDs were accidentally discovered during the purification of single-walled carbon
nanotubes and they are new carbon nanoparticles (about 1 to 10 nm) generally including
graphitic cores surrounded by many surface functional groups [33]. CDs preparation
methods are easy and inexpensive and this offers a significant advantage in nanotechnology,
in terms of fast and cheap manufacture [34]. The manufacturing methods are currently
divided into two main approaches that are (a) bottom-up and (b) top-down. The bottom-up
method uses several heating technologies such as pyrolysis, microwave irradiation, thermal
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treatments to produce CDs starting from organic molecular precursor via assembly and
carbonization processes (Figure 1A). On the contrary, the top-down approach uses physical
technologies such as laser ablation, electrochemistry, and arc discharge to prepare smaller
CDs from large carbon precursors, such as graphite, carbon fiber, carbon nanotubes, and
graphene [35,36]. Recently, interesting green-chemistry approaches were proposed for the
production of CDs from natural precursors [37,38], such as food and beverages [39–41],
plants [42], solid waste derived from animal agricultural and industrial processes [43] and
solid olive waste [44].

Figure 1. (A) Schematic representation of bottom-up CDs formation from molecules precursors and doping agent. (B) Exci-
tation spectrum of CDs in water and (C) Representation of CDs wavelength-dependent photoluminescence (PL).

CDs’ chemical and physical properties depend on the carbonaceous core, primary
composition, and surface chemical groups [45,46]. Surface groups (-COOH, -OH, -NH2)
confer the possibility of subsequent easy functionalization with a great variety of chemical
species that can then modulate the chemical-physical properties, particularly the photolu-
minescence. The PL arises from a variety of quantum effects that are deeply dependent
on synthetic processes, such as surface imperfections, surface groups, surface passivation,
optical selection of nanoparticles with different size, fluorophores with diverse degrees of
π-conjugation, and heterogenous electronic states [47].

Actually, the ways to enhance CDs’ PL intensity are (a) surface modification and
(b) heteroatom doping. In the first method, which conjugate CDs with molecules or
polymers through covalent or non-covalent interactions, some surface energy traps become
emissive due to a quantum confinement effect [32]. For the second approach, nitrogen is
the most studied and efficient CDs dopant; it enhances their emission inducing an upward
shift in the Fermi level and electrons in the conduction band [48].

In a typical CDs emission spectrum, the main excitation features are localized at 274 nm
(π-π*) and 330 nm (n-π*) (Figure 1B). The intriguing property is the photoluminescence
dependent by the excitation wavelength over the size and surface functionalization, as
displayed in Figure 1C.

Actually, they typically absorb light in the UV region, but there are recent examples
of visible absorption and emission in NIR (Near Infrared) range making CDs promising
agents for PDT and PTT [49,50].

Therefore, due to their significant nanostructures and favorable properties, over the
past decade, CDs have found application in many research areas involving light such
as optoelectronic [51] and medicine [52,53]. In particular, their interesting fluorescent



Cancers 2021, 13, 1991 4 of 14

properties have encouraged their wide application in several fields of life science such as
sensing [54,55], bioimaging [56,57], biocatalysis [58,59], and therapy [60–62].

2.2. CDs Biocompatibility

In recent years, much evidence showed that CDs are highly biocompatible in vitro.
Sharma et al. [63] established the cytocompatibility of CDs prepared from Urea (CD-Urea)
with dermal fibroblast showing that the treatment with CD-Urea, at the concentration of
80–200 µg/mL, considerably increase cell proliferation after 48 h. Furthermore, they also
demonstrated hemocompatibility of CD-Urea (100–1000 µg/mL) in red blood cells isolated
from goat blood and pro-angiogenic effect in human umbilical vein endothelial cells
(HUVECs). Lu et al. [64] synthesized Nitrogen-doped carbon dots (N-CDs) and evaluated
their cytotoxicity in 293T cells at several concentrations for 24 h, finding that N-CDs possess
low cytotoxicity (viability > 80%) even at a concentration up to 5 mg/mL. Yan et al. [65]
developed a series of CQDs carrying different surface charges. They evaluated their effects
on human umbilical cord-derived mesenchymal stem cells (hUCMSCs) cytotoxicity, cellular
uptake, and stability, demonstrating that relatively weak positive surface charges provide
CQDs good biocompatibility. The above reported results indicate that CDs exhibit good
biocompatibility over broad range of analyzed cell lines.

3. CDs for Bioimaging

The excellent features of CDs, such as good biocompatibility and penetrability, low
toxicity, weak interactions with proteins, resistance to photobleaching, easy clearance, low
cost, and easy preparation, make them a useful tool for fluorescence labeling and imaging
for diagnostic applications. This section will report some studies on CDs bioimaging
capabilities both in vitro and in vivo.

In the last decade, CDs demonstrated a great potential for in vitro and in vivo imag-
ing due to their strong emission fluorescence and low cytotoxicity. In fact, due to their
physical-chemical properties and size, CDs can easily penetrate biological membranes and
accumulate in cell cytosol or nucleus, thus functioning as a fluorescent probe (Figure 2).
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Figure 2. Illustration of CDs cellular internalization for bioimaging. Left part: sketch of a cell
depicting CDs penetrating the cell membrane and accumulating in the cytosol (gray circles on the
left); right part: sketch of representative fluorescent green staining by intracellular CDs (cell nuclei in
the image are stained with DAPI (blue)).

Most dyes used for fluorescence microscopy require cell fixation, and only a few are
available for living cell imaging. Hua et al. [66] prepared fluorescent CDs, using a simple
one-step hydrothermal treatment with the carbon sources of m-phenylenediamine and
L-cysteine that can realize high-quality nucleolus imaging for not only fixed cells but also
in living cells, demonstrating that these CDs possess superior properties compared with
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the only commercially available dye SYTO RNASelect. Ding et al. [67] incubated HeLa
cells (human cervical cancer cell lines) with CDs at high concentrations (up to 5 mg/mL)
for 24 h, observing both a low cytotoxic effect and an uptake only into the cytoplasm
with a yellow fluorescence. Jiang group’s [68] synthesized three red, green, and blue
(RGB) PL CDs and evaluated both their cytocompatibility and cell imaging. Their results
showed over 90% cell viability in MCF-7 cells (human breast cancer cell line) incubated
for 24 h with each of the three CDs, at concentrations from 10–50 µg/mL, and that living
cells, acquired with a confocal microscope (excitation at 405 nm), fluoresced mainly in
the cytoplasm, suggesting that the CDs are able to penetrate the cell membrane and enter
cells. In another study, Li et al. [69] demonstrated that C-dots are biocompatible and not
cytotoxic with HeLa, SMMC-7721 (human hepatocellular carcinoma cells) and HEK 293
8-Human Embryonic Kidney cells) cell lines, in concentrations up to 500 µg/mL, and that
they enter into cells and are mainly confined in lysosome/endosome. Zhang et al. [70]
showed that CDs prepared from polydopamine (PDA-FONs), with a concentration up to
160 mg mL−1, were highly biocompatible with mouse embryonic fibroblast NIH-3T3 cells
(cell viability > 90%), and bright green and yellow fluorescence were mainly located in the
cytoplasm. Chen et al. [71] displayed that CDs derived from carbonizing sucrose with oil
acid (average 1.84 nm in size) easily penetrated the 16HBE (human bronchial epithelial cell
line) but did not enter the nuclei, emitting green fluorescence around the cell membrane
and cytoplasm.

Other researchers reported that CDs obtained from natural products (orange juice)
did not show any cytotoxicity and were efficiently taken up by the cells (L929 and MG-63)
upon incubation, exhibiting blue and green fluorescence in the cytoplasm, but not in the
nuclei [72].

In addition to in vitro studies, several researchers recently evaluated the possibility of
using fluorescent CDs in vivo for biomedical applications. For example, Jiang et al. [73]
reported that Fluorine and Nitrogen-doped CDs (N-CDs-F), UV-Vis-NIR full-range re-
sponsive, incubated with HepG2 (human liver cancer cell line) and HeLa cells exhibit
high cytocompatibility (cell viability >80%) and rapid cellular uptake in both cytoplasm
and nucleus, localizing in the nucleolar region. Furthermore, they showed that N-CDs-F
injected intraperitoneally into mice, at the concentration of 1 mg/mL, are able to penetrate
deep tissue and so can be used for in vivo imaging. Yang et al. [74] demonstrated, for
the first time that CDs maintain a strong fluorescence in vivo after subcutaneous, intra-
dermal, and intravenous injection, as well as being highly biocompatible and non-toxic.
Huang et al. [75] evaluated the effects of three fluorescent CDs injection ways (intravenous,
intramuscular, and subcutaneous) on blood circulation, biodistribution, urine clearance,
and passive tumor uptake, by using both near infrared fluorescence (NIRF) and positron
emission tomography (PET) imaging techniques. They suggested that the injection method
influences the rate of blood and urine clearance, the biodistribution of CDs in main organs
and tissues, and cancer uptake over time. They also demonstrate that CDs are efficiently
and rapidly uptake by the tumor when administered subcutaneously. In another study,
Tao’s group [76] characterized the biodistribution of radiolabeled, photoluminescent CDs
and demonstrated for the first time that they could be used for in vivo NIRF imaging.
Their results suggested that CDs were slowly eliminated via the renal and fecal ways
without any obvious toxic effects on animals. Licciardello et al. [77] investigated the CDs’
biodistribution and uptake in vivo through radioelement labeling and positron emission
tomography (PET). Their study showed that the rapid renal clearance, biodistribution, and
pharmacokinetic properties of CDs are strongly influenced by their surface charge, positive
Zeta potentials, and hydrophilicity. More in detail, they demonstrated that particles with
positive Zeta potentials accumulate in the liver and intestine while neutral/zwitterionic
particles are rapidly cleared via the renal pathway with no significant liver uptake. The
study also highlights how particle toxicity is associated with the amount of surface amine
groups, as well as the possible presence of surfactant contamination traces after the CDs’



Cancers 2021, 13, 1991 6 of 14

synthesis and purification. In summary, these in vitro and in vivo findings open promising
scenarios for the fluorescent CDs application as tools for imaging in cancer diagnosis.

4. CDs for Cancer Diagnosis

The high sensitivity coupled by both the temporal and spatial resolution of fluores-
cence imaging make CDs one of the most promising candidates in cell target sensing and
cell imaging [78]. Recently, several research groups showed that CDs with specific cell tar-
gets are able to recognize tumor cells selectively. Song et al. [79] produced CDs conjugated
with folic acid (FA) (C-dots-FA) to discriminate folate receptor (FR)-positive cancer cells
from normal cells (FR-negative) by culturing and analyzing a mixture of NIH-3T3 and HeLa
cells. They observed that after the incubation of the cell mixture with C-dots-FA for 6 h,
only HeLa cells emitted bright fluorescence, whereas NIH-3T3 cells did not, indicating that
the C-dots-FA are selective only for FR-positive cancerous cells. Lee et al. [80] developed
CDs conjugated with maleimide-terminated TTA1 aptamer (TTA1–CDs), highly expressed
in HeLa and C6 (rat glioma cell line) but not in normal healthy CHO cells (Chinese hamster
ovary cell line), and found that the incubation of the TTA1–CDs showed a strong fluores-
cence, selectively along cancer cell membranes and only a little uptake in normal cells.
Zhang et al. [81] developed green luminescent CDs conjugated with FA (FA-CDs) and
showed that the FA-CDs were able to selectively identify cancer cells within a mixture
of HepG2 and PC12, displaying a bright green fluorescence, after 2 h of incubation, only
in HepG2 cells. In another study, Li et al. [82] reported a new targeting tumor therapy
technology based on autophagy regulation by combining the biocompatible N-doped
carbon dots (N-CDs) and folic acid (FA) (FN-CDs). Their results showed that FN-CDs
possess a wide range of high-targeted-ability (26 types of tumor cell lines) and affect the
cellular metabolism leading to autophagy. Bhunia et al. [83] functionalized fluorescent
CDs with TAT peptide or folate and incubated them with FR-positive (cancerous) and
FR-negative (normal) cells, finding that TAT functionalization enhanced cell labeling and
uptake and that folate selectively tagged tumor cells, which have folate receptors.

5. CDs for Cancer Therapy

In the last ten years, many applications of CDs in cancer theranostics were reported.
Specifically, numerous researchers evaluated the possible use of CDs as targeted anticancer
drug delivery [84], photodynamic therapy [85], photothermal therapy [86], as well as gene
delivery [87] for cancer theranostic. This section will discuss some in vitro and in vivo
applications of CDs for cancer therapy.

5.1. CDs for Drug and Gene Delivery

Due to luminescence, versatile surface chemistry, easy cellular internalization, and
high biocompatibility, CDs are particularly interesting in drug delivery. Besides, nanofor-
mulations also offer the possibility to increase drug solubility, bioavailability, and half-life.
Several chemotherapy drugs are poorly soluble in water, not biocompatible, and have
many side effects, so different CD nanocarriers were developed to avoid these drawbacks.
Zheng and co-workers [88] synthesized a system based on fluorescent CDs combined
with oxaliplatin derivative Oxa(IV)-COOH (Oxa-CDs) as a new treatment for metastatic
colorectal cancer. They suggested that Oxa-CDs, thanks to CDs, enter cells through endo-
cytosis, Oxa(IV)-COOH is reduced to oxaliplatin(II), reducing its toxicity to normal cells.
Furthermore, although doxorubicin (DOX) is widely used for cancer treatment, it has many
disadvantages, including low permeation and retention (EPR) effect, low cell internaliza-
tion, and cytotoxicity to normal cells [89]. One approach to bypass these problems is to use
multifunctional nanocarriers for tumor-targeted drug delivery, which have the advantage
of accumulating at the tumor site due to the increased EPR effect. Yang et al. [90] con-
structed a nucleus-targeted drug delivery system based on the covalent conjugation of DOX
and CDs functionalized with nuclear localization signal peptide (NLS-CDs) to improve its
antitumor activity. They showed that the DOX-CDs delivery system can selectively accu-
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mulate in the tumor site to induce the apoptosis of A549 cells (human lung carcinoma cells)
and reduce the free DOX-induced necrosis. Furthermore, they displayed that the DOX-CDs
system, in vivo therapeutic studies, exhibits a higher ability to inhibit tumor growth than
the free DOX. In another study, some researchers fabricated a nanocarrier for DOX-targeted
delivery, using CDs capable of targeting folate receptor-positive cells conjugate with β-
cyclodextrin (β-CD/CDs). Their results proved the nanocarrier’s targeting capability to
folate receptor-positive cells, the intracellular uptake of DOX-β-CD/CDs, and prolonged
release of DOX [91]. Wang and co-workers [92] designed a DOX delivery carrier and
imaging probe for liver cancer-targeted therapy based on high fluorescence quantum yield
CDs, covalently bound to folic acid (FA-CDs) and loaded with DOX (FA-CDs-D,kiOX). The
in vitro investigation showed that the FA-CDs-DOX system exhibits excellent fluorescence
imaging capability and can selectively deliver DOX into liver cancer cells. Furthermore,
the study highlights the FA-CDs-DOX system’s fluorescence intensity was strong enough
to penetrate tumor tissue and skin. The system’s targeting capacity is significantly greater
than that of free DOX, as evidenced by the increased tumor inhibition. Karthik et al. [93]
developed a photoresponsive drug delivery system based on a photo trigger conjugated
anticancer drug (7-(3-bromopropoxy)-2-quinolylmethyl chlorambucil (Qucbl)) covalently
anchored onto the surface of C-dots (Qucbl-CDs). The in vitro analysis demonstrated that
the Qucbl-CDs were easily internalized into the HeLa cells and that specifically controlled
the drug delivery to kill the cells upon irradiation. Wang and colleagues [94] developed a
multifunctional hybrid nanocarrier composed of a Fe3O4 magnetic core, fluorescent CDs,
and paclitaxel (PTX) loaded on a mesoporous silica shell. Both the in vitro and in vivo
data displayed that CDs absorb and convert NIR light into heat to break PTX-mSiO2
bonds and release PTX, demonstrating both NIR-responsive drug release capability and
the therapeutic usefulness of the combined photothermal/chemotherapy.

It has also been shown that CDs, in addition to being nanocarriers for drug delivery,
can also carry genes within cells. In a recent study, Liu et al. [95] prepared a hybrid nanocar-
rier based on polyethyleneimine (PEI)-functionalized C-dots (CD-PEI), water-soluble and
fluorescent. The in vitro assays show that CD-PEI could facilitate gene transfection in
COS-7 and HepG2 cells with lower cytotoxicity as well as higher or similar efficiency
compared to control PEI25k. Additionally, they display that CD-PEIs internalized into cells
exhibit fluorescent emission, proposing their potential application for gene delivery and
bioimaging. Wu et al. [96] developed a multi-functionalized theranostic nano-agent based
on folate-conjugated reducible polyethyleneimine passivated CDs (fc-rPEICDs) complexed
with siRNA molecules (fc-rPEI-CDs/siRNA). The in vitro studies displayed that the fc-
rPEI-CDs/siRNA system is highly biocompatible and, after uptake, releases siRNAs in
cytosol, resulting in better gene silencing and anticancer effect. More recently, Kim and
co-workers [97] developed a highly biocompatible PEI-passivated CD (CD-PEI) functional
siRNA delivery system and demonstrated that it can induce efficient gene knockdown both
in vitro and in vivo. They found that the CD-PEI system improves siRNA cellular uptake,
with low cytotoxicity, localizes in the cytoplasm and successfully releases siRNA within
12 h. They also demonstrate that the CD-PEI-siRNA delivery system can significantly
silence gene expression and inhibit tumor growth in an in vivo breast cancer mouse model.

5.2. CDs for PDT

PDT is one of the most promising non-invasive cancer treatment approaches with
limited side effects. It can be used alone or in combination with surgery, chemotherapy or
ionizing radiation and can be used to destroy undetected cancerous cells at the margins
of resection [98]. PDT uses photosensitizing drugs pharmacologically inactive until a
particular light wavelength irradiates them in the presence of oxygen, which generates
reactive oxygen species and induces cell death and tissue necrosis [99–101]. Figure 3 reports
a schematic diagram of PDT approach.
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Figure 3. Schematic diagram of photodynamic therapy (PDT). CDs penetrate the cell membrane and accumulate in the
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and death.

Some photosensitizing drugs, including porphyrin and phthalocyanine derivatives,
have both cancer imaging and therapy capabilities and have been approved for clinical
applications [102,103]. However, their use is often limited because of reduced water sol-
ubility, photostability, prolonged cutaneous photosensitivity, and low selectivity [104].
For this region, different approaches have been investigated to combine photosensitizing
drugs with other carriers such as liposomes [105], polymer nanoparticles [106,107], gold
nanoparticles [108], carbon nanotubes [109], graphene’s [110,111] and carbon nanoparti-
cles [112,113]. Recently, Huang et al. [114] prepared a novel theranostic system based on
chlorin e6-conjugated C-dots (C-dots-Ce6). The in vitro results determined that C-dots-Ce6
upon irradiation exhibit good stability and solubility, low cytotoxicity, good biocompatibil-
ity, enhanced photosensitizer fluorescence detection (PFD), and remarkable photodynamic
efficacy compared to Ce6 alone. Furthermore, the in vivo results suggested that the new
synthesized system possess excellent imaging and tumor-homing ability without compro-
mising the photodynamic efficacy and is effective for simultaneous PFD and PDT of cancer
in vivo. In 2015, another group evaluated the in vitro and in vivo effects of a transdermal
carbon dot-chlorine e6-hyaluronate (Cdot-Ce6-HA) conjugate for the photodynamic ther-
apy of melanoma skin cancer. They showed that Cdot-Ce6-HA conjugates have a much
more significant photodynamic effect on cancer cells than Ce6 and Cdot-Ce6 and that
laser irradiation after topical treatment completely suppresses melanoma skin cancer [115].
Li et al. [116] prepared porphyrin-containing CDs (TPP-CDs) and proved the effective
photodynamic activity in hepatoma treatment. Their results showed that TPP-CDs possess
good photostability, biocompatibility, cellular uptake, and potent cytotoxicity upon irradia-
tion in vitro and that in vivo can suppress the tumor mass. More recently, Naik et al. [117]
reported synthesis, photophysical characterization, and in vitro light-induced anticancer
properties of new platinum-porphyrin conjugates. Their results showed that the platinum-
porphyrin conjugates display high cytotoxicity upon laser irradiation, suggesting that this
porphyrin complex is a promising anticancer agent.

5.3. CDs for PTT

Over the last decade, PTT has also been recognized as one of the most promising
cancer alternatives to more invasive conventional treatments, such as radiotherapy and
chemotherapy, due to its spatial specificity and minimal invasiveness. PTT relies on pho-
tothermal agents to generate heat from laser irradiation to NIR to damage cancer cells [118].
Several nanomaterials can act as effective photothermal transducers due to their photother-
mal effect in the NIR region, better tumor accumulation (EPR effect), and photostability.
The most used PTT nanoparticles are metallic NPs, including Gold nanorods, nanoshells,
nanostars, nanocages, nano triangles, and nanoflowers [15,119]. Recently, CDs have also
been used as photosensitizing agents since they can provoke substantial temperature vari-
ations under irradiation. Sun et al. [120] demonstrated that red emissive CDs (R-CDs)
were able to efficiently and quickly convert laser energy into heat and that upon laser
irradiation for 10 min, the viability of MCF-7 cells was significantly reduced as the R-CDs
concentration increased (20–200 µg/mL). Geng et al. [50] showed that NIR-absorbing
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nitrogen and oxygen co-doped CDs (N-O-CDs) generate high efficiency heat under laser
irradiation at low power density achieving 100% of tumor ablation without causing any
side effects. Zheng et al. [121] synthesized NIR fluorescent (600 nm to 900 nm) CyCD
from a hydrophobic cyanine dye and poly(ethylene glycol) (PEG800) with preferential
uptake and accumulation to tumors and high photothermal conversion efficiency (38.7%)
as a novel theranostic agent for NIR fluorescent imaging and PTT in vivo and in vitro.
Ge et al. [122] developed CDs with intrinsic theranostic properties by using polythio-
phene benzoic acid (PBA) as a carbon source. They showed that the new synthesized
CDs display dual photodynamic and photothermal effects under 635 nm laser irradiation,
with a singlet oxygen-generating efficiency of 27% and high photothermal conversion
efficiency of 36.2%. Lan et al. [123] prepared S, Se-codoped CDs by using polythiophene
and diphenyl diselenide as C source and demonstrated that the doping yield excitation
wavelength-independent NIR emission (peaks at 731 and 820 nm) and high photothermal
conversion efficiency (58.2%) suggesting their use as new multifunctional phototheranostic
agents for cancer PTT. Wang et al. [124] developed near infrared-emissive nitrogen and
boron-doped CDs (B-N-CDs), with a peak at 1000 nm, to induce higher tissue penetration.
Their results showed that B-N-CDs efficiently absorb and convert NIR light into heat upon
laser irradiation, demonstrating a photothermal therapeutic effect that kills cancer cells
in vitro and completely suppresses tumor growth in vivo.

6. Conclusions

Since their discovery, CDs have shown their usefulness in many research fields, espe-
cially in the biomedical applications, representing a valid alternative to traditional heavy
metal-based quantum dots. In this review, we reported a summary of recent applications
of CDs as innovative tools for diagnosis and therapy. Firstly, we examined their physical-
chemical properties (stability and optical properties); then we analyzed their biological
properties (cytotoxicity, biocompatibility, cellular internalization, and distribution); and
finally, we investigated their biomedical application for cancer diagnosis and therapy
(bioimaging, drug/gene delivery, PDT, and PTT). We reported some in vitro and in vivo
studies on CDs, which show outstanding results regarding their cytotoxicity, biocompati-
bility, photostability, and anticancer effects, demonstrating that CDs could be a promising
tool for biomedical applications in cancer diagnosis and therapy and potential clinical uses
in the future.
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