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Abstract: Water cadmium (Cd) pollution has widely aroused concerns due to high Cd toxicity in
water bodies and its serious health risks to humans. Adsorption has been identified as an effective
and widely utilized technology for water purification with heavy metal pollution. To develop a newly
identified adsorbent of modified zeolite that can easily and effectively purify Cd-polluted water,
NaOH modification (JZ), high-temperature modification (HZ), humic acid modification (FZ), Na2S
modification (SZ), and ultrasonic modification (CZ) zeolites were developed, and their appearances
and adsorption and desorption characteristics were investigated. The results showed that the
adsorption capacity of Cd by JZ and SZ were improved by 68.87% and 32.06%, respectively, relative
to that by natural zeolite (NZ); however, HZ, FZ, and CZ decreased the adsorption capacity. JZ had
a higher adsorption capacity than SZ and could remove 99.90% Cd at an initial concentration of
100 mg/L. The dominant adsorption mechanism of Cd by JZ was the chemisorption of the monolayer.
The preferred temperature and pH that enhanced Cd adsorption by JZ were 25–35 ◦C and 4–8,
respectively. With an equilibrium adsorption capacity of 9.37–9.74 mg/g at an initial concentration
of 280 mg/L, JZ reached its maximum saturated adsorption capacity; compared with SZ and NZ,
the adsorption capacity increase was 27.83–68.81%. The R2 fitted by JZ’s Langmuir model and
quasi-second-order dynamics model were both above 0.93. In summary, JZ was recognized as a novel
absorbent for Cd-polluted water purification.

Keywords: modified zeolite; cadmium pollution; adsorption; desorption

1. Introduction

Water polluted by heavy metal is recognized as an environmental problem attributed
to the emission of waste residue, water, and gas [1]. Cadmium (Cd), one of the most
toxic metals, has been recognized as a carcinogenic agent; excess Cd accumulated in
water systems is harmful to the survival and reproduction of algae, insects, fish, and
other aquatic life [2]. Many studies have indicated that a series of physiological disorders
experienced by aquatic organisms that were exposed to Cd regimes, such as water body
pollution, destroying the biodiversity of aquatic systems by reducing the reproduction rate
of the aquatic organisms, which may lead to low population levels or extinction of many
freshwater species [3,4]. Furthermore, Cd can enter the body and accumulated in organs
through the food chain, causing health problems [5]. In addition to this, a detrimental threat
is also posed to human health due to the long-term consumption of Cd-contaminated water,
and causes serious harm to the kidney [6], liver [7], intestines, and stomach [8], leading to
bone softening, kidney damage, bone pain, cancer [9–11], damage to the functional organs,
and even death in severe cases. Therefore, it is imperative to control and purify heavy
metal pollution in water.

To date, many methods, including ion exchange [12], chemical precipitation [13], mem-
brane filtration [14], and adsorption [15], have been utilized to treat industrial and mining
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wastewater with heavy metal pollution. Notably, adsorption was recognized as an effective
and the most widely utilized technology for the purification of heavy metal-polluted wa-
ter [16]. The key factor in the adsorption process is the selection of the adsorption materials.
At present, natural and synthetic zeolite [17,18], biochar [19], and composite materials [20]
are mainly used for the adsorption of heavy metals in wastewater. Among them is zeolite,
a type of natural mineral that has high reserves in China, with a large specific surface area,
increased pore size, and a rich cationic skeleton structure. Zeolite has good ion exchange
ability and environmental compatibility and is often used to treat heavy metal-polluted
wastewater [21]. Moreover, due to the presence of micro-sized holes in zeolite, molecu-
lar shape selectivity, specificity, and chemical and thermal stability (hydrothermal) are
increased; therefore, zeolite has great potential and efficiency for pollutant adsorption and
is receiving an increasing amount of attention worldwide [22,23].

However, the utilization of zeolite is restricted based on its intrinsic adsorption ability,
which has led to the rise of a new research topic on methods to increase this adsorption abil-
ity. Previous studies have documented some modifications enhanced the adsorption perfor-
mance of zeolite. Abdellaoui et al. [24] indicated that the removal rate of Cd was improved
from 13.13 to 35.65% via the application of sulfuric acid-modified zeolite. Wajima et al. [25]
also reported that the addition of diatomite to NaOH solution increased the Si content to
synthesize zeolites, and the ion exchange capacity was increased from 50 to 130 cmol/kg,
performed at a high cation exchange capacity. Fan et al. [26] modified natural zeolite
(NZ) with cetyltrimethylammonium bromide (HDTMA) and a hexamethylenetetramine
solution and found that the adsorption capacity of Cr6+ increased from 2.95 to 5.43 mg/g
under the same condition. Wang et al. [27] determined that the adsorption capacity of
Cu2+ in a solution increased gradually that coupled with pH value increase by loading
SiO2 onto zeolite. When the initial concentration of the solution was 50 mg/L, pH was
5, and the adsorbent amount was 1.0 g/L, the removal rate of Cu2+ could reach more
than 75%. Rao et al. [28] compared the adsorption of Cd and Zn2+ in wastewater using 4A
zeolite and bentonite and studied the effects of pH, time, and amount of adsorbent added
on the adsorption of heavy metals. The results showed that under pH conditions of 6.0–6.5,
both 4A zeolite and bentonite adsorbed Cd and Zn from wastewater in accordance with
the Freundlich adsorption isotherm model and that the adsorption capacity of 4A zeolite
on Cd and Zn was significantly greater than that of bentonite. Therefore, it was determined
that the adsorption capacity is affected by the different modification methods applied to
zeolite, raw materials, and the environment.

In this study, five types of modified zeolites based on solubility improve, surface
area increase, and adsorption performance enhancement, Na2S modification (SZ) and
humic acid modification (FZ) that was newly developed and NaOH modification (JZ),
high-temperature modification (HZ), and ultrasonic modification (CZ) as references were
used, and the adsorption and desorption experiments of Cd were carried out with NZs as
the control. The objectives of this study were (1) to reveal the structural characteristics of
modified zeolite using scanning electron microscopy (SEM) and Fourier transform infrared
spectroscopy (FTIR); (2) to study the adsorption and desorption characteristics of modified
zeolite using adsorption kinetics, isothermal adsorption, and desorption experiments; (3) to
reveal the influence of modified zeolite on the adsorption of heavy metals using different
water pollution levels, pH, adsorption times, and other factors, as well as to clarify its
favorable utilization scope. This study revealed a novel, modified zeolite for the highly
efficient adsorption of Cd from polluted water and also provided a scientific basis for the
remediation of Cd pollution in water. These findings can have a significant impact on the
control of Cd pollution in water.

2. Materials and Methods
2.1. Experiment Materials

NZ used in the study was natural clinoptilolite, originated from Shijiazhuang Lingshou
County, with a diameter of 200 mesh, moisture content of less than 6.5%, and impurity
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content of less than 1.0%. The major constituents in NZ sample were SiO2 (66.46%), Al2O3
(12.31%), and Fe2O3 (1.50%), and minor constituents contained CaO and K2O, etc. The
cation exchange capacity was 191.13 cmol/kg and pH was 8.10.

The CdCl2·2.5H2O, sodium hydroxide, and sodium sulfide were analytically pure-grade
compounds purchased from Tianjin Kemiou Chemical Reagent Co., Ltd. (Tianjin, China). The
humic acid was provided by Shandong Nongda Fertilizer Co., Ltd. (Jinan, China).

2.2. Test Method
2.2.1. Preparation of Modified Zeolite

NaOH modification (JZ): We weighed 100 g of zeolite and placed it in a 2 L beaker.
Thereafter, 1 L of 2 mol/L NaOH solution was added to the beaker, which was placed in a
60 ◦C water bath for 3 h; the contents of the mixture were stirred with a glass rod to make
full contact between the zeolite and solution. Finally, the supernatant was poured out, and
the remaining zeolite was washed with deionized water until the filtrate became neutral
(pH = 7.0). It was then dried at 105 ◦C until a constant weight was achieved.

High-temperature modification (HZ): We weighed 100 g of zeolite and placed it in a
150 mL crucible, which was further transferred to a muffle furnace with a temperature of
450 ◦C for 7 h; thereafter the crucible was cooled to 25 ± 2 ◦C.

Na2S modification (SZ): We weighed 100 g of high-temperature modified zeolite and
placed it in a 2 L beaker, to which 1 L of 5% Na2S solution was added. The beaker was placed
in a 60 ◦C water bath for 12 h and stirred with a glass rod to make full contact between the
zeolite and solution. Finally, the supernatant was poured out, and the remaining zeolite
was washed with deionized water until the filtrate became neutral (pH = 7.0). It was then
dried at 105 ◦C until a constant weight was achieved.

Ultrasonic modification (CZ): We weighed 100 g of zeolite and placed in a 2 L beaker,
to which 1 L of deionized water was slowly added; it was then ultrasonified at a power of
160 W for 2 h, after pouring out the supernatant. The remaining zeolite was washed with
deionized water repeatedly until the filtrate became neutral (pH = 7.0). It was then dried at
105 ◦C until a constant weight was achieved.

Humic acid modification (FZ): We washed 100 g of high-temperature modified zeolite
and placed it in a 2 L beaker, to which 1 L of 300 mg/L humic acid solution was slowly
added; the beaker was then placed in a 40 ◦C water bath for 4 h and constantly stirred
with a glass rod to ensure complete contact between the zeolite and solution. Finally,
the supernatant was poured out, and the remaining zeolite was washed repeatedly with
deionized water until the filtrate became neutral (pH = 7.0). It was then dried at 105 ◦C
until a constant weight was achieved.

2.2.2. Characterization of Modified Zeolite

Clay mineral analysis of original and modified samples using directional polymer-
ization X-ray diffraction (XRD, Bruker D8 ADVANCE, Bruker, Karlsruhe, Germany). The
distribution of functional groups was measured by Fourier transform infrared spectro-
scope (FTIR, VERTE X70 FTIR, Bruker Corporation, Karlsruhe, Germany). The structural
morphology of the sample surface was observed by scanning electron microscope (SEM,
JSM-6360LV, JEOL, Akishima, Japan).

2.2.3. Isothermal Adsorption Equilibrium Test

Cd solutions with concentrations of 10, 40, 70, 100, and 130 mg/L were prepared using
a standard solution (purchased from Gb (Beijing) Inspection and Certification Co., Ltd.
(Beijing, China)); standard values: 1000 µg/mL, medium: c(HNO3) = 1.0 mol/L). Briefly,
0.5 g of zeolite was weighed and placed into a 50 mL centrifuge tube, to which 25 mL of a
particular Cd solution was added. The tube was shaken at 220 rpm for 24 h at 25 ◦C using
a constant temperature oscillator (Model: ZD-85A, Changzhou Guohua Electric Appliance
Co., Ltd., Changzhou, China). The supernatant was poured out and filtered using a 0.45 µm
filter. The Cd concentration in the filtrate was determined using inductively coupled plasma
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optical emission spectrometry (ICP-OES; iCAP 7000, Thermo Fisher Scientific, Waltham,
MA, USA). Finally, after evaluating the adsorption capacity of five types of modified
zeolites, the two with the best adsorption capacity were selected for further study.

2.2.4. Isothermal Adsorption and Modeling Analysis

For this purpose, 0.5 g of modified zeolite was weighed and placed into a 50 mL
centrifuge tube, to which 25 mL of a particular Cd solution was added. The tube was
shaken at 25 ◦C at a speed of 220 rpm for 24 h using a thermostatic oscillator. The Cd
concentrations in the initial water solutions were 10, 40, 70, 100, 130, 160, 190, 220, 250, 280,
and 310 mg/L. The supernatant was filtered with a 0.45 µm filter, and the concentration of
Cd in the filtrate was determined using ICP-OES. Meanwhile, NZ was employed as the
control and subjected to similar treatment.

The adsorption capacity of Cd by zeolite, per unit mass (qe), was calculated according
to Equation (1), and the Freundlich and Langmuir models were used to fit Ce as x-axis and
qe as the y-axis (Equations (2) and (3)) [29].

qe = (C0−Ce) V/m (1)

Freundlich model: qe = Kf Ce
1/n (2)

Langmuir model: qe = b Ce qm/(1 + b Ce) (3)

where qe represents the adsorption capacity of Cd by modified zeolite and natural zeolite
per unit mass, mg/g; C0 represents the initial concentration of Cd in the solution, mg/L;
Ce represents the concentration of Cd at adsorption equilibrium, mg/L; V represents the
adsorption equilibrium of the solution volume, L; m represents the amount of zeolite added,
g; Kf and n represent the empirical coefficients of Freundlich model; the greater the value of
n, the better the adsorption performance. b is the adsorption equilibrium constant, L/g; the
larger the value of b, the better the adsorption performance; qm is the maximum adsorption
capacity of a single molecular layer, mg/g.

2.2.5. Isothermal Desorption

The isothermally adsorbed modified zeolites were washed twice with saturated
sodium chloride, and thereafter, 50 mL of 0.01 mol/L potassium nitrate solution was
added to it. The concentration of Cd in the filtrate was determined using ICP-OES.

The desorption effect was calculated using the following formula (Equation (4)):

Desorption rate = [C2/(C0 − C1)] × 100% (4)

where C0 and C1, respectively, represent the concentration of Cd in the solution before and
after adsorption, mg/L, and C2 represents the desorption capacity of Cd, mg/L.

2.2.6. Kinetics of the Reaction

For this purpose, 0.5 g of modified zeolites were weighed and added into a 50 mL
centrifuge tube, to which 25 mL of 40 mg/L Cd solution was added at 25 ◦C and shaken
(220 rpm). The concentration of Cd in the filtrate was determined at 10, 20, 40, 60, 80, and
120 min and 4, 6, 12, and 24 h using ICP-OES. The kinetic characteristics of Cd adsorption
on the zeolite surface were analyzed by fitting the experimental data to the following three
equations (Equations (5)–(7)):

Quasi-first-order kinetic equation: qt = qe1 (1 − e−k1t1 ) (5)

Quasi-second-order dynamics equations: qt = k2 qe2
2 t1 / (1 + k2 qe2 t1) (6)

Intraparticle diffusion model: qt = Kid t2
1/2 + C (7)
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where qt is the adsorption capacity of the three zeolites to Cd at time t, mg/g; t1 is time
of the adsorption reaction, h; qe1 is the theoretical adsorption capacity of Cd by zeolite at
the adsorption equilibrium, obtained by fitting the quasi-first-order adsorption kinetics
equation, mg/g; k1 is the first-order adsorption rate constant, /h; qe2 is the theoretical ad-
sorption capacity of Cd by zeolite when the adsorption equilibrium is reached by fitting the
quasi-second-order adsorption kinetic equation, mg/g; k2 is the second-order adsorption
rate constant, g/(mg·h); Kid is the diffusion rate constant mg/(g·h0.5); t2 is the diffusion
time, h; C is a constant (mg/g).

2.2.7. Effect of Initial pH of Solution on Cd Adsorption by Zeolite

A series of 50 mL centrifuge tubes were taken, to which 0.5 g of zeolite and 25 mL of Cd
solutions, with an initial concentration of 40 mg/L and different initial pH values, (adjust
pH to 2, 4, 6, and 8 with 1 mol/L HCl and NaOH solutions) were added successively; the
tubes were shaken at a speed of 220 rpm at 25 ◦C for 24 h. These reaction solutions were
stewed for 30 min. The concentration of Cd in the filtered supernatant was measured.

2.2.8. Effect of Temperature on the Adsorption Properties of Zeolite

A series of 50 mL centrifuge tubes were taken, to which 0.5 g of zeolite and 25 mL of
Cd solutions were added. The Cd concentrations of the initial water solutions were 10, 40,
70, 100, 130, 160, and 190 mg/L, with a pH of 7. The samples were placed in a constant
temperature oscillator (15, 25, and 35 ◦C, at a speed of 220 rpm) for 24 h. The reaction
solutions were stewed for 30 min, and the supernatant was filtered using a 0.45 µm filter.
The concentration of Cd in the filtrate was determined via ICP-OES using unmodified
zeolite as the control.

2.3. Statistical Analysis

All the data were expressed as the mean value of the triplicate experiments, and data
were analyzed using a one-way analysis of variance with the SPSS 19.0 software (SPSS Inc.,
Chicago, IL, USA), and the images were drawn using the Origin 2018 software (Origin Lab.,
Northampton, MA, USA).

3. Results
3.1. Characterization of Zeolite

The modified zeolite has no new substance formation, only the intensity of each
characteristic diffraction peak has changed (based on the X-ray powder diffraction (XRPD)
method). The crystallinity of each modified zeolite was significantly stronger than NZ at
2θ = 22.89◦, while the crystallinity of JZ and SZ were still significantly stronger than NZ at
2θ = 26.91◦ and 30.21◦, which may be due to the enhanced structural strength of zeolite
by modification [30,31] (Figure 1). Four main adsorption peaks of nature and modified
zeolites were detected in a wavenumber range of 450–1200 cm−1 and stretching vibrations
of Si–O–Mg at 456 cm−1, Si–O–Al at 992 cm−1, Si–O–Si at 1037 cm−1, and Si–O at 1182 cm−1

(Figure 2) [32]. Compared to that in NZ, lower adsorption peaks were observed for Si–O–Si
in JZ and SZ at 1037 cm−1. This phenomenon may be attributed to the existence of the OH−,
which prevents the hydrolysis of the Si–O–Al bond [33]. However, the Si–O–Si bond is
more likely to be broken by OH− in the absence of the Al tetrahedra. Therefore, the surface
structure of JZ and SZ were more complex and loose, which consisted of a coral-like surface
structure attributed to the desilicification that exposed to the alkali regime. A stretching
vibration was detected in the adsorption peak of HZ at 3607 cm−1 (O-H), and stronger
adsorption peak in other modified zeolites, which may be caused due to the rupture of
the O–H bond, leading to the loss of water molecules during the pyrolysis process, this is
similar to the result of Ates A et al. [34] and Cardoso et al. [35], which make the O–H bond
rupture. In addition to this, the adsorption peaks (the Si–O, Si–O–Al, and Si–O–Mg bonds
were detected at 1182, 992, and 456 cm−1, respectively) of all the modified zeolites behaved
in a similar waveform.
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Figure 1. XRD patterns of zeolite. SZ: Na2S modification; JZ: NaOH modification; CZ: ultrasonic
modification; FZ: humic acid modification; HZ: high-temperature modification; NZ: natural zeolite.
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Figure 2. Fourier transform infrared spectroscopy results of zeolite. SZ: Na2S modification; JZ:
NaOH modification; CZ: ultrasonic modification; FZ: humic acid modification; HZ: high-temperature
modification; NZ: natural zeolite.

Notably, compared to the surface smooth character of NZ, more coral-like structures
were observed in JZ and SZ; this was a result of the corrosion caused by the alkali solutions,
the results were consistent with the results of Murayama et al. [36] (Figure 3). Meanwhile,
uneven surface structures were also detected in HZ and CZ, relative to NZ, due to material
decomposition and water molecule evaporation inside the pores [37] because of high
temperatures (HZ) as well as ultrasonic cavitation impurities in the zeolite pores (CZ) [38].
Furthermore, because the humic acid molecules [39] were attached to the surface of FZ,
there were more raised bulges on its surface compared to that of NZ. The SEM images were
consistent with the XRD results.
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modified zeolite, (c) high temperature-modified zeolite, (d) humic acid-modified zeolite, (e) ultrasonic-
modified zeolite, and (f) natural zeolite.

3.2. Isothermal Adsorption Characteristics of Modified Zeolite

The adsorption capacity of modified and unmodified zeolites was generally increased
with an increase in the initial concentration of the Cd solutions; however, the concentrations
at the equilibrium adsorption were different (Figure 4). Results showed that 99.90% and
93.44% of Cd, at an initial concentration of 100 mg/L, were adsorbed by JZ and SZ, respec-
tively. Cd adsorption reached equilibrium at an initial concentration of 130 mg/L in CZ,
with an equilibrium adsorption capacity of 3.97–4.43 mg/g. When the initial concentration
was 250 mg/L, SZ, HZ, and FZ reached the maximum saturated adsorption capacity, with
equilibrium adsorption capacities of 7.58–7.62, 4.78–5.18, and 4.52–4.93 mg/g, respectively.
Furthermore, when the initial concentration was 280 mg/L, JZ reached the maximum
saturated adsorption capacity, with an equilibrium adsorption capacity of 9.37–9.74 mg/g,
compared with SZ and NZ, the adsorption capacity increase was 27.83–68.81%.
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Figure 4. Curve presenting zeolite adsorption at different concentrations of Cd solution.



Minerals 2023, 13, 197 8 of 16

Compared to the Freundlich model, the Langmuir model can better describe the
adsorption process of zeolite (Table 1, Figure 5). The results indicate that the adsorption of
Cd by the three zeolites can be attributed to monolayer adsorption. Meanwhile, according
to the Langmuir model nonlinear fitting data, the b of JZ (10.39) was higher than that of
SZ (3.16), with a 69.59% increment, and the b of NZ was only 0.11. These results show the
better spontaneous reaction and Cd adsorption capacity of JZ than that of SZ. Under the
Langmuir model, the maximum saturated adsorption capacity of JZ and SZ were 1.75 and
1.09 times higher than that of NZ, respectively.

Table 1. Adsorption isothermal model parameters of modified and natural zeolite.

Isothermal Adsorption Model NaOH Modification (JZ) Na2S Modification (SZ) Natural Zeolite (NZ)

Freundlich model

k = 6.21 ± 0.14
((mg/g)/(mg/L)1/n)

R2 = 0.88
n = 10.52 ± 1.05

k = 1.63 ± 0.01
((mg/g)/(mg/L)1/n)

R2 = 0.88
n = 3.02 ± 0.15

k = 1.88±0.24
((mg/g)/(mg/L)1/n)

R2 = 0.83
n = 4.64 ± 0.77

Langmuir model
qm = 9.74 ± 0.38 mg/g

R2=0.96
b = 10.39 ± 0.83 L/g

qm = 6.09 ± 0.66 mg/g
R2 = 0.92

b = 3.16 ± 0.37 L/g

qm = 5.58 ± 0.13 mg/g
R2 = 0.98

b = 0.11 ± 0.01 L/g
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Figure 5. Adsorption isotherms of modified zeolites, (a) JZ and (b) SZ, and (c) natural zeolite (NZ).

3.3. Adsorption Kinetics of Zeolite

Compared to the quasi-first-order kinetic model, the quasi-second-order kinetic model
better describes the adsorption process of Cd in water by the modified and unmodified
zeolites (Table 2, Figure 6). The maximum adsorption capacity of JZ and SZ according to
the quasi-second-order kinetic model nonlinear fitting was similar to the measured value
and higher than that of NZ, showing a 9.60% and 10.05% increment, respectively. These
results indicate that this adsorption process was primarily controlled by chemical action.
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Table 2. Adsorption kinetic equation parameters of modified and natural zeolite.

Adsorption Kinetic Model NaOH Modification (JZ) Na2S Modification (SZ) Natural Zeolite (NZ)

Quasi-first-order dynamics model
qe1 = 1.92 mg/g

R2 = 0.62
k1 = 12.63 ± 1.57 /h

qe1 = 1.95 mg/g
R2 = 0.77

k1 = 9.08 ± 1.01 /h

qe1 = 1.77 mg/g
R2 = 0.94

k1 = 13.02 ± 0.52 /h

Quasi-second-order dynamics model
qe2 = 1.98 mg/g

R2 = 0.94
k2 = 16.07 ± 1.61 g/(mg·h)

qe2 = 1.99 mg/g
R2 = 0.96

k2 = 11.27 ± 0.55 g/(mg·h)

qe2 = 1.79 mg/g
R2 = 0.98

k2 = 23.43 ± 1.15 g/(mg·h)
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Figure 6. Adsorption kinetics of Cd by (a) JZ, (b) SZ, and (c) NZ.

Compared to that of NZ (80 min), the time of rapid adsorption stage of JZ (60 min)
and SZ (60 min) was promoted by 25.00%, and the adsorption capacity was promoted by
10.53% and 9.64%, respectively (Figure 6). Additionally, NZ began to reach its adsorption
equilibrium at 12 h, which was 6 h later than that for JZ (6 h) and SZ (6 h), and its equilibrium
adsorption capacity was lower than that of JZ and SZ, with a 7.29–7.40% and 6.62–7.08%
decrement, respectively.

The intraparticle diffusion model linear fitting indicated that the adsorption of Cd
by JZ, SZ, and NZ was divided into three stages according to the adsorption kinetics
(rapid adsorption, relative slow adsorption, and equilibrium adsorption; Figure 7). The
order of the K values for each treatment (JZ, SZ, and NZ: K1 > K2 > K3) indicates that
the adsorption rate of the liquid film diffusion during the early stages of adsorption was
greater than that of the intraparticle diffusion during the middle and late stages (Table 3).
Notably, the K value of the intraparticle diffusion model of JZ and SZ was significantly
higher than that of NZ, increasing by 30.68–50.00% and 13.33–87.50%, respectively, which
corresponded to the enhanced diffusion of JZ and SZ from the exterior surface of the
adsorbent through the macropores and mesopores, respectively. However, because the
graphs of the previous stages were not linear and did not pass through the origin, the
intraparticle diffusion step was not considered the only rate-limiting step, this result is
consistent with Cheung et al. [40].
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Figure 7. Fitting diagram of the Cd diffusion model by modified zeolites, (a) JZ and (b) SZ, and
(c) natural zeolite (NZ).

Table 3. Fitting parameters of Cd diffusion in particles by modified zeolite.

Zeolite R1
2

K1
(mg/g/h1/2)

C1
(mg/g) R2

2
K2

(mg/g/h1/2)
C2

(mg/g) R3
2

K3
(mg/g/h1/2)

C3
(mg/g)

JZ 0.976 0.365 1.551 0.946 0.022 1.943 0.999 0.002 1.989
SZ 0.980 0.800 1.233 0.979 0.015 1.928 0.998 0.008 1.961
NZ 0.999 0.253 1.466 0.999 0.013 1.754 1.000 0.001 1.844

3.4. Effect of Initial Solution pH on Cd Adsorption by Zeolite

The pH of the solution has a sizable impact on the speciation of metal ions and the
surface charge of the adsorbent [41]. The adsorption quantity was higher in JZ and SZ
than in NZ (Figure 8). When the pH was 2, SZ and NZ had a similar adsorption capacity,
whereas JZ had a higher adsorption capacity compared to SZ and NZ, by 75.00% and
73.61%, respectively. However, the adsorption capacity for SZ was significantly higher
than that for NZ when the pH was 4, 6, and 8, and it increased by 46.38, 35.81, and 43.87%,
respectively; meanwhile, the adsorption capacity for JZ was significantly higher than
that for SZ and NZ, which increased by 22.61%–30.83% and 52.33%–63.16%, respectively.
Notably, there was no significant difference in the adsorption capacities within the pH 4, 6,
and 8 groups for each treatment (JZ, SZ, and NZ) and the lower adsorption capacity at pH 2
when compared to that at pH 4, 6, or 8. These results indicated that electrostatic interaction
is the key mechanism of adsorption of Cd by JZ. The adsorption capacity of Cd is easily
affected by the initial pH of the solution, which may be due to its small ionic radius [42].
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3.5. Influence of Temperature on the Adsorption Capacity of Zeolite

The effect of different temperatures on the adsorption of Cd for different modified ze-
olites varied (Figure 9). For JZ, when the initial concentration were 130, 160, and 190 mg/L,
the adsorption capacity at 35 ◦C was significantly higher than that at 15 ◦C and 25 ◦C, with
an increase of 5.60, 8.14, and 7.64% with respect to that at 15 ◦C and 5.43, 4.48, and 3.16%
with respect to that at 25 ◦C; when the initial concentrations were 160 and 190 mg/L, the
adsorption capacity at 25 ◦C was significantly higher than that at 15 ◦C by 3.86 and 4.62%,
respectively. For SZ, when the initial concentrations were 130, 160, and 190 mg/L, the
adsorption capacity at 35 ◦C was significantly higher than that at 15 ◦C by 4.15, 7.70, and
6.58%, respectively; when the initial concentrations were 130 and 160 mg/L, the adsorption
capacity at 35 ◦C was significantly higher than that at 25 ◦C by 2.60 and 3.05%, respectively;
when the initial concentrations were 130 and 160 mg/L, the adsorption capacity at 25 ◦C
was significantly higher than at 15 ◦C by 1.44, and 5.04%, respectively. For NZ, when the
initial concentrations were 100, 160, and 190 mg/L, the adsorption capacity at 35 ◦C was
significantly higher than that at 15 ◦C by 4.07, 3.93, and 4.02%, respectively. However, the
equilibrium adsorption capacities of JZ were significantly higher than that of SZ and NZ at
temperatures between 15 and 35 ◦C and were increased by 7.98–8.95 and 28.49%–31.18%,
respectively; meanwhile, the equilibrium adsorption capacities of SZ were significantly
higher than that of NZ and were increased by 22.29, 23.29, and 24.42%, respectively.
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Figure 9. Adsorption curves of Cd for (a) JZ, (b) SZ, and (c) NZ at different temperatures (15, 25, and
35 ◦C).

3.6. Desorption Characteristics of Modified Zeolite

The effect of the initial concentration on Cd desorption from the different modified
zeolites varied (Figure 10). With an increase in the initial concentration, the maximum
desorption capacity of each treatment (JZ, SZ, and NZ) increased by 98.56, 99.48, and
98.15%, respectively; the desorption rate increased by 0.38, 5.78, and 25.20%, respectively
(Table 4). Additionally, the maximum desorption capacity of SZ and NZ was 10.31 and
50.52 times higher than that of JZ. When the initial concentration of the solution was
130 mg/L, the desorption rate of SZ and NZ was significantly higher than that of JZ. The
desorption rate of SZ was 13.22 times higher than that of JZ, and the desorption rate of NZ
was 66.37 times higher than that of JZ and 5.02 times higher than that of SZ.
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Figure 10. Curve presenting desorption of Cd by modified and natural zeolite.
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Table 4. Desorption rates of Cd by modified and natural zeolite.

Initial Concentration
(mg/L)

NaOH-Modified
Zeolite (JZ,%)

Na2S-Modified
Zeolite (SZ,%)

Natural Zeolite
(NZ,%)

10 0.08 b 0.30 c 5.33 c
40 0.13 b 3.07 b 23.40 b
70 0.15 b 3.23 b 24.10 b

100 0.42 a 5.84 a 28.38 a
130 0.46 a 6.08 a 30.53 a

Note: the same letter in each column indicates no significant difference (p > 0.05).

4. Discussion

Adopting the adsorption method to purify heavy metal-polluted water is an economic
and environmental approach, and selecting the most economically efficient adsorption
material is an important factor for the adsorption process. Zeolite became an important
adsorption material due to its large specific surface area and ion exchange properties, as
well as its ability of not causing secondary pollution to the environment [43]. Moreover, the
adsorption effect of zeolite can be further improved by modification, which will expand
its application scope [44]. As Choi et al. [45] reported, Mg-zeolite successfully can adsorb
>98% of the Pb, Cd, and Cu present in aqueous solutions. Qiu et al. [46] also indicated
that polydopamine-modified zeolitic can remove 96% of Cd in a solution. Similar results
were obtained in the present research, where 99.90 and 93.44% of the Cd were adsorbed
by JZ and SZ at an initial concentration of 100 mg/L, respectively. This relatively high
adsorption capacity of Cd by JZ and SZ may be attributed to their rough surface and coral-
like structure, respectively, that increases the specific surface area via alkaline modification.
Notably, the adsorption capacity of JZ was better than that of SZ; the maximum adsorption
capacity of JZ (9.74 mg/g) was higher than that of SZ (7.62 mg/g), and the desorption
capacity of JZ (0.46 mg/L) was lower than that of SZ (5.74 mg/L). Therefore, it could be
concluded that compared to SZ, JZ is more efficient at Cd purification from water.

The Freundlich and Langmuir models were used to describe the process of adsorp-
tion. This study showed that the Langmuir model was more suitable to describe the
adsorption isotherm; the results indicate that the adsorption of Cd by JZ and SZ followed
monolayer adsorption on finite sites and uniform surfaces. This result was consistent
with that of Han et al. [47], who revealed that the adsorption characteristics of manganese
oxide-modified zeolite for Cd were in line with the Langmuir model and followed single
molecular layer chemisorption. The quasi-first- and second-order kinetic models were used
to describe the rate of the adsorption reaction. This study showed that the quasi-second-
order dynamic model was more suitable for this research; the results indicated that the
measured values of JZ and SZ were closer to the fitted values of the quasi-second-order
kinetic model. The intraparticle diffusion model was used to describe the dynamics of
the diffusion process within a particle. According to the intraparticle diffusion model, if
the graph is linear and passes through the origin, the rate-limiting process will only have
intraparticle diffusion [48]. However, this study showed that the intraparticle diffusion
model of JZ and SZ had three phases: the first stage was mainly surface migration and
diffusion; the second stage was mainly Cd diffusion into the cage structure through the pore
structures; the third stage was mainly the completion of the intraparticle diffusion process.
Since the graphs of the previous stages were not linear and did not pass through the origin,
the intraparticle diffusion step was not considered to be the only rate-limiting step for JZ,
SZ, and NZ. Peng et al. [49] studied the adsorption of heavy metal ions onto magnetic
zeolite molecular sieves, and the graph of the intraparticle diffusion model showed a
similar multistage pattern. Therefore, it can be concluded that the dominant adsorption
mechanism of Cd by JZ and SZ is the chemisorption of the monolayer.

The right temperature and pH of the adsorbent material were necessary for it to
work. Al-anber et al. [50] found that when the temperature rose from 20 to 30 ◦C, the
removal rate of zeolite increased significantly. This study also found that the adsorption
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of Cd by zeolite changed with temperature. JZ and SZ had better adsorption capacity at
temperatures between 25 and 35 ◦C and lower adsorption capacity when the temperature
was lower than 25 ◦C. This result is not consistent with the typical of an exothermic
process that is characteristic of the physisorption phenomenon, this phenomenon may be
attributed to the different material or the temperature range settings; Al-anber et al. [50]
also found that the adsorption efficiency of Jordanian natural zeolite decreased when the
temperature was 30–50 ◦C. The pH of the solution also significantly affects the surface
charge of the adsorbent and the speciation of the metal ions [41,51,52]. The results from
this study show that the adsorption process of JZ and SZ was significantly affected by the
pH of the solution. A pH of 4–8 was favorable for adsorption; a strong acid inhibits the
adsorption, whereas a weak base contributes to the adsorption. Zeolite will preferentially
adsorb H+ ions from an acidic solution; the H+ ions compete with the Cd to occupy the
Cd adsorption sites. Therefore, the metal adsorption efficiency depends on the pH of
the solution. Moreno et al. [53] also found that a strongly acidic environment inhibits the
adsorption of Cd by zeolite. Therefore, the preferred temperature and pH that enhanced
Cd adsorption were determined to be between 25 and 35 ◦C and 4 and 8, respectively, for JZ
and SZ. However, the adsorption capacity of other heavy metal ions or organic pollutant of
JZ and SZ should be investigated in further study, and comparing the adsorption capacities
of modified zeolite with other adsorption materials should also be focused.

5. Conclusions

An effective adsorption material, namely JZ, was developed in this study, that exhib-
ited a favorable adsorption capacity for Cd. The dominant adsorption mechanism of Cd
was the chemisorption of the monolayer. Furthermore, the preferred temperature and pH
conditions that enhanced the adsorption of Cd by JZ were between 25 and 35 ◦C and 4 and
8, respectively. Future research should focus on comparing the adsorption capacities of JZ
with other adsorption materials, as well as the adsorption efficiency on other organic and
inorganic pollutant combinations.
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