
Citation: Chu, H.; Yi, J.; Yang, F.

Chaos Particle Swarm Optimization

Enhancement Algorithm for UAV

Safe Path Planning. Appl. Sci. 2022,

12, 8977. https://doi.org/10.3390/

app12188977

Academic Editors: Giancarlo Mauri

and Valentino Santucci

Received: 6 August 2022

Accepted: 2 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Chaos Particle Swarm Optimization Enhancement Algorithm
for UAV Safe Path Planning
Hongyue Chu 1 , Junkai Yi 2,* and Fei Yang 1

1 School of Automation, Beijing Information Science & Technology University, Beijing 100192, China
2 School of Automation, Key Laboratory of Modern Measurement and Control Technology Ministry of

Education, Beijing Information Science & Technology University, Beijing 100192, China
* Correspondence: yijk@bistu.edu.cn

Abstract: For safe path planning of unmanned aerial vehicles (UAVs) in a three-dimensional (3D)
environment with multiple threats, first, a cost function is introduced according to the terrain
constraints and UAV overall performance constraints of the path planning problem. Then, improved
nonlinear dynamic inertia weights (INDIW) are introduced into the particle swarm optimization
(PSO) algorithm, and when the particles fall into the local optimum, the velocity is perturbed, and
the velocity and improved nonlinear dynamic inertia weight PSO (VAINDIWPSO) algorithm are
obtained. The algorithm improves the speed of convergence and fitness function value of the PSO
algorithm. However, the impact of flyable path optimization is now not obvious. Therefore, to further
enhance the overall performance of the VAINDIWPSO algorithm, the adaptive adjustment of the
velocity is introduced, the chaotic initialization is carried out, and the improved logistic chaotic map is
introduced into the algorithm, and an improved chaotic-VAINDIWPSO (IC-VAINDIWPSO) algorithm
is obtained. Then, the corresponding relationship between the algorithm and constraints is used to
efficiently search complicated environments and find paths with excessive security and small cost
function. The simulation outcomes exhibit that in a complicated environment the IC-VAINDIWPSO
algorithm substantially improves the speed of convergence of the algorithm, reduces the fitness
function value of the algorithm and the initialization time of the algorithm, and the acquired path is
additionally smoother. A near-optimal solution is obtained.

Keywords: unmanned aerial vehicle; path planning; improve particle swarm optimization; improved
nonlinear dynamic inertia weights; chaos theory; adaptive adjustment of velocity

1. Introduction

UAVs have the advantages of top maneuverability, robust battlefield adaptability,
small size, and low cost and are extensively used in military and civilian missions, such as
surveillance, reconnaissance operations, search and rescue, emergency communications,
and agriculture. The secure path planning of UAVs is of excellent magnitude to the
completion rate and efficiency of UAVs performing tasks. Path planning [1,2] refers to
calculating the optimal path between the beginning point and the goal point based on
totally satisfying the constraints of the UAV itself and exterior threats. UAV secure path
planning performs a key function in enhancing the autonomy and intelligence level of
unmanned systems, so research on this topic has received greater and greater attention.

For the path planning issue of UAVs or robots, domestic and international scholars
have proposed many techniques [3–7], such as the A* algorithm [8], the rapidly exploring
random tree [9], the probabilistic roadmap algorithm [10], the Voronoi diagram algo-
rithm [11], etc. However, these algorithms ignore the dynamics and kinematic constraints
of UAVs, so they typically cannot be utilized in practical situations. The potential field
methods, such as the artificial potential field method [12] and the interfered fluid dynami-
cal system algorithm are additional superb techniques for path planning [13]. However,
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when the goal and the obstacle are close, the algorithm can fall into the local optimum,
and the optimal flyable path cannot be guaranteed. In recent years, the population-based
evolutionary algorithm has made much progress.

Compared with classical algorithms, metaheuristic algorithms [14,15] can effectively
solve complex combinatorial optimization problems and have been widely used in multi-
UAV path planning research. Metaheuristic algorithms are improved algorithms based on
heuristic algorithms., The most famous bio-inspired algorithms are the genetic algorithm
(GA) [16] and the differential evolution algorithm (DE). The algorithms based on swarm in-
telligence include the ant colony optimization algorithm [17], the artificial bee colony (ABC)
algorithm [18], the particle swarm optimization (PSO) [19], the moth flame optimization
(MFO) [20], and the butterfly optimization algorithm (BOA) [21] etc.

Bio-inspired algorithms have a sturdy capability to search for the optimal solution and
are very bendy and efficient, so they are extensively used in the path planning of UAVs. The
PSO algorithm has the disadvantages of having a slow convergence speed, being easy fall
into local optimum, and having a path that is not smooth, but the PSO algorithm has two
vital properties, cognitive consistency and social consistency. These properties allow each
particle in the population to find a solution according to its own experience and swarm
experience, rather than by using traditional evolution operations such as mutation and
crossover. Therefore, in contrast with other bio-inspired algorithms, it can be used to find a
global solution with convergence in a shorter time. Moreover, the particle swarm algorithm
is not very sensitive to the modifications of initial conditions and objective functions and
can adapt to a variety of environmental structures via a small number of parameters such
as an acceleration coefficient and two weight factors. Based on these advantages, the PSO
algorithm is widely used in path planning, and a variety of variants of the PSO algorithm
have emerged. Shikai Shao et al. [22] introduced an improved particle swarm algorithm
to make UAV shape formations in a three-dimensional (3D) environment. This approach
makes use of logistic chaotic mapping to enhance the preliminary distribution of particles
and designs the acceleration coefficient and the maximum velocity as adaptive linearly
altering coefficients to reap a better solution. A mutation method for replacing terrible
particles with good ones is additionally proposed, which speeds up the convergence of the
algorithm. Baoye Song et al. [23] examine the path of the mobile robot by way of combining
the improved PSO algorithm with continuous high-order Bezier curves. In the improved
PSO algorithm, the adaptive fractional velocity is introduced, and the particle swarm is
disturbed by the evolution state of the particle swarm, which enhances the algorithm’s
capacity to bounce out of the local optimum and can fully explore the search space. Yubing
Wang et al. [24] proposed three algorithms for quick convergence, random crossover, and
actual search: the most density convergence distributed PSO (MDC-DPSO) algorithm, the
quick crossover DPSO (FCO-DPSO) algorithm, and the genuine insurance exploration
DPSO (ACE-DPSO) algorithm. Huang C et al. [25] proposed an improved PSO algorithm
named GBPSO. To enhance the convergence speed and searchability of particles, a competi-
tive strategy is used in the standard PSO algorithm to optimize the global optimal solution
in the particle evolution process. Girija S et al. [26] mixed PSO with an artificial potential
field to enhance the velocity of finding out possible and least-cost paths in environments
with excessive obstacle density, and the improved algorithm reached the least-cost viable
paths in a drastically shorter time. Dongping Tian et al. [27] proposed an improved PSO
algorithm, which has a chaos-based initialization and a powerful update mechanism and
makes use of the logistic graph to generate uniformly disbursed particles to enhance the
quality of the initial population. PSO adaptively adopts inertia weights between linearly de-
creasing policies and nonlinear decreasing policies for better trade-offs between exploration
and exploitation. Xuewen Xia et al. [28] designed a new component in the velocity update
rule and adopted a similar view of the references [27] to enhance the overall performance
of PSO. Zhuang Shao et al. [29] proposed a distributed collaborative PSO (DCPSO) algo-
rithm with an elite retention strategy. The DCPSO algorithm has higher steadiness and a
greater search success rate. Lin Jia et al. [30] proposed an improved PSO algorithm integral
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separation PID (IPID) control algorithm primarily based on dynamic inertia weights and
crossover operators. Wang, Z. et al. [31] proposed an improved PSO algorithm for param-
eter optimization. The algorithm introduced adaptive velocity weighting and adaptive
population splitting, which accelerated the convergence speed of the algorithm and helped
the algorithm bounce out of the local optimal position. Çomak, E. et al. [32] added the
alpha parameter to the velocity update equation to control the influence of the global best
and global worst particles on the velocity update equation, and the alpha value changed
adaptively relative to the diversity measure. Lin, C.-J. et al. [33] proposed the PSO-IAC
algorithm, which combines the improved adaptive inertia weights and constraint factors
with the standard PSO algorithm. Sabir, Z. et al. [34] combined the modeling strength of
artificial neural networks with the global search efficiency of PSO combined with the fast
local search method of the interior point scheme. Umar, M. et al. [35] proposed a numerical
computing technique for solving nonlinear second-order corneal- shaped models using a
feed-forward artificial neural network optimized with PSO and active-set algorithms. These
PSO variations share the equal population-based structure as our forthcoming technique.
However, they vary in the way the search space and the solution encoded in particles are
represented. Therefore, under the identical running environment, dynamic constraints,
and goal function conditions, distinctive consequences will appear.

In this research, we first use a PSO algorithm to reap feasible paths. However, its
convergence speed and optimal solutions cannot meet our requirements. So how to further
speed up the convergence speed and obtain the best fitness function is our principal
research motivation. Therefore, the PSO algorithm was improved, and a nonlinear dynamic
inertia weight was introduced into the PSO algorithm. When the particles fell into the
local optimum, the velocity was slightly disturbed, and an improved nonlinear dynamic
inertia weight PSO (VAINDIWPSO) algorithm was obtained. This algorithm hastens the
convergence speed and reduces the fitness function value. However, the optimization
impact is no longer obvious. Therefore, based on the VAINDIWPSO algorithm, the velocity
update formulation of the algorithm is adaptively adjusted. Since the particles with
a more uniform initial distribution have less difficulty reaping the optimum solution,
chaotic initialization is carried out, and the logistic chaotic map is introduced to attain
the improved chaotic-VAINDIWPSO (IC-VAINDIWPSO) algorithm. According to the
experimental results, the IC-VAINDIWPSO algorithm solves the problems of the PSO
algorithm, such as gradual convergence speed, lengthy initialization time, unsmooth path,
and easy descendance into local optimum.

The main contributions of this paper are as follows. To obtain an approximate opti-
mal path to quickly obtain two points, two variants of the particle swarm algorithm are
proposed, and then the particle swarm algorithm and the two variants are subjected to
path planning experiments. The experimental results show that although the VAINDIW-
PSO algorithm improves the convergence speed of the algorithm and reduces its fitness
function value, the path optimization is not obvious. The IC-VAINDIWPSO algorithm
greatly improves the convergence speed of the algorithm, reduces its fitness function value
and initialization time, and the obtained path is also smoother. Then, to verify that the
algorithm obtains paths under different threat numbers, seven groups of experiments
were carried out. The experimental results show that the results obtained by the three
algorithms in a simple environment are almost the same, and with the increase in the
complexity of the environment, the IC-VAINDIWPSO algorithm achieves better results,
The advantages are fully revealed. To reduce the randomness of the experimental results,
10 groups of experiments were carried out by changing the parameters of the threat. Finally,
it is compared with other algorithms in the existing literature to fully verify the superiority
of the IC-VAINDIWPSO algorithm in the paper.

The rest of this paper is organized as follows: the Section 2 introduces the threat
environment model for path planning; the Section 3 introduces the PSO algorithm for UAV
safe path planning; The Section 4 introduces the two newly proposed variants of PSO
algorithms, namely the VAINDIWPSO algorithm and the IC-VAINDIWPSO algorithm. The
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Section 5 discusses the experimental results and their analysis; the Section 6 describe the
experimental conclusions and future work.

2. Threat Environment Model
2.1. Optimal Path

When the UAV is performing a task, it is essential to choose different criteria to achieve
the optimum according to different application conditions. Here we choose to minimize
the path length and use the flight path Xi to represent the listing of n waypoints that the
UAV needs to fly through. Each waypoint corresponds to a path node on the map. Let the
path node coordinates be Pij = (xij, yij, zij), and two path nodes the Euclidean distance is

‖
−−−−−→
PijPi,j+1 ‖, then the cost function of the path length is:

F1(Xi) =
n−1

∑
j=1
‖
−−−−−→
PijPi,j+1 ‖ (1)

2.2. Terrain and UAV Performance Constraints

In UAV path planning, it is additionally imperative to guide the UAV to safely pass
the threats triggered using obstacles. Let K be the set of all threats and every threat be
represented by way of a cylinder. As shown in Figure 1, let the projected middle coordinate
of the obstacle be Ck and the radius be Rk. Due to the notably small dimension of the UAV,
most research approximates the UAV as a particle. To make the threat cost of the UAV more
accurate, the size of the UAV is considered here, the diameter of the UAV is set as D, and dk
is the distance between the UAV and Ck.
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Figure 1. Threat.

Given a path segment ‖
−−−−−→
PijPi,j+1 ‖, by way of thinking about the diameter D of the

drone and the hazard distance S from the danger zone to the collision zone, calculate the
threat cost F2 at waypoint Pij:

F2(Xi) =
n−1
∑

j=1

K
∑

k=1
Tk(
−−−−−→
PijPi,j+1 )

Tk(
−−−−−→
PijPi,j+1 ) =


0 dk > S + D + Rk
(S + D + Rk)− dk, D + Rk < dk ≤ S + D + Rk

∞ dk ≤ D + Rk

(2)

Due to the running environment, positioning accuracy, and different reasons, the UAV
nonetheless has the possibility of colliding with obstacles, so the distance from the collision
area S is known as the danger zone. For example, in a static surrounding with excellent
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positioning signals, S can be chosen as several tens of meters, and in the case of shifting
objects or weak positioning signals, S can be chosen as several hundred meters.

The flight height of the UAV is usually constrained between two given height extremes,
namely the maximum height and the minimum height. Let the minimal height be hmin
and the most height be hmax, then the height cost related to the waypoint Pij is calculated
as follows:

Hij =

{ ∣∣∣hij − (hmax+hmin)
2

∣∣∣, hmin ≤ hij ≤ hmax

∞, otherwise
(3)

Here hij is the flying height of the drone relative to the ground, and Hij is acquired
according to (3), maintaining the average height and penalizing the out-of-range values. So
the altitude cost can be expressed as:

F3(Xi) =
n

∑
j=1

Hij (4)

The assessment of the smoothing cost needs to calculate the turning angle and the

climbing angle. As shown in Figure 2, the turning angle ]ϕij is the angle between
−−−−−→
Pij
′Pi,j+1

′

and
−−−−−−→

Pi,j+1
′Pi,j+2

′ between the two line segments projected on the surface Oxy, and let
⇀
k be

the unit vector on the z-axis, The projected vector can be calculated as:

−−−−−→
Pij
′Pi,j+1

′ =
⇀
k × (

−−−−−→
PijPi,j+1 ×

⇀
k ) (5)
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So, the turning angle is calculated as:

ϕij = arctan(
‖
−−−−−→
Pij
′Pi,j+1

′ ×
−−−−−−→

Pi,j+1
′Pi,j+2

′‖
−−−−−→
Pij
′Pi,j+1

′ ·
−−−−−−−→
Pi,j+1

′Pi,j+2
′

) (6)
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The climb angle is the angle between the UAV’s ascent trajectory and the horizontal

line; that is, the climb angle ψij refers to the angle between the path segment
−−−−−→
PijPi,j+1 and

its projection
−−−−−→
Pij
′Pi,j+1

′ on the horizontal plane.

ψij = arctan(
zi,j+1 − zij

‖
−−−−−→
Pij
′Pi,j+1

′‖
) (7)

The smoothing cost is calculated as follows:

F4(Xi) = a1

n−2

∑
j=1

ϕij + a2

n−1

∑
j=1

∣∣ψij − ψi,j−1
∣∣ (8)

where a1 and a2 are the penalty coefficients for turning and climbing angles, respectively.

2.3. Total Cost Function

By thinking about the optimality, safety, and feasibility constraints related to the path
Xi, the overall cost function can be defined according to (1) to (8) in it:

F(Xi) =
4

∑
k=1

bkFk(Xi) (9)

Among them, bk is the weight coefficient. Equations (1)–(9) are acquired from reference [36].
The choice of the fitness function is vital in UAV path planning [37]. In this paper, the

optimal overall cost function in the complicated environment of more than one threat in
UAV navigation is taken as the fitness function.

3. PSO Algorithm

The PSO algorithm [38] is a biological evolutionary algorithm, which was inspired
by the foraging process of birds, randomly initializing a team of particles in the solution
area of the optimization problem. Each particle represents a feasible solution in the goal
function, and its position is decided by way of the particle motion velocity, which is affected
by using the particle history optimal solution and the group history optimal solution.

In the n-dimensional search space, the position of the particle i (i = 1, 2, · · · , N)
is denoted using xi(k) = (xi1(k), xi2(k), · · · , xin(k)), and the velocity is denoted using
vi(k) = (vi1(k), vi2(k), · · · , vin(k)). The parameter of the personal best position searched
via the particle i is pbest = (pi1, pi2, · · · , pin), and the parameter of the global best position of
the population is gbest = (pg1, pg2, · · · , pgn). We use the acquired global best and personal
best position information to calculate the corrected position and velocity of the particle, as
shown in (10) and (11):

vi(k + 1) = ωvi(k) + c1r1(pi(k)− xi(k)) + c2r2(pg(k)− xi(k)) (10)

xi(k + 1) = xi(k) + vi(k + 1) (11)

where t is the number of iterations, ω is the inertia weight, c1 and c2 are learning factors,
and c1 = c2 = 1.5, r1 and r2 are random numbers.

When the PSO algorithm is in the stagnation stage of evolution, the particles in the par-
ticle swarm will “aggregate”, and the particles will not be dispersed until the stagnation of
evolution is broken. Equation (12) can be obtained by transforming Equations (10) and (11):

xi(k + 1) = xi(k) + ω× [xi(k)− xi(k− 1)] + τ × [σ− xi(k)] (12)

in, τ = c1r1 + c2r2, σ = c1r1 pbest+c2r2gbest
c1r1+c2r2

.
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Equation (12) further leads to (13):

xi(k + 1) = (1 + ω− τ)× xi(k) + ω× xi(k− 1) + τ × σ (13)

According to (13), we obtain:

lim
t→+∞

xi(k) = σ =
c1r1 pbest + c2r2gbest

c1r1 + c2r2
(14)

Since r1 and r2 are uniformly distributed, Equation (15) can be obtained:

lim
t→+∞

xi(k) = σ =
c1 pbest + c2gbest

c1 + c2
(15)

Since c1 = c2 = 1.5 > 0, Equation (16) can be obtained:

lim
t→+∞

xi(k) = σ =
c1 pbest + c2gbest

c1 + c2
=

pbest+gbest
2

(16)

It can be seen from (10) to (16) that the particles will gather on the extreme values
obtained by their extreme value pbest and the global extreme value gbest of the group. If the
particle cannot discover a better position pbest, the evolution will be in a stagnant state. The
particles will gather at (pbest+gbest)/2 and converge to the local optimal solution.

4. Proposed PSO Variant

Using the maneuvering characteristics of the UAV, the VAINDIWPSO algorithm and
the IC-VAINDIWPSO algorithm for solving the path planning problem are proposed, and
the realization scheme is given.

4.1. VAINDIWPSO Algorithm

To speed up the convergence of the algorithm and make the algorithm leap out of the
local optimum as soon as possible, the VAINDIWPSO algorithm is proposed. According to
(19), the improved nonlinear dynamic inertia weight (INDIW) was once introduced into
the VAINDIWPSO algorithm based on the PSO algorithm, and when particles fell into the
local optimum, the velocity of the global optimum particles would be slightly disturbed, as
shown in (20).

4.1.1. Improvements Nonlinear Dynamic Inertial Weights

Because the PSO algorithm has the trait of fast convergence, the algorithm effortlessly
falls into the local optimum in the later stage of iteration, so the optimal solution cannot
be obtained. The linear inertia weight update approach cannot efficiently resolve this
problem [39], so the nonlinear dynamic inertia weight is delivered [40], as (17) shows:

ω(k+1) = (ωmax −ωmin)× (
ω(k)
ωmax

)
k

Tmax (17)

It can be seen from (17) that ω(k) is descending alongside the nonlinear curve, which
reduces the probability of the algorithm falling into the local optimum. However, due to
the complicated terrain environment throughout path planning, an improved nonlinear
dynamic inertia weight is introduced, such as (18):

ω(k+1) = (ω(k)−ωmin)× (
ωmin

ωmax
)

k2

Tmax2 (18)

Compared with (17), in (18), the variable ω(k) is placed in the coefficient term, and the
k

Tmax
term is squared so that the inertia weight can rapidly converge to meet the real-time
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necessities of the algorithm for the system. For further optimization, a random disturbance
term is delivered based on (18), and (19) is introduced again:

ω(k+1) = (ω(k)−ωmin)× (
ωmin

ωmax
)

k2

Tmax2 + R(k) (19)

Among them, R(k) is a disturbance term whose range is a uniformly distributed
random number [−ωmin/2, ωmin/2].

In the algorithm solution process, the inertia weight suggests a general downward
trend. It cannot be proven that the inertia weight in the subsequent iteration ought to
be smaller than the preceding one, and the algorithm solely explores locally in the later
stage and cannot precisely resolve the optimal solution. Therefore, the inertia weight is
improved to make the nonlinearity decrease, and random disturbances are added, as shown
in (19), so that tiny oscillations take place during the iterative update process, and when
the algorithm falls into a local optimum, it can rely on this tiny oscillation to leap out of the
local exploration state.

4.1.2. Update Velocity

The state of particle movement is decided through the velocity, and the particle
adjusts the velocity according to the experience received through itself and the experience
acquired through different particles and searches for the optimal solution. The greater
the iterations are, the more likely the particles will produce local optima. Therefore, to
make the convergence speed of the algorithm quicker and keep it from obtaining the local
optimal value, the particles that are nearer to gbest, being fine-tuned, (20) are proposed
as a new velocity update formula. That is, when the particle cannot locate the global
optimal solution, the velocity of the global optimal particle is slightly disturbed, and the
convergence speed of the algorithm is improved.

vi(k + 1) = gbest − xi(k) + αvi(k) + βr3 (20)

where r3 is a unit random value, and α and β are the disturbed coefficients, which are
constant α = 0.2 and β = 0.3.

4.2. IC-VAINDIWPSO Algorithm

To speed up the convergence speed and initialization speed of the algorithm and
obtain a smoother path and forestall the algorithm from falling into local optimal, the
IC-VAINDIWPSO algorithm is proposed. The IC-VAINDIWPSO algorithm is primarily
based on the VAINDIWPSO algorithm, which first of all introduces the adaptive adjustment
of the velocity, such as (21). Then it consists of out chaos initialization. Finally, according to
(22), improved logistic chaos mapping is introduced into the algorithm [41].

4.2.1. Adaptive Adjustment of Velocity

The approach of adaptive velocity adjustment is introduced into the algorithm [32].
According to the evaluation of the actual situation, it can be seen that when the particle
moves in the global optimal direction and the particle can consistently locate a better point,
if the flight direction is no longer changed, the particle will fly to the optimal particle faster,
thus rushing the convergence speed of the algorithm, as shown in (21):

vi(k + 1) =
{

ωvi(k) + c1r1(pi(k)− xi(k)) + c2r2(pg(k)− xi(k)), Fit(k) ≥ Fit(k− 1)
vi(k), Fit(k) < Fit(k− 1)

(21)

As shown in (21), if the fitness value of the current particle in this iteration is greater
than the preceding one, there is the potential that the particle moving alongside the current
direction is conducive to discovering the global optimal particle. If the fitness value of
the current particle in this iteration is higher than the last value, the particle is no longer
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moving in the direction of the global optimal particle. The next time the velocity of the
particle will be updated according to the particle velocity update method of the standard
PSO algorithm.

4.2.2. Chaos Initialization

The widespread PSO algorithm randomly initializes the population. Although the
technique is simple, it is easy to make the initial particle distribution uneven or even away
from the optimal solution, which appreciably reduces the execution efficiency. Therefore,
the ergodicity and randomness of chaos theory are introduced to intervene in the initializa-
tion of the population. The initial particle swarm is formed by using a chaotic sequence
to make a certain uniform distribution. To improve the quality of the initialized particles,
double the particles are generated at some point during initialization, and then half of the
particles with the lower fitness function value are selected. This how the initial particles
become evenly allotted in the solution area. It also makes the obtained initial particle swarm
nearer to the optimal solution, which improves the convergence speed of the algorithm.

4.2.3. Logistic Chaos Map

The chaotic sequence can be generated using five sorts of chaotic maps, such as the
logistic map [42], the lorenz map [43], the piecewise linear chaotic map [44], the tent
map [45], and the Henon map [46]. Among them, logistic mapping is a relatively easy
mapping technique in terms of its mathematical shape and is broadly used. We apply the
improved logistic chaotic map to deal with the optimal particle of the population.

When most particles acquire approximate solutions or the identical solution, the
population falls into a local optimum and loses diversity. So it is imperative to mutate the
optimal particles so that the rest of the particles can rapidly leap out of the local optimum
state. This is why the logistic chaotic map was introduced into the improved algorithm [32].
The logistic chaotic map can additionally generate a logistic of a certain length, and its
randomness and ergodicity can be used to enhance searchability. Chaos is an unstable
phenomenon springing up from a deterministic system, indicating that its movement state
is random. The ergodicity of chaotic motion can traverse all the states without repetition
of its laws. Therefore, a purposeful search for chaotic mutation will yield better outcomes
than a random search. The adopted logistic chaotic map is shown in (22):

zi(k) = µzi(k− 1)(1−zi(k− 1)) (22)

Among them, µ is the control parameter of the chaotic state, µ ∈ (0, 4], when µ = 4,
the control system is in a completely chaotic state, which is conducive to leaping out of the
local optimum. When using logistic chaotic mapping, the position of the particle must be
mapped in the range of [0, 1], that is, 0 ≤ zi(k) ≤ 1.

When using chaos theory for local search, the particle position is shown in (23):

xi(k) = xi(k− 1) + ηzi(k− 1) (23)

Here η is the adjustment coefficient. In the search process, setting η slightly larger in
the early stage is beneficial to the algorithm leaping out of the local optimum. When the
optimal solution is approached, the value η step-by-step turns smaller. So η is adaptive as
the algorithm iterates, as shown in (24):

η = γ[(kmax − k + 1)/Tmax]
2xi(k− 1) (24)

Among them, γ is the neighborhood radius, γ = 0.1.

4.2.4. The Specific Steps of the IC-VAINDIWPSO Algorithm

The fundamental steps are as follows:

(a) Modeling the threat environment for drone flight;
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(b) Initializing the particle swarm with improved chaos theory;
(c) Evaluating particles: according to the constraints in the threat environment, the fitness

value of the particles is evaluated;
(d) Updating particles: the particle positions and velocities are updated according to (11)

and (19)–(21);
(e) Calculating the rate of change of fitness (FCR) according to (25). If k < 2Tmax/3, and

FCR is less than the set threshold, the local position of the particle changes slightly,
and it falls into the local optimum. Go to (f), otherwise, go to (g);

FCR =
F(k)− F(k− 1)

F(k− 1)
(25)

(f) According to the logistic chaotic map (23), the mutation operation is performed on
the global best position;

(g) Stop condition; by iterating continuously, adjust their velocity and position to keep
them inside the feasible range until the algorithm reaches the maximum number of
iterations and obtains the optimal solution; otherwise, return to (c).

For a clearer understanding of the IC-VAINDIWPSO algorithm, pseudocode is added,
as shown in Algorithm 1.

Algorithm 1 IC-VAINDIWPSO algorithm

/* Initialization: */
1 Obtain search map and initial path planning information;
2 Set swarm parameters, swarm_size;
3 for each particle i in swarm do
4 Create a random path;
5 Assign to particle’s position;
6 Compute fitness of the particle;
7 Set local_best of the particle to its fitness;
8 end
9 Chaos initialization
10 Set global_best to the best-fit particle;

/* Evolutions: */
11 for k← 1 to max_generation do
12 for each particle i in swarm do
13 Compute velocity; /* Equation (21)*/
14 if Particles become stuck in local optima
15 Compute velocity; /* Equation (20)*/
16 end
17 Compute new position; /* Equation (11) */
18 Update fitness; /* Equation (9) */
19 if k is less than 2/3 * max_generation
20 Compute FCR /* Equation (25) */
21 if FCR is less than the set threshold
22 Compute new position; /* Equation (23) */
23 end
24 end
25 Update local_best;
26 end
27 Update global_best;
28 Update inertia weights /* Equation (19) */
29 Save best_position associated with global_best; /* the best path */
30 end

To evaluate the three algorithms extra clearly, Table 1 compares the three algorithms.
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Table 1. The difference between the three algorithms.

Algorithm PSO Algorithm VAINDIWPSO Algorithm IC-VAINDIWPSO Algorithm

Velocity and position Equations (10) and (11) Equations (10) and (11) Equations (21) and (11)
inertia weight ω(k + 1) = ω(k) ∗ωdamp Equation (19) Equation (19)

update velocity no Equation (20) Equation (20)
Chaos initialization no no yes
Logistic chaos map no no Equation (22)

5. Experimental Simulation Analysis

To evaluate the overall performance of the improved PSO algorithm, we conduct
comparisons and experiments via a sequence of computational simulations.

5.1. Experimental Parameters

In this paper, the UAV path planning is simulated in the Matlab environment and is
run on a server with a 2.1 GHz CPU, 16.00 GB of RAM, and 64-bit operating system, and
the effectiveness of the proposed technique is verified. Table 2 shows the parameters of
PSO and its variant applications. The experimental environment model is an actual digital
elevation model map acquired from the lidar sensor. A 3D terrain environment with x, y,
and z coordinates is generated by augmenting a terrain structure area on Christmas Island,
Australia. When setting up threats of radius r in these scenarios, the number and location
of threats (indicated by way of red cylinders) are chosen according to the environment of
different complexity, as shown in Table 3 and Figure 3.

Table 2. Parameter setting.

Parameter Name Parameter Notation Parameter Value

learning factors c1 = c2 1.5
disturbed coefficients α 0.2
disturbed coefficients β 0.3

control parameter of the chaotic state µ µ ∈ (0, 4]
neighborhood radius γ 0.1

Table 3. Threats parameter setting.

Threat Parameter
Threat Number x y z r

1 900 100 250 80
2 300 750 150 80
3 700 550 150 70
4 350 200 150 70
5 500 350 150 80
6 600 200 150 70
7 400 500 100 80

There are three algorithms in the experiment, specifically the PSO algorithm, the
VAINDIWPSO algorithm, and the IC-VAINDIWPSO algorithm. The damping rate of the
PSO algorithm is a constant value ωdamp, the maximum and minimum values of the inertia
weight of the VAINDIWPSO algorithm and the IC-VAINDIWPSO algorithm are ωmax
and ωmin, respectively, and the value of ω of the corresponding algorithm is acquired
from Table 4. When the three algorithms draw the path curve in the environment, n = 10
path points are received between the coordinates of the starting point and the target point
according to the flight regulation of the UAV to structure the flight path of the UAV. The
coordinates of the starting point are (200,100,150), and the coordinates of the target point
are (800,800,150).
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Table 4. The inertia weight formula and parameters of the three algorithms.

Parameter
Algorithm Inertia Weight ω(1) ωmax ωmin ωdamp

PSO algorithm ω(k + 1) = ω(k) ∗ωdamp 1 - - 0.98

VAINDIWPSO algorithm ω(k+1) = (ω(k)−ωmin)× (
ωmin
ωmax

)
k2

Tmax2 + R(k) 1 0.9 0.4 -

IC-VAINDIWPSO algorithm ω(k+1) = (ω(k)−ωmin)× (
ωmin
ωmax

)
k2

Tmax2 + R(k) 1 0.9 0.4 -

5.2. Analysis of Results

The path planning of the UAV needs to bypass the threat area from the coordinates of
the starting point and fly to the coordinates of the target point. Considering the randomness
of the heuristic algorithm, every tested algorithm was independently executed 30 times,
and the experimental results were used to evaluate and compare its performance. For
the comfort of comparison, Figures 4–7 exhibit the top view and fitness function value
curves of the optimal UAV paths generated by using the PSO algorithm, the VAINDIWPSO
algorithm, and the IC-VAINDIWPSO algorithm in 30 independent runs, respectively. To
visualize the differences between the tested algorithms, Table 5 shows the data results of
the three algorithm runs.
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According to Figures 4–6, all three algorithms can generate feasible paths that meet
the necessities of path length, threat, turn angle, climb/dive angle, and altitude. However,
the PSO algorithm is susceptible to falling into the local optimum and cannot locate an
optimal solution. The VAINDIWPSO algorithm introduces improved nonlinear dynamic
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inertia weight and interferes with the velocity, the convergence algebra is decreased by
44.3%, the fitness function value is additionally reduced, and a better path than the PSO
algorithm is obtained. The IC-VAINDIWPSO algorithm, which introduces chaos theory
and adaptively adjusts the velocity, can precisely acquire near-optimal solutions.

The iterative convergence of the PSO algorithm is very slow. So the number of
iterations is chosen to be 1000, and the number of iterations of the VAINDIWPSO algorithm
and the IC-VAINDIWPSO algorithm is chosen to be 500 times. The IC-VAINDIWPSO
algorithm performs a chaotic initialization operation. So 1000 particles are generated in the
course of initialization. Then 500 particles with low fitness function values are chosen as the
initial population, and the initial population of the other two algorithms is also additionally
chosen as 500.
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According to the combination of Table 5 and Figure 7, it can be seen precisely and
intuitively that the iterative convergence times of the VAINDIWPSO algorithm are smaller
than those of the PSO algorithm, and the average fitness value is additionally decreased a
lot, which indicates that the VAINDIWPSO algorithm has relatively proper performance.
However, the number of iterative convergences is nonetheless large. Therefore, we intro-
duced chaos theory and adaptively adjusted the velocity to structure the IC-VAINDIWPSO
algorithm. The iteration convergence times of the IC-VAINDIWPSO algorithm are 20, the
initialization running time is 0.644 s, and the average fitness value is 5575.7793. Compared
with the preceding two algorithms, the iterative convergence times of the IC-VAINDIWPSO
algorithm are a whole lot smaller than the other two algorithms, and the average fitness
is additionally the lowest. The IC-VAINDIWPSO initialization running time algorithm is
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additionally noticeably reduced, which is shorter than the PSO algorithm. It is 86.35%,
which is 86.43% shorter than the VAINDIWPSO algorithm. The running velocity and
efficiency of the algorithm are improved, and it can rapidly and precisely bounce out of the
local optimum, attain the global optimum solution, and reap the optimum path.
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Table 5. Algorithm data comparison.

Algorithm Name Initial
Population

Number of
Iterations

Iterative
Convergence

Times
Optimal Fitness Average Fitness Initialization

Runtime/s
Iteration

Running Time/s

PSO algorithm 500 1000 449 7256.4168 7350.4576 4.745 130.492
VAINDIWPSO

algorithm 500 500 250 6635.2626 6704.6754 4.717 62.648

IC-VAINDIWPSO
algorithm 1000 500 20 5518.1756 5575.7793 0.644 58.997

IC-VAINDIWPSO
algorithm

(stop running
50 generations

after convergence)

1000 73 23 5520.1236 5579.7346 0.654 9.424

Figure 8 shows that when the algorithm converges, the fitness function value will
continue to be unchanged. Moreover, it is acknowledged from the above that the IC-
VAINDIWPSO algorithm does not easily fall into the local optimum, so according to
Figure 8, the algorithm stops running after 50 iterations after it converges. This technique
can attain the optimal fitness value with a small number of iterations, which considerably
reduces the running time of the algorithm, and permits the UAV to rapidly and precisely
design near-optimal solutions.
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Figures 9–12 exhibit the 3D path planning diagrams and side views of the paths
acquired by using the PSO algorithm and the IC-VAINDIWPSO algorithm in complicated
terrain. It can be seen that the path acquired via the PSO algorithm is relatively bad and not
smooth. The IC-VAINDIWPSO algorithm can rapidly discover the near-optimal solutions
and keep a suitable flight height with the terrain, and the path is additionally smooth
and effective.
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According to the data in Table 5, we choose different numbers of threats according to
the serial numbers of the threats to acquire different environmental models, and then we use
the above three algorithms to conduct 30 simulation experiments in different environments
to acquire the average value of the fitness function. As shown in Figure 13, when the
number of threats is less than three, the three algorithms can acquire the optimal solution,
and the average value of the acquired fitness function is now not very different. However,
as the environment will become extra complex, the PSO algorithm and the VAINDIWPSO
algorithm will fall into a local optimum, and the IC-VAINDIWPSO algorithm overcomes
this shortcoming. So the gap between the average values of the fitness functions of the
three algorithms will grow larger, and the degree of pros and cons of the acquired path will
also be different. It can be seen from Table 6 that when the number of threats is small, the
influence of threats on the acquired path is relatively small. The VAINDIWPSO algorithm
and the IC-VAINDIWPSO algorithm can directly acquire near-optimal solutions, whilst
the PSO algorithm still needs 153 iterations to converge, its average fitness function is the
lowest, and the initialization time is additionally the shortest. As the number of threats
progressively increases, the benefits of the IC-VAINDIWPSO algorithm steadily emerge.
It can be seen from Table 7 that the iteration convergence times of the IC-VAINDIWPSO
algorithm are 25 times, the average fitness function is 5229.1847, and the initialization time
is 0.629 s, which is 8.2% shorter than the VAINDIWPSO algorithm and 44.53% shorter
than the PSO algorithm. Compared with Table 5, it can be seen that the more complex
the environment is, the more obvious the optimization effect of the IC-VAINDIWPSO
algorithm is, and the greater the gap between the three algorithms is. Figures 14–17 are the
top views of the PSO algorithm and the IC-VAINDIWPSO algorithm in three threats and
five threat era paths. It can be seen that the IC-VAINDIWPSO algorithm acquires better
flyable paths.
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Table 6. Data comparison of three algorithms with three threats.

Algorithm Name Initial
Population

Number of
Iterations

Iterative
Convergence

Times
Optimal Fitness Average Fitness Initialization

Runtime/s
Iteration

Running Time/s

PSO algorithm 500 1000 153 4618.3186 4631.182 0.167 82.169
VAINDIWPSO

algorithm 500 500 1 4637.3815 4637.3815 0.104 46.221

IC-VAINDIWPSO
algorithm 1000 500 1 4637.3815 4637.3815 0.604 43.509

Table 7. Data comparison of three algorithms with five threats.

Algorithm Name Initial
Population

Number of
Iterations

Iterative
Convergence

Times
Optimal Fitness Average Fitness Initialization

Runtime/s
Iteration

Running Time/s

PSO algorithm 500 1000 360 5721.9739 6058.1241 1.134 103.802
VAINDIWPSO

algorithm 500 500 158 5422.4877 5437.8974 0.754 53.884

IC-VAINDIWPSO
algorithm 1000 500 25 5196.9241 5229.1847 0.629 51.382
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Figure 15. The top view of the paths generated by the IC-VAINDIWPSO algorithm under
three threats.
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Figure 17. The top view of the paths generated by the IC-VAINDIWPSO algorithm under five threats.

The positions of the two threats are randomly and not repeatedly changed in every
experiment, and 10 groups of distinctive environmental models are generated, performing
30 simulation tests on the above three algorithms in distinct environmental models and
calculating the average value of the fitness function. The outcomes are shown in Figure 18.
It can be seen from the analysis of the simulation consequences that in contrast with
the PSO algorithm and the VAINDIWPSO algorithm, the fitness function value of the
IC-VAINDIWPSO algorithm is typically lower, displaying a greater optimization ability.
Figures 19–22 are the top views of the PSO algorithm and the IC-VAINDIWPSO algorithm
in the fourth set of data and the ninth set of data generation paths.
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Table 8 shows the data in Scenario 4 of Reference [21]. It can be seen from the data that
the fitness function value and convergence algebra of the PSO algorithm are higher than
the quantum-behaved PSO algorithm (QPSO), the genetic algorithm (GA), and differential
evolution (ABC). From the data in Table 5, it can be considered that the fitness function cost
and convergence algebra of the IC-VAINDIWPSO are much higher quality than the PSO
algorithm. Although the environment of this paper and the literature [21] are different, they
are each chosen from Christmas Island, Australia, so evaluating Tables 6 and 8 horizontally,
it can be seen that the IC-VAINDIWPSO algorithm is higher than the QPSO algorithm, the
GA algorithm, and the ABC algorithm, so the IC-VAINDIWPSO algorithm, a variant of the
PSO algorithm, is very valuable for in-depth study.

Table 8. Algorithm data comparison.

Algorithm Average Fitness Iterative Convergence Times

PSO algorithm 5781 56
QPSO algorithm 7120 761

GA algorithm 6325 224
ABC algorithm 5325 118

According to all the experimental results and analysis, it can be concluded that the
VAINDIWPSO algorithm introduces nonlinear decreasing dynamics inertia weight and
adds random disturbances so that the algorithm can jump out of the local optimum. It also
introduces the velocity update formula when the particles cannot fall into the local optimum.
During the optimal solution, the speed of the global optimal particle is slightly disturbed,
and the algorithm can also jump out of the local optimum. Therefore, the VAINDIWPSO
algorithm plays a great role in jumping out of the local optimum and reducing the fitness
function value of the algorithm. The IC-VAINDIWPSO algorithm introduces the strategy
of adaptive speed adjustment so that the particles continuously fly to the optimal solution,
and then it introduces the chaotic initialization. The chaotic initialization can initially
generate a uniform distribution of particles even close to the optimal solution and can
maintain the initialization time. In a shorter time, the initialization time of the algorithm is
reduced and convergence is sped up. Finally, the logistic chaotic map is introduced, and the
randomness and ergodicity are used to improve the searchability. Finally, the approximate
optimal solution is obtained.

To sum up, regardless of the complexity of the environment, the IC-VAINDIWPSO
algorithm can discover the most appropriate flight path. It has the advantages of solving
the problems of slow convergence speed, far initialization time, unsmooth path, and easy
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descendance into the local optimum. Therefore, the IC-VAINDIWPSO algorithm can
remedy the UAV path planning problem.

6. Conclusions

Aiming at the research on UAV security path planning, the IC-VAINDIWPSO algo-
rithm is proposed. Based on the PSO algorithm, the IC-VAINDIWPSO algorithm first
introduces when particles fall into local improved nonlinear dynamic inertia weights and
the velocity is perturbed. Then the adaptive adjustment of the velocity is introduced, and
finally, chaos initialization is carried out, and the improved logistic chaotic map is intro-
duced. The IC-VAINDIWPSO algorithm can efficaciously carry out UAV path planning in
a complicated 3D environment. When setting up the threat environment model, the algo-
rithm also considers many constraints such as optimality, safety, and feasibility. According
to the acquired path planning results in complicated environments, the IC-VAINDIWPSO
algorithm can attain near-optimal solutions in most scenarios, whilst the PSO algorithm and
the VAINDIWPSO algorithm only operate well in easy scenarios. By evaluating the three
algorithms, the superiority of the IC-VAINDIWPSO algorithm in fixing issues such as slug-
gish convergence speed, lengthy initialization time, unsmooth path, and easy descendance
into the local optimum phenomenon is verified. The experimental consequences exhibit
that the IC-VAINDIWPSO algorithm is an efficient and possible approach for UAV route
planning. However, this experiment was only carried out in a static environment, without
thinking about the effect of dynamic obstacles, and the constraints are extraordinarily few.
In the future, we will think about more constraints and then conduct in-depth research on
the UAV path planning issues in complicated terrain environments with dynamic obstacles.
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