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Abstract: Objective: To report the clinical and radiographic findings and molecular etiology of
the first monozygotic twins affected with Pfeiffer syndrome. Methods: Clinical and radiographic
examination and whole exome sequencing were performed on two monozygotic twins with Pfeiffer
syndrome. Results: An acceptor splice site mutation in FGFR2 (c.940-2A>G) was detected in both
twins. The father and both twins shared the same haplotype, indicating that the mutant allele was
from their father’s chromosome who suffered severe upper airway obstruction and subsequent
obstructive sleep apnea. Hypertrophy of nasal turbinates appears to be a newly recognized finding
of Pfeiffer syndrome. Increased intracranial pressure in both twins were corrected early by fronto-
orbital advancement with skull expansion and open osteotomy, in order to prevent the more severe
consequences of increased intracranial pressure, including hydrocephalus, the bulging of the anterior
fontanelle, and the diastasis of suture. Conclusions: Both twins carried a FGFR2 mutation and were
discordant for lambdoid synostosis. Midface hypoplasia, narrow nasal cavities, and hypertrophic
nasal turbinates resulted in severe upper airway obstruction and subsequent obstructive sleep apnea
in both twins. Hypertrophy of the nasal turbinates appears to be a newly recognized finding of Pfeiffer
syndrome. Fronto-orbital advancement with skull expansion and open osteotomy was performed to
treat increased intracranial pressure in both twins. This is the first report of monozygotic twins with
Pfeiffer syndrome.

Keywords: Pfeiffer syndrome; twins; lambdoid synostosis; discordance; hypertrophy of turbinates

1. Introduction

Pfeiffer syndrome (MIM 101600) is characterized by craniosynostosis, midface hy-
poplasia, broad thumbs and great toes, brachydactyly, and syndactyly. Synostosis of the
coronal suture is the most common craniosynostosis in patients with Pfeiffer syndrome.
Ocular hypertelorism, down-slanting palpebral fissures, strabismus, and ocular proptosis
are common. Mode of inheritance is autosomal dominant with complete penetrance and
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phenotypic variability [1]. Mutations in FGFR2 have been reported to be associated with
most cases of Pfeiffer syndrome (95%). However, FGFR1 mutations (5%) have also been
reported in patients with a milder Pfeiffer syndrome phenotype [2–4]. Here, we report
on the first monozygotic twins with Pfeiffer syndrome who carried an acceptor splice site
mutation in FGFR2 and were discordant for lambdoid synostosis. Midface hypoplasia,
narrow nasal cavities, and hypertrophic nasal turbinates were the causes of severe upper
airway obstruction and subsequent obstructive sleep apnea. Increased intracranial pressure
in both twins were corrected by fronto-orbital advancement with skull expansion and
open osteotomy. Hypertrophy of turbinates found in these twins appears to be the newly
recognized finding of Pfeiffer syndrome.

2. Patient Report

Twins A (Figure 1) and B (Figure 2) were products of healthy non-consanguineous
Thai parents. Their father and mother were 26 and 25 years old at the time of conception,
respectively. Their mother took oral contraceptive medication until four weeks after absence
of menstruation. No family history of craniosynostosis or congenital birth defects was
evident. The twins were born at term by normal delivery at 39 weeks and 3 days of
gestation. Both of them had good Apgar scores of 9 and 10 at 1 and 5 min, respectively.
Birthweight, birth length, and OFC of twin A were 2,950 g (10 centile), 49 cm (25 centile),
and 34 cm (50 centile), respectively. Birthweight, birth length, and OFC of twin B were
2,450 (<3 centile), 45 cm (<3 centile), and 35 cm (50 centile), respectively. Clinically, both
twins had brachycephaly, ocular proptosis, broad thumbs and great toes, and double hair
whorls on the top of their heads (Figure 1A–D and Figure 2A–D). Both of them received
phototherapy for the treatment of neonatal jaundice. They started having respiratory tract
infections followed by respiratory failure at age around one month old. Neurological
examinations revealed good eye contact with social smiles. At age six months, gross and
fine motor developments were delayed. Both twins could sit without support but were
unable to crawl. Bulging of anterior fontanelle, a clinical sign of increased intracranial
pressure, was not observed. Ophthalmologic examination showed no signs of papilledema,
an optic disc swelling with blurred margin, which is a sign of chronic increased intracranial
pressure [5,6].

Both twins suffered severe upper airway obstruction. They frequently had snoring
and obstructive sleep apnea. The lowest oxygen saturation of nocturnal pulse oximetry
tests of twins A and B were 66% and 80%, respectively. Sleep apnea tests concluded that
twins A and B had severe and moderate sleep apnea, respectively. Tracheostomy was
performed in both twins at the age of nine months.

Genes 2022, 13, x FOR PEER REVIEW 2 of 12 
 

 

Ocular hypertelorism, down-slanting palpebral fissures, strabismus, and ocular proptosis 

are common. Mode of inheritance is autosomal dominant with complete penetrance and 

phenotypic variability [1]. Mutations in FGFR2 have been reported to be associated with 

most cases of Pfeiffer syndrome (95%). However, FGFR1 mutations (5%) have also been 

reported in patients with a milder Pfeiffer syndrome phenotype [2–4]. Here, we report on 

the first monozygotic twins with Pfeiffer syndrome who carried an acceptor splice site 

mutation in FGFR2 and were discordant for lambdoid synostosis. Midface hypoplasia, 

narrow nasal cavities, and hypertrophic nasal turbinates were the causes of severe upper 

airway obstruction and subsequent obstructive sleep apnea. Increased intracranial pres-

sure in both twins were corrected by fronto-orbital advancement with skull expansion 

and open osteotomy. Hypertrophy of turbinates found in these twins appears to be the 

newly recognized finding of Pfeiffer syndrome. 

2. Patient Report 

Twins A (Figure 1) and B (Figure 2) were products of healthy non-consanguineous 

Thai parents. Their father and mother were 26 and 25 years old at the time of conception, 

respectively. Their mother took oral contraceptive medication until four weeks after ab-

sence of menstruation. No family history of craniosynostosis or congenital birth defects 

was evident. The twins were born at term by normal delivery at 39 weeks and 3 days of 

gestation. Both of them had good Apgar scores of 9 and 10 at 1 and 5 min, respectively. 

Birthweight, birth length, and OFC of twin A were 2,950 g (10 centile), 49 cm (25 centile), 

and 34 cm (50 centile), respectively. Birthweight, birth length, and OFC of twin B were 

2,450 (<3 centile), 45 cm (<3 centile), and 35 cm (50 centile), respectively. Clinically, both 

twins had brachycephaly, ocular proptosis, broad thumbs and great toes, and double hair 

whorls on the top of their heads (Figures 1A–D and 2A–D). Both of them received photo-

therapy for the treatment of neonatal jaundice. They started having respiratory tract in-

fections followed by respiratory failure at age around one month old. Neurological exam-

inations revealed good eye contact with social smiles. At age six months, gross and fine 

motor developments were delayed. Both twins could sit without support but were unable 

to crawl. Bulging of anterior fontanelle, a clinical sign of increased intracranial pressure, 

was not observed. Ophthalmologic examination showed no signs of papilledema, an optic 

disc swelling with blurred margin, which is a sign of chronic increased intracranial pres-

sure [5,6]. 
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Figure 1. Twin A at age 6 months. (A) Brachydactyly, ocular proptosis, and depressed nasal bridge.
(B) Brachydactyly and broad thumbs. (C) Broad great toes. (D) Preoperative view of the cranium.
Note ridges at metopic and sagittal sutures as a result of synostosis.
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Figure 2. Twin B at age 3.5 months. (A) Brachydactyly, ocular proptosis, and depressed nasal bridge.
(B) Brachydactyly and broad thumbs. (C) Broad great toes. (D) Preoperative view of the cranium.
Note ridge at metopic suture as a result of synostosis.

Radiographic and computed tomography of both twins at age 6 months showed
bicoronal synostosis (Figure 3A,B), bilateral dehiscence of posterior semicircular canals
(Figure 4C,D), shallow orbit leading to exorbitism (Figure 4E,F), midface hypoplasia (Fig-
ure 4G,H), and short anterior cranial base (Figure 5C,D). Twin A had left lambdoid synosto-
sis (Figure 3C) and effusion of the right middle ear cavity and mastoid air cells (Figure 4A).
Twin B had bilateral effusion of middle ear cavities and mastoid air cells (Figure 4B). The
lambdoid sutures of twin B appeared patent (Figure 3D).
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(blue arrows) of twin A. (B) Coronal synostosis (red arrows) of twin B. (C) Note the craniolacunia of
twin A. Lambdoid synostosis (blue arrow) and ipsilateral mastoid and contralateral parietal bossing
with associated downward tilt of the cranial base toward the affected side. (D) Craniolacunia and
patent lambdoid suture of twin B.
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Figure 4. Axial CT scan and lateral skull radiographs of twins A (A,C,E,G) and B (B,D,F,H). (A)
Twin A. Effusion of right middle ear cavity (red arrow) and mastoid air cells (blue arrow). (B) Twin B.
Bilateral effusion of middle ear cavities (red arrows) and mastoid air cells (blue arrows). (E,F) CT
scan of brain. Shallow orbits leading to exorbitism of (E) twin A and (F) twin B. (G,H) Lateral skull
radiographs demonstrating maxillary hypoplasia of (G) twin A. and (H) twin B.

Both twins had unremarkable naso- and oropharyngeal spaces (Figure 5A,B). Narrow-
ness of nasal cavities and hypertrophy of superior, middle, and inferior turbinates were
observed in both twins (Figure 6A–D). Craniolacunia was observed in the parietal and
occipital bones of both twins (Figure 3C–D). Diffuse thumbprinting phenomenon or beaten
copper appearance on skull radiographs and widening of sagittal sutures were observed
in both twins, indicating increased intracranial pressure. The other radiographic signs of
increased intracranial pressures such as erosion of dorsum sellae and suture diastasis were
not evident [7]. As a result of increased intracranial pressure, fronto-orbital advancement
with skull expansion was performed by a plastic surgeon (K.K.) in both twins at the ages
of 6 and 8 months, respectively. Open osteotomy was performed for coronal synostosis
correction and fixation with resorbable plate osteosynthesis. Subsequently fronto-orbital
bars were anteriorly repositioned for 15 mm. Both twins had periodic follow-ups to be
evaluated for increased intracranial pressure and secondary craniosynostosis.
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and oropharyngeal airways of twin B. Three-dimensional CT reconstruction. (C) Short anterior
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Figure 6. Axial and coronal views CT (bone window) of twins A and B. Obstruction of bilateral
nasal cavities (arrows) in (A) twin A and (B) twin B. Bilateral hypertrophy of turbinates (arrows) in
(C) twin A (D) twin B.

3. Results
3.1. Whole Exome and Sanger Direct Sequencing and Detection of the Parental Origin of the
Mutant Allele

Whole exome sequencing showed a de novo heterozygous base substitution NM_000141.4:
c.940-2A> G (rs1057519041) in intron 8 at the 3′ splice acceptor site of the FGFR2 gene,
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leading to abnormal IIIc acceptor splicing in both twins. Sanger sequencing confirmed
the mutation (Figure 7). This mutation is known to be pathogenic for Pfeiffer syndrome.
In order to search for the parental origin of the mutant allele, we observed neighboring
FGFR2 variants around NM_000141.4; (FGFR2): c.940-2A>G and found two variants located
downstream of this mutation, namely, rs11199991 (NM_000141.4: c.1287 + 4293G>C, 6642 bp
from the mutation) and a novel intron variant (NM_000141.4: c.1287 + 4329_1287 + 4338dup,
6688 bp from the mutation), with different genotypes in both parents. For NM_000141.4:
c.1287 + 4329_1287 + 4338dup, the father and the twins shared the ATTTAT/ATTTATTTTAT
genotype, while the mother had the ATTTATTTTATTTTAT/ATTTATTTTAT genotype. For
rs11199991, the father and the twins also shared CC genotypes (homozygous wild-type),
while the mother’s genotype was CG (heterozygous). The father and both twins shared
the same genotypes in both NM_000141.4:c.1287 + 4293G>C and NM_000141.4:c.1287 +
4329_1287+4338dup, suggesting that the shared alleles are in the same haplotype. This
shows that the mutant allele was from their father’s chromosome.
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Figure 7. Electropherograms of a FGFR2 mutation. A de novo heterozygous base substitution
NM_000141.4:c.940-2A>G in intron 8 at the 3′ splice acceptor site of the FGFR2 gene, leading to
abnormal IIIc acceptor splicing in both twins. The parents did not have the mutation.

3.2. Hearing Assessment

Auditory brainstem response (ABR) test of the right ear of twin A demonstrated an air
conduction threshold at 45 dB (normal = 20 dB) and bone conduction threshold at 20dB,
with an air–bone gap of 25 dB, indicative of conductive hearing loss in the right ear. The
ABR test of the left ear was unremarkable. Auditory brainstem test of the right ear of twin
B demonstrated threshold of air conduction at 65 dB and of bone conduction at 25 dB with
an air–bone gap of 40 dB (normal = 20 dB), indicative of conductive hearing loss in the
right ear. The hearing on the left was normal with ABR threshold 25 dB. Tympanograms of
both patients showed negative results in both ears at both 226 and 1000 Hz, indicative of
middle ear effusion.

4. Discussion

We report the first monozygotic twins affected with Pfeiffer syndrome with a het-
erozygous FGFR2 mutation (NM_000141.4: c.940-2A>G). Both twins had diffuse beaten
copper appearance on the skull radiograph, a sign of increased intracranial pressure. Sur-
gical intervention was performed quite early in both twins to prevent them from having
papilledema, which may lead to irreversible vision loss, bulging of anterior fontanelle, and
hydrocephalus [5], as well as to maximize therapeutic outcomes because infants are able
to ossify small cranial defects, thus minimizing the need for bone grafting [8]. Periodic
follow-ups after surgery for clinical manifestations of increased intracranial pressure were
performed because of the high rate of relapse and secondary synostosis in patients with
syndromic craniosynostosis [9], which is most likely the result of phenotypic effects of
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FGFR mutations, tissue-specific expression of different FGFR isoforms, other modifying
factors, and possibly environmental factors [10].

4.1. FGFR2 Mutations and Pfeiffer Syndrome

We report the first monozygotic twins affected with Pfeiffer syndrome who carried a
FGFR2 mutation and were discordant for lambdoid synostosis. The 3′ acceptor splice site
mutation c.940-2A>G in FGFR2 found in our patients has been reported in 16 patients. They
all had type 1 Pfeiffer syndrome, but none of them had lambdoid synostosis [2,3,11–15].
Twins with craniosynostosis, midface hypoplasia, and exorbitism were previously reported
to have Pfeiffer syndrome [16]. Unfortunately, the pictures of the broad thumbs and
great toes, which are the characteristic features of Pfeiffer syndrome, were not illustrated.
The authors did not report on the causative mutation and the facial features of patients
resembling those of Crouzon syndrome [16]. Both of our patients had craniolacunia in the
parietal and occipital bones. Craniolacunia is characterized by round or irregular gaps in
the skull, covered by a diaphragm of periosteum and dura mater, bound by bony ridges. It
is caused by periosteal dysplasia and is considered the effect of FGFR2 mutations [17].

Fibroblast growth factors, a family of intercellular-signaling molecules, transduce their
signals by activating specific cell surface tyrosine kinase receptors, FGFRs. FGF/FGFR
signaling depends on dimerization of receptor molecules brought together by ligand
binding in cooperation with heparan sulfate proteoglycans. FGFRs differ from each other
in their ligand affinities and tissue distribution [18]. In humans, FGFR genes encode
an extracellular domain composed of two or three immunoglobulin-like (Ig) domains, a
transmembrane segment, and a cytoplasmic tyrosine kinase domain [18]. Ligand binding
involves IgII and IgIII domains, but binding specificity is determined only by the IgIII
domain [19]. In mice, heterozygous abrogation of Fgfr2 exon 9 (IIIc) causes splicing
switch, resulting in a gain-of-function mutation, upregulated FGFR2 signaling, precocious
ossification of cranial sutures, and subsequent craniosynostosis [18].

As was found in our patients, FGFR2 mutations are most commonly located in the
IgIII domain and encoded by exons 8 (IIIa) or 10 (IIIc) [20–22]. Mutations in FGFR2 have
been shown to cause a wide range of genetic disorders, including Pfeiffer, Crouzon, Apert,
Antley–Bixler, Beare–Stevenson cutis gyrata, Jackson–Weiss, bent bone dysplasia, and
Seathre–Chotzen-like syndromes. The same mutations in FGFR2 can give rise to Crouzon,
Jackson–Wei, and Pfeiffer syndromes. It is likely that other modifying genetic factors
or epigenetic factors have an influence on abnormal gain of function, upregulated FGF
signaling, and subsequent phenotypic variability [2,20,23–25]. It is noteworthy that the
c.940-2A>G mutation found in our patients has been reported 16 times and is always
associated with Pfeiffer syndrome [2,3,11–15,26,27].

4.2. FGFR2 Mutation and Its Parental Origin

Spontaneous mutations in FGFR2 were usually of paternal origin and associated with
advanced paternal age. This is because FGF/FGFR signaling has a crucial role in initiation,
maintenance of spermatogenesis, and clonal expansion of spermatogonial cells expressing
proteins with gain-of-function or oncogenic properties [21,28,29]. The father and mother of
our patients were 26 and 25 years old, respectively, at the time of conception. The mutations
found in our patients were of paternal origin, suggesting that the mutational event could
have taken place during spermatogenesis [28], even though the father was quite young.

4.3. Malformation of Middle Ear and Hearing Loss

Otological malformations and hearing loss are common features of Pfeiffer syndrome.
Generally, patients with a mild form of Pfeiffer syndrome have normal ear anatomy and
hearing [30]. On the right ears of both twins, effusion of the middle ears and mastoid air
cells was observed. On the left side, it was observed only in twin B. Effusion in the mastoid
air cells is secondary to effusion of the middle ear. The middle ear effusion in our patients,
which is common in patients with Pfeiffer syndrome, is caused by the narrowness of the
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eustachian tube secondary to the malformations of cranial base and nasopharynx [30–32].
Long-term middle ear effusion can lead to conductive hearing loss [33]. It also may impair
postural stability, vestibulo-spinal reflex, and motor development of the patients [34].

4.4. Dehiscence of Posterior Semicircular Canals

Dehiscence of posterior semicircular canals of our patients has also been reported in
patients with Pfeiffer syndrome [35,36]. The posterior semicircular canal is located caudally
in the body of the petrous part of the temporal bone. The posterior branch is likely to
have dehiscence of the thin overlying temporal bone facing the posterior fossa [37]. This
dehiscence or opening in the bone, overlying the posterior semicircular canal, creates a
window into the inner ear that allows the canal to be responsive to sound and to changes
in pressure in the membranous labyrinth, causing vertigo [38]. However, it can also be
asymptomatic, as occurred in our patients. FGF signaling through Fgfr2 (IIIb) has important
roles in the development of the outer sulcus, stria vascularis, and spiral prominence
of cochlea and otic induction. Its expression is robust and consistent in presumptive
stria vascularis and spiral prominence [19]. FGFR2 (IIIb) mRNA is expressed in the non-
sensory epithelium of the otocyst that develops to structures such as endolymphatic and
semicircular ducts. FGFR2 appears to be crucial for the development of the inner ear.

4.5. Increased Intracranial Pressure, Upper Airway Obstruction, and Sleep Apnea

Both twins suffered moderate and severe sleep apnea as a result of narrow nasal
cavities and hypertrophic turbinates, leading to upper airway obstruction. They had ex-
perienced a few episodes of sleep apnea. Tracheostomy was performed in both patients
at the age of nine months. The prevalence of obstructive sleep apnea among patients
with craniosynostosis syndromes is highest in patients with Apert syndrome (80.6%), fol-
lowed by Pfeiffer (72.7%), Crouzon with acanthosis nigricans (66.7%), and Crouzon (64.7%)
syndromes. This is the result of a markedly short anterior cranial base and a severely
hypoplastic and retrognathic midface, leading to narrowness of the nasal cavity and subse-
quent upper airway obstruction [31,39]. Hypertrophy of turbinates, which reduces the size
of the nasal air passage, has never been reported in patients with Pfeiffer syndrome. Surgi-
cal intervention was performed early in both twins because obstructive sleep apnea and
increased intracranial pressure have been reported to cause optic neuropathy in patients
with craniosynostosis. Therefore, early detection and treatment of increased intracranial
pressure are crucial in order to prevent irreversible loss of vision [40].

4.6. Discordance in Monozygotic Twins

Monozygotic twins result from the division of the single embryo at the two-cell stage
into two independent daughter cells, and are expected to have identical genomes, with few
exceptions. Therefore, the phenotypic difference between monozygotic twins, such as the
lambdoid synostosis in twin A, is considered to be the combined effect of environmental
and nongenetic factors [41]. Each monozygotic twin is not exposed to identical intrauterine
factors and maternal variables. Epigenetic factors such as DNA methylation and histone
modification regulate heritable states of gene expression. This epigenome varies from
tissue to tissue, controlling differential gene expression and providing specific identity
to each cell type [41]. Regarding discordance for lambdoid synostosis, FGFR2 mutations
predispose the patients to craniosynostoses. Somatic mutations and intrauterine elements
may have caused genetic discordance in our patients. In addition, deformation as a result
of intrauterine constraint of twin pregnancy may have influenced the discordance in twins
as well [41,42].

5. Materials and Methods
5.1. Whole Exome Sequencing, Sanger Sequencing, and Bioinformatic Analysis

Whole exome sequencing with the Agilent SureSelect V6 exome capture kit and Sanger
direct sequencing were performed on the patients and their unaffected parents.
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5.2. Hearing Assessment

An auditory brainstem response (ABR) test was performed on both patients.

6. Conclusions

We report on monozygotic twins affected with Pfeiffer syndrome and carrying a
FGFR2 mutation. Both twins were discordant for lambdoid synostosis. Midface hypoplasia,
narrow nasal cavities, and hypertrophic nasal turbinates resulted in severe upper airway
obstruction and subsequent obstructive sleep apnea in both twins. Hypertrophy of the
nasal turbinates appears to be a newly recognized finding of Pfeiffer syndrome. Increased
intracranial pressure in both twins were corrected early by fronto-orbital advancement with
skull expansion and open osteotomy, in order to prevent the more severe consequences of
increased intracranial pressure, including hydrocephalus, bulging of anterior fontanelle,
papilledema, erosion of dorsum sellae, and diastasis of suture.
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