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Abstract: Internet of Things (IoT) is considered one of the future disruptive technologies and has
attracted lots of research attention in the recent past. IoT devices are tiny sensing or actuating
devices attached to daily life objects, capable of sending sensing data and receiving commands.
Cloud computing technology provides tremendous computing and storage capacity over the Internet
to overcome limited resources of IoT devices. Many studies are conducted on IoT device virtualization
in the cloud environment to facilitate remote access and control. In the future, IoT devices will be
accessed through its corresponding virtual objects. Just like the network of physical devices, there
needs to be a network of virtual objects in the cyber world. In this paper, we present a concept of
building a dynamic virtual network in the cloud environment among connected IoT devices. The key
idea is to provide a mechanism for building a virtual network among connected IoT devices from
different domains through their corresponding virtual objects in the cloud environment. This will
facilitate the sharing of resources and the rapid development of diverse applications on top of the
virtualization layer by establishing a dynamic end-to-end connection between IoT devices. In this
study, we present a detailed design of the proposed system for building a virtual IoT network.
We have also implemented three application layers protocols in OMNET++ for simulation of a virtual
objects network to conduct performance analysis of the proposed IoT network virtualization.

Keywords: cloud computing; dynamic connectivity; Internet of Things (IoT); virtual IoT network

1. Introduction

Internet of Things (IoT) is designed to attach a small communicating device with everything that
we want to monitor or control using the Internet. The core of IoT networks consist of two types of
devices: (a) sensors that collect the context data; and (b) actuators that receive commands to control
the environment. IoT is mainly focused on the connectivity of things (daily life objects with attached
sensors or actuators) to the Internet so that users can remotely monitor and control a particular activity
or device. IoT systems have tremendous capabilities and applications [1]. In the recent past, many
giant manufacturing and development organizations have invested in this technology to realize its
potential. Many projects are initiated to develop diverse IoT applications for many real-world problems
and conduct research in various directions to address different aspects of IoT based systems along
with associated challenges of security, authentication and authorization [2], and identification of
compromised nodes [3].

To facilitate access and control of IoT devices in the cyber world, the concept of virtualization is
introduced which provides a flexible interface to manipulate and interact with physical IoT devices [4].
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IoT devices are represented by virtual objects in the cyber world that provide flexible connectivity
between sensors and actuators in the cyber world [5]. Besides flexibility, virtualization also helps in
resources’ seamless duplication and sharing across diverse domains [6]. Many existing systems provide
virtualization services for physical devices by creating its virtual object (VO). Later, VOs are combined to
compose services that can be used to build various applications [7,8]. The virtual world is also known as
the cyber world and the complete system is then referred to as a Cyber-Physical System (CPS) designed
for physical world observation and control through the virtual world in IoT environments.

Usually, connectivity among devices is maintained in the network via routing tables. Routing
tables provide an efficient and fast way for packet forwarding, but they are rigid. Making on-demand
changes in routing tables is not easy, and hence the concept of Software Defined Networking (SDN)
is introduced to separate network control and data plans [9]. However, SDN requires networking
devices to perform specific complex operations and protocols that are not supported by constrained IoT
devices. For instance, OpenFlow protocol is commonly used by SDN controllers to update flow entries
in networking devices for on-demand traffic management. Several research studies can be found in
the literature regarding the development of programmable SDN infrastructure for enabling the IoT
ecosystem [10]. However, IoT devices are resources constrained in terms of memory and computation
and provisioning support for OpenFlow like protocols will result in performance degradation.

Cloud computing technologies are aimed at provisioning stable and shared computational and
storage resources to diverse users and applications [11]. With the advent of this technology, end users
can have a complete computer system online as per their desired specification and budget limitation in
the form of a virtual machine. In many application scenarios, virtual machines’ instances launched on a
cloud platform need to communicate with one another and soon virtual networks among the virtual
machines will be created through virtual switches and virtual routers. After creating virtual networks in
the cyber world, the functionalities of other essential networking devices such as intrusion detection
devices, load balancers, firewalls, etc. were also virtualized in the form of network function virtualization
(NFV). NFV framework requires three components: (a) software implementation of network function;
(b) infrastructure for the deployment of virtualized network function; and (c) management and
orchestration framework for virtualized network function. The conventional product development
life cycle requires rigorous designing, testing, and standardization before release, which was very costly
and time-consuming. NFV has brought a revolution in product development as it can quickly be
deployed, tested in the real environment and easily upgraded when required.

Previously, most of the studies were focused on sensors virtualization in a cloud environment.
All of the data collection and processing operations on connected virtual objects were handled in
applications logic, and there was no such need for virtual network formation. However, with the advent
of IoT, two types of devices are connected, i.e., sensors and actuators. The major difference between
pure sensor network based and IoT based applications is that usually sensor-based applications are
used for monitoring and analysis only, whereas IoT based applications are used for process automation.
In IoT based applications, after careful analysis of sensing data through simple rule-based schemes or
advanced machine learning algorithms, commands are sent to associated actuating devices to perform
desired operations. In other words, there exists somehow a linkage or network among sensing and
actuating devices. Traditionally, a configuration for the establishment of this network was either done
in physical IoT devices or at the application layer as shown in Figure 1a,b, respectively.

It is very difficult to change network settings in IoT devices and we have to physically or remotely
access each device and then make desired modification. With a growing number of connected IoT
devices, it has become impossible to make changes in individual IoT devices. Network setting at the
application layer requires full control access to corresponding IoT devices, which is normally possible
when the devices and application belong to the same owner. However, this approach is not favorable for
sharing the underlying physical IoT network infrastructure. After IoT devices’ virtualization in a cloud
environment, we can easily update and replicate virtual objects to seamlessly share a single IoT device
among many dependent applications. As the virtual objects reside in the cloud infrastructure, virtual IoT
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networks can therefore be established among related virtual objects in the cloud environment. This paper
presents the concept of virtualized IoT network formation over the cloud environment among connected
IoT devices. To the best of our knowledge, there is no study published in the literature related to virtual
IoT network formation among virtualized IoT devices and hence the subject matter of this paper. Recent
development in various networking and cloud infrastructure technologies enabled us to explore the
concept of IoT network virtualization. Figure 2 shows the three most relevant and supporting fields that
led to the development of virtualized IoT networks.
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(a) IoT devices with preconfigured connectivity.
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(b) IoT devices connectivity established through
application server.

Figure 1. Conventional approaches for establishment of IoT networks.
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Figure 2. Convergence and evolution of IoT network virtualization.

The rest of this paper is organized as follows: a brief description of related work is covered in
Section 2. The concept of IoT network virtualization is presented in Section 3 with three use-case
scenarios. Section 4 presents the implementation design for IoT network virtualization through
simulation in OMNET++ with a detailed description. Simulation results and discussion are given in
Section 5. Finally, we conclude this paper with an outlook to our future work in Section 6.

2. Related Work

Since inception, IoT has attracted too much research attention, and it is considered among the
future disruptive technologies having the potential to transform every aspect of human life. Various
IoT based applications are developed for building a smart environment in various service sectors of
smart cities e.g., smart homes, smart health, smart education, security, entertainment, and industry,
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etc. In the past, WSN was assumed to be operated inside a particular domain, and researchers were
against the use of protocol stack (due to resource-constrained devices), and a globally unique ID for
each device was not essential. Advancement in information and communication technologies (ICT)
and microelectronics has enabled billions of IoT devices connected to the Internet with a globally
unique ID. Later, this concept of the virtual sensor network (VSN) was used to refer to a subset of
sensor nodes dedicated to a specific task [12]. VSN provides logical connectivity between the selected
sensor nodes, though these selected nodes may not be physically connected as shown in Figure 3. In
this example scenario, there exist two virtual sensor networks (a) for temperature monitoring (b) for
habitat monitoring. The sensor nodes in both networks provide logical connectivity among the sensor
nodes of each network.

Habitat Monitoring Sensor

Temperature Sensor

Figure 3. Example scenario of two virtual sensor networks (VSN) for temperature and habitat monitoring.

Various approaches are adapted to exploit the potential and capacity of existing physical networks.
Among the initial efforts in this direction include the concept of the overlay sensor network (OSN).
An overlay network is established on top of another physical network that provides the infrastructure
for communication. Usually, in overlaying the networks, the underlying network is based on entirely
different technologies from the one that is overlaid on top of it. Packets from one network are
encapsulated inside the packets of supporting networks to enable services that are not provided by an
existing network. Commonly used distributed systems such as client–server applications, peer-to-peer
networks, and cloud computing are good examples of overlay networks as individual nodes in these
types of networks are running on top of the worldwide Internet. The Internet itself is an overlay
network originally built on top of existing telephone lines [13]. Overlay networks are also framed on
top of wireless sensor networks in which a virtual topology is created on top of the physical topology
in the WSN. Such overlay networks are formed by a subset of nodes in the WSN, and these nodes
are not needed to be in the neighborhood of one another or have a one-hop communication link.
A virtual link is assumed among the nodes of overlay network which may correspond to a complete
path spanning over multiple nodes in the underlying physical network. For a seamless integration of
diverse networks, the implementation for overlay network formation is done in the application layer
through packets’ encapsulation. However, some overlay networks may require slight modification in
underlying layers of the protocol stack. [14] presents a novel access architecture for QoS provisioning
in wireless sensor networks by constructing an overlay network on top of 802.11 WLAN. The overlay
network acts as a control plane to ensure fairness among active communication flows with maximum
bandwidth utilization.

IoT devices are supposed to be small battery powered devices having limited storage, computation
and communication capabilities. To overcome resource constraint issues in sensor nodes and IoT
devices, various new models are developed. Cloud-based architecture is commonly used to address
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this issue. Madria et al. present a concept of sensor cloud to interconnect geographically diversified
networks [4]. They have used virtual sensors to address resource constraint issues in physical sensors.
A test-bed has been developed in [15] a based sensor cloud to support multi-model and multi-user
sensor networks based applications. A cloud-based architecture Cloud4sens is proposed [16] to provide
a remote interface for sensors monitoring and controlling. The Things Network provides a set of
tools that are more focused on rapid IoT application development with minimal/zero coding efforts
through drag and drop operations [17]. Efficient resource allocation in the virtual sensor network
environment is a challenging problem, and various solutions are proposed in the literature to address
this issue [18–21]. The concept of virtualization in WSN is not new [22–24]. Bhattacharya et al. present
the idea of community sensor grids for virtualization and sharing of sensing resources across the
domains [6]. Several studies present the prototype implementation of sensor virtualizations, e.g.,
Raveendranathan et al. have developed a model for sensor virtualization in body sensor networks [25].
They have also implemented the proposed model using the SPINE2 architecture, which is an open
source framework to support domain-specific signal processing and sensing operation of wireless
sensor networks. Levis et al. have developed a tiny virtual machine Mate for sensor networks [26].
Mate provides interfaces to encode complex programs in a very small size (less than 100 bytes),
thus avoiding transmission and storage issues in sensor networks. Leontiadis et al. have developed a
platform SenShare to decouple sensor networks infrastructure from applications running on top of
it [27]. Thus, multiple applications can share the same underlying infrastructure to perform different
operations. Furthermore, virtualization in sensor networks can help in the separation of concerns in
conventional WSNs. Previously, WSNs were managed and owned by a single entity and the same
entity was responsible for sharing their network for service provisioning to various client applications.
In the future, a logical network can be established among the virtualization servers for different
domains to support resource sharing for provisioning coordinated services to client applications for
the future smart world as shown in Figure 4. For every domain, we may have a virtualization server
that holds information about the associated IoT devices in the form of virtual sensors or virtual objects.
These virtualization servers can be connected to share resources information across the domains.

Most of the existing studies are focused on the virtualization of IoT devices in the cloud
environment so that it easily be replicated and shared among the different applications [28,29].
A study presented in [30] can be considered among the earliest attempts of IoT devices virtualization,
although the authors did not use this term explicitly. However, cloud computing technologies provide
centralized, reliable access to a high volume of data along with tremendous computation power, but it
is not suitable for delay sensitive applications due to significant communication delay in sending data
to the centralized cloud server for processing. To address this challenge, edge computing technologies
are gaining attention where computations are pushed closer to the origin of data to avoid unnecessary
communication delays [31,32]. More recently, numerous studies can be found in the literature regarding
virtualization of IoT devices, and interested readers can find comprehensive surveys on virtualization
of wireless sensor networks in [33,34]. SDN based virtualization solutions for IoT devices [35–37] are
focused on remote management of IoT devices to make necessary configuration changes, but this
approach requires computation and storage resources that may result in performance degradation.
Cloud-based service virtualization provides a centralized and shared repository of virtual objects for
registered IoT devices so that they can easily be shared and replicated. However, all the data collection
and processing operations on connected virtual objects were handled in applications logic, and there
was no as such need of virtual network formation. With the advent of IoT, two types of devices are
connected i.e., sensors and actuators [38]. In IoT based applications, there exist somehow a linkage or
network among sensing and actuating devices that can be realized in the form of virtual IoT formation
in the cloud environment among related virtual IoT devices. To the best of our knowledge, there is
no study published in the literature related to virtual IoT network formation among virtualized IoT
devices and hence the subject matter of this paper.
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Figure 4. Network of virtualization servers for building shared infrastructure across the domains.

3. IoT Network Virtualization (INV)

The idea of IoT network virtualization is borrowed from the concept of NFV in the context of
SDN and cloud computing. NFV enables the rapid development of the functionalities of real devices
in the form of a software package and its convenient deployment in the cloud environment. Moreover,
through NFV, these virtual devices can easily be updated, upgraded, replicated and shared.

IoT allows the connectivity of small sensing and communicating devices to the Internet and are
attached to daily life objects for remote monitoring and control. Billions of IoT devices are expected
to be connected to the Internet in the near future, which will be generating an enormous amount of
data. Many research studies suggest and prefer the connectivity of IoT devices to a cloud environment
for convenient storage and processing of collected data using advanced data analytics and big data
processing schemes supported by the cloud platform. Leading cloud service providers such as Google,
Amazon, Microsoft, etc. also provide support and APIs for connectivity of IoT devices directly to
their platforms so that its data can easily be consumed and processed by respective client applications.
Like virtual machines and virtualized network functions, we can have a virtual representation of
IoT devices in the cloud environment commonly referred to as virtual objects. The major difference
between NFV and virtual objects is that NFVs have no physical device backing them, whereas virtual
objects are backed by real IoT devices. Once IoT devices are connected, and corresponding virtual
objects are created in the cloud environment, then a virtual IoT network can be established among
associated virtual objects.

Figure 5 shows the conceptual view of virtual IoT network formation among virtual IoT devices
(virtual objects). Figure 5 also presents a brief summary of the evolution in network types. A type-1
network corresponds to the conventional physical networks where routing information is maintained
at intermediate routers. For any changes in the network setting, each router needs to be accessed
individually. When the network size grows, individual maintenance of networking devices becomes
a tedious job. To overcome these issues, networks of Type-2 were introduced, i.e., SDN. In SDN,
data and control plans are separated. The network administrator can use centralized controllers for
network configuration and maintenance. The Controller interacts with individual networking devices
to reflect necessary changes in their internal routing tables. Networking devices do just the data
forwarding as per the rules defined by the controller in their routing tables. The concept of virtualized
IoT networks can be considered as the Type-3 networks where the network among connected IoT
devices is maintained in the cloud environment through corresponding virtual objects.
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Figure 5. Conceptual view of a virtualized IoT network.

Figure 6 shows a more detailed view of virtualized IoT network formation for diverse applications
in the cloud environment. In this proposed architecture, client applications only have to communicate
with the centralized controller to specify their required network configuration. Just like a controller in
SDN networks, the controller module is centralized, responsible for network formation and maintenance.
Figure 6 shows three virtualized IoT networks setup on-demand for different client applications.
The proposed architecture supports sharing of the same virtual objects across different networks.

Figure 6. Virtualized network formation for diverse applications in the proposed IoT network virtualization.
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Layering architecture of the proposed system for IoT network virtualization is given in Figure 7.
It has three layers: (a) the Physical layer consists of actual IoT devices that can be sensing and
actuating devices connected to the system. The IoT devices can be distributed across different domains
sharing the same goals and objectives; (b) the virtualization layer acts as a middleware between client
applications and physical IoT devices. Virtual objects are created in this layer for every connected
IoT device, and these virtual objects are used by and shared among different client applications.
The virtualized IoT network is established among related IoT devices as per client application demand
and desired settings. Virtual objects provide an interface to the actual IoT device to consume its services
across different applications. (c) Various applications are hosted in the application layer for consuming
the services of the underlying virtualization layer. Applications from any domain can have access to
the shared resources through the virtualization layer. Figure 7 also shows the virtualized IoT network
formation in the virtualization layer for two different clients in application layers. Applications express
the required number of IoT devices with desired connectivity settings through a dedicated interface
and the logic is reflected in the form of a virtual network among related virtual objects.

Figure 7. Layered architecture of proposed IoT network virtualization.

The essential components of the proposed system for IoT network virtualization and its
functioning is shown in Figure 8 via a sequence diagram. The process is initiated with IoT device
registration where every IoT device posts its profile information to a pre-configured virtualization
server by sending a registration request. A typical virtual object profile for an IP camera has information
as shown in XML format in Figure 9. After the necessary validation of device profile information,
a virtual object is created for a corresponding IoT device and an acknowledgment message is sent to
the respective device. The virtual object is used by a virtualization server for onward communication
with a corresponding IoT device. Afterwards, the user initiates a request via client application for
the desired type and number of IoT devices. The Controller processes the request and retrieves
virtual objects’ profiles of matching IoT devices as per user specified criteria. Upon receiving virtual
objects’ lists at client application, the user specifies and configures desired settings. Afterwards,
user desired settings are deployed via client application and the request is submitted to the controller.
The Controller is responsible for establishing desired network settings by manipulating virtual objects
in the virtualization server. Dynamic connections are made among related virtual objects as per
user desired settings by updating the mapping list. Afterwards, an activation command is sent to
corresponding IoT sensors to initiate data transmission. Sensing data are received by corresponding
virtual objects and then the actuation command is forwarded to the next connected virtual object
after selecting the mapped device from the mapping list. The actuating device performed the desired
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operation and acknowledgment message is sent to the client application. The process continues until
the device activation time is over. Connectivity information for a particular virtualized IoT network is
purged from mapping list when its activation time is over.

Client 

Application

Virtualization 

Server
IoT DevicesControllerUser

Registration Request

Create device VO

Registration Ack

Specify IoT 

devices criteria

IoT devices criteria

IoT devices criteria

VOs list

VOs listConfigure desired 

settings

user settings
establish dynamic 

interconnection
Activate selected 

IoT devices

Ack message

Ack message

sensing data

select mapping device(s)

send actaution 

command(s)

perform desired operation(s)

Deploy settings

loop

until device 

activation time

Figure 8. Operational sequence diagram of IoT network virtualization, formation and operation.

Figure 9. Typical IP camera profile (XML view).

3.1. Master Mapping Table and Flow Tables

In the proposed setup, the virtualization server stores the virtual objects of all connected IoT
devices. The Controller can be hosted on the same server, or deployed on a separate server if
needed. Virtualization server provides virtual representation for registered IoT devices in the form of
virtual objects, whereas the controller module interacts with clients to manipulate connectivity among
virtual objects as desired by clients. Table 1 is the master table maintained at the controller module
containing all information about the virtual IoT networks established in the cloud for a typical scenario
given in Figure 7. Two applications are using the virtual objects in the virtualization layer and the
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communication flow for each virtual IoT network is indicated with a different color. As shown in
Figure 7, some virtual objects are shared by the two applications e.g., VS21 and VA22 are being used
by both applications. Two entries are done for VS21 in the master mapping Table 1 (i.e., Entry ID 1010
and 1011) to handle and generate packets for both applications.

Table 1. Controller master mapping table with sample entries for general scenario given in Figure 7.

Entry
ID

Network
ID VO ID Source

ID
Target

ID
Received

From
Set

Source ID
Set Target

ID
Send

To
Entry
Type Expiry Time

1001 vIoTNet-1 VS11 - - S11 S11 A22 VS14 Event 11 October 2018 14:00
1002 vIoTNet-1 VS14 S12 A15 VS12 - - VA15 Event 11 October 2018 14:00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1010 vIoTNet-1 VS21 - - S21 S21 A22 VA22 Event 11 October 2018 14:00
1011 vIoTNet-2 VS21 - - S21 S21 A24 VS23 Periodic 15 October 2018 05:00
1020 vIoTNet-2 VS23 S21 A24 VS21 - - VA24 Periodic 15 October 2018 05:00
1021 vIoTNet-2 VA24 S21 A24 VS23 - - A24 Periodic 15 October 2018 05:00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each entry is uniquely identified with an ID, i.e., entry ID. Every entry in the master table
represents the linkage between two real/virtual objects and will belong to a particular virtual IoT
network having a unique network ID. This table contains master information about the connectivity
among the virtual objects and connectivity information of an individual virtual object is identified with
the field ’VO ID’. Every packet generated in this virtual IoT network architecture may be destined for a
single/multiple target nodes. Source and Target ID indicate the origin and destination for a particular
communication flow. When a virtual object receives a packet from a real device, then it sets the source
and target ID as per rules specified by the master mapping table. The field “received from” is used to
identify the previous hop of the packet so that it can forward the packet to the next node as identified
by the “sent to” field. The entry type field indicates the type of data flow, e.g., event-based, periodic,
etc. Expiry time indicates the validity time of a virtual IoT network and all the entries will be purged
when its validity time expires.

Sample entries in the flow table for VS21 shown in Figure 7 are given in Figure 10. This virtual
object is shared by the two applications. A separate entry is made for each application to specify
flow rules for data forwarding at the virtual object level. Let us suppose that application 1 builds an
event-based system, and its rule will be triggered if the sensor data value is greater then a certain
threshold. For a second application, we assume a periodic control system that sends a command to
actuator after a regular interval of 0.1 s in this example. When the data packet is received at the virtual
object from the real sensor, then its source and target ID fields are set. A single packet received at the
virtual object can be forwarded to multiple target nodes by having multiple entries in the flow table.
Furthermore, if the flow entry is of an event type, then the condition field is checked if true and then a
corresponding action is taken. If flow entry type is periodic, then the interval field is used to set the
timer for the next packet transmission.

Figure 10. Virtual sensor VS21 flow table with sample entries for a general scenario given in Figure 7.
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3.2. Use Case Scenarios

In the following sub-sections, we present three different use case scenarios to illustrate the
working and utility of the proposed IoT network virtualization concept. In each scenario, we present
a particular application scenario that requires some specific type of connectivity among related IoT
devices. Through these examples, we will explain how a virtualized IoT network is established among
corresponding virtual objects to achieve the desired application objective.

3.2.1. Scenario 1

In this example, we consider a simple scenario where a user wants to develop an IoT based
automatic door opening application in a small living area that consists of three rooms. For simplification,
we consider two types of IoT devices in this network, i.e., motion sensor and door actuator as given
in Figure 11. We have a motion sensor deployed at the door of every room and door opening and
closing is controlled by a corresponding actuator. A total of six virtual objects need to be created at the
virtualization layer. This scenario requires a direct one-to-one connection between IoT devices through
virtual objects based on simple rules using condition/action. A user can get a virtual list through a
client application interface and specify desired connectivity among corresponding sensor and actuator.
Users can also specify simple rules indicating a sensitivity level of motion sensing to activation of a
door opening actuator. After deployment, the controller will update settings of each virtual object to
establish desired connectivity settings among related virtual objects and activation commands will
be sent to motion sensors. The motion sensor will start sending motion sensing data at a designated
interval to a corresponding virtual object where simple rules will be applied to determine whether or
not to send activation commands to door opening actuators.
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Figure 11. An application scenario for virtualized IoT network formation having one-to-one device
connectivity.
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3.2.2. Scenario 2

In this case, we consider an example scenario where the client wants to develop an IoT based fire
safety application in a small living area that consists of three rooms. For simplification, we consider
three types of IoT devices in this network i.e., smoke sensor for fire detection and two actuators i.e.,
alarm and sprinkler. We have a smoke sensor and sprinkler deployed inside every room and alarm
is installed in the corridor as shown in Figure 12. For this scenario, a total of seven virtual objects
are needed to be created at the virtualization layer. The user can get a virtual objects list through a
client application interface and specify desired connectivity among corresponding sensors and actuators.
Users can also specify simple rules indicating the sensitivity level of smoke sensing for activation of a
corresponding sprinkler and alarm. After deployment, the controller will update settings of each virtual
object to establish desired connectivity settings among related virtual objects as shown in Figure 12
and activation commands will be sent to smoke sensors. The smoke sensor will start sending smoke
sensing data at the designated interval to a corresponding smoke sensor virtual object where simple
rules will be applied to determine whether or not to send activation command to sprinkler and alarm
actuator. This scenario requires complex interconnection between IoT devices through virtual objects
by establishing one-to-one and many-to-one interconnections. One-to-one connectivity is established
between the smoke sensor and corresponding sprinkler, whereas all smoke sensors are also connected
to a single alarm actuator which requires a many-to-one type of connectivity. Application logic for this
scenario is expressed in the application layer where its implementation is realized in the virtualization
layer through the establishment of a virtualized IoT network among related virtual objects.
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Figure 12. An application scenario for virtualized IoT hybrid network formation having one-to-one
and many-to-one device connectivity.

3.2.3. Scenario 3

This scenario requires complex interconnection between IoT devices through virtual objects by
performing various data fusion, integration and aggregation operations. This scenario is different from
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the other two cases as here certain virtual objects have the capacity to both receive and send the data.
An example application scenario is given in Figure 13 to better explain this scenario. In this case, the
client wants to develop an IoT based indoor environment application in a small living area that consists
of a big hall. The user wants to control indoor temperature, lighting and air quality using this smart
application. For simplification, we consider six different types of IoT devices in this network, i.e., three
sensors—temperature sensor, illumination sensor and CO2 sensors, and three actuators i.e., AC/heater,
lights, and two fans. The user needs to specify the desired range for indoor temperature, illumination,
and air quality. AC will be operated if the indoor temperature is above the desired range to cool down
the indoor environment and the heater will be operated if the indoor temperature is below the desired
range to heat the indoor environment. Similarly, if the indoor illumination level is below the user desired
range, then electric bulbs will be turned on. Likewise, if indoor air quality is getting worse (more CO2

concentration than specified level), then the fan will be operated to maintain air quality.

Figure 13. An application scenario for virtualized IoT complex network formation.

For this scenario, a total of seven virtual objects are needed to be created at the virtualization
layer as shown in Figure 13. The user can get a virtual objects list through client application interface
and specify connectivity among corresponding sensors and actuators to achieve the desired objective.
The user can also specify simple rules as per the desired range for each indoor parameter for activation
of corresponding actuating devices. After deployment, the controller will update settings of each
virtual object to establish desired connectivity settings among related virtual objects as shown in
Figure 13 and activation commands will be sent to sensors. Sensors will start sending sensing data
about the indoor environment at the designated interval to the corresponding sensor virtual object. As
per virtual IoT configuration, all sensing virtual objects will forward the data to a designated fan virtual
sensor where simple rules will be applied to determine whether or not to send activation command to
each actuator. This scenario requires the establishment of many-to-one and one-to-many connectivity
between sensors and actuator virtual objects. Application logic for this scenario is expressed in
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the application layer where its implementation is realized in the virtualization layer through the
establishment of a virtualized IoT network among related virtual objects.

4. Implementation Design

We have configured a hybrid network simulation setup in OMNeT++ for virtual objects network
simulation as shown in Figure 14. OMNeT++ stands for Objective Modular Network Testbed in C++
and it is a very popular simulator for discrete event simulation [39]. We can also perform network
simulation in OMNeT++ by using an INET framework (open-source). This package includes different
protocols for communication networks (wired, wireless and mobile networks) [40]. In this paper,
we have used OMNeT++ 5.2 with the INET framework version 3.6.

We have developed three application layer protocols in OMNeT++ for Client, Server and IoT devices
in our network. The directory structure of these protocols in the OMNeT++ environment is shown in
Figure 14. The server system has virtualization application protocol VirtualizationServerApp, IoT device
has IoTDeviceApp protocol at the application layer. Afterwards, we have developed an application layer
protocol for the client IoTClientApp to send a request to a virtual objects server for configuration of the
desired topology among registered virtual objects to perform the desired operation.

Figure 14. Directory structure of the three protocols in OMNeT++.

4.1. IoT Message Structure

Before presenting the detailed internal structure of these protocols, we first discuss the message
structure that is used in these experiments. Table 2 presents a brief description of various message fields.
Each message has a unique ID for its identification in the simulation environment. In these experiments,
various types of messages are generated, e.g., registration request message, acknowledgment message,
command message, etc. A message type is an integer number indicating the type of message and
Table 3 presents a brief description of the various types of messages used in these experiments. The data
field in the message structure is the most important part of the message structure. Depending upon the
message type, associated message content and information are encoded in this field. The parser is used
to retrieve information from the data at the receiver side. Data field size is variable as a different type
of messages requires different information. The total size of the message is mainly dependent upon
the size of this data field. Next, we present a brief description of the three application layer protocols
used in this study.
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Table 2. IoT message structure.

Message Field Description

messageID Unique ID of message for its identification
type Indicate the type of message (various message types are given in Table 2)
from Address of the originator/source of the message

to Address of the target/destination of the message
sendingTime The time stamp at which the message was sent/generated from source.

data Contains the actual content of message in encoded format.
messageLength The total size (bytes) of message includes header and data contents.

Table 3. Description of various types of IoT messages.

Message Type Description

1 Registration request message from IoT device
2 Registration acknowledgment message from server
3 Command message received from server
4 Sensing data message from IoT device
5 Command data packet from client to actuator IoT device
10 Data request message from client end
11 Acknowledgement message to data request packet from server to client device

4.2. IoTDeviceApp Protocol

IoTDeviceApp is an application layer protocol designed for both sensing and actuating IoT
devices. The directory structure of this protocol given in Figure 14 shows the source files used in its
implementation. IoTDeviceMsg.msg is the message structure file that is automatically compiled by
OMNet++ message compiler. This message structure is shared across all other protocols. This protocol
maintains the necessary information in network description (NED) language as required by the
OMNeT++ simulator. All application logic of this protocol is implemented in C++ language.
This protocol also keeps track of active flows by holding information about the target device, packet
sending interval and flow expiry time. The working flow diagram of this protocol is given in Figure 15.

At simulation startup, IoT nodes perform necessary configuration settings and then sets a timer
for sending registration request. When the registration timer gets expired, OMNeT++ sends a timer
message to the corresponding module as a self message. IoT device generates registration request
message (Type = 1) by encoding its profile information in its data field and then sends this message to
the underlying transport layer protocol for onward transmission to the virtualization server. The timer
is set again to re-transmit the registration request if no acknowledgment is received within a certain
amount of time. Upon reception of an external message, first, we check if it is a self message (timers)
or an external message and then it is processed accordingly. When a registration acknowledgment
message (Type = 2) is received, then device updates its internal settings as registered and cancels the
previously set timer to avoid the re-transmission of registration request.

Afterwards, the IoT device may receive an external command message (Type = 3) from the
virtualization server to initiate data transmission at a specified sending rate. The message is parsed
and active flow is generated and its expiry timer (flow timer) is set. Then, the first data packets
(Type = 4) are sent and the sensing timer is set to continuously send packets. If the IoT device is an
actuating device, then it may receive a control message (Type = 5) from a virtualization server to
perform a designated operation.
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Figure 15. Working flow diagram of IoT device protocol for virtual IoT network simulation.

4.3. VirtualizationServerApp Protocol

VirtualizationServerApp is an application layer protocol designed for IoT virtualization server
node. The directory structure of this protocol given in Figure 14 shows the source files used in
its implementation. Application logic of this protocol is implemented in C++ language, whereas
information about the active IoT devices is stored in a data structure. Active IoT devices are those
devices that are currently used in some virtualized IoT network and have active communication flows.
Profile information of a registered IoT device is also maintained. The working flow diagram of this
protocol is given in Figure 16. At simulation startup, the virtualization server performs necessary
configuration settings and then waits for an external message either from IoT devices or clients. Three
types of messages are expected at the virtualization server (a) Registration request message (Type = 1),
which results in the creation of virtual objects for corresponding IoT devices after necessary validation
followed by sending an acknowledgment message; (b) a request message from client application
(Type = 10) for the establishment of a virtualized IoT network through selection of desired virtual
objects. The activation command is sent to the selected IoT device to initiate data transmission.
Acknowledgment is sent to a client application; (c) sensing message (Type = 4) from activated IoT
devices for onward forwarding to the corresponding target IoT device after verification.
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Figure 16. Working flow diagram of virtualization server protocol for virtual IoT network simulation.

4.4. IoTClientApp Protocol

IoTClientApp is an application layer protocol designed for IoT client devices. This protocol allows
the user to get the desired virtual objects list from the virtualization server and specifies required
network topology settings by mapping corresponding virtual objects.

The working flow diagram of this protocol is given in Figure 17. Before the simulation start-up,
we specify the request sending time for the client device in a simulation initialization script file
i.e., omentpp.ini. At simulation startup, the client device performs necessary configuration settings
and then sets a timer for sending virtualized IoT network formation request (Type = 10). When the
request timer gets expired, OMNeT++ sends a timer message to the corresponding module as a self
message. The client device generates a request message (Type = 10) by encoding its desired virtualized
network topology information in its data field and then sends this message to the underlying transport
layer protocol for onward transmission to the virtualization server. The request timer is set for its
re-transmission if no acknowledgment is received from the server within the specified time. After the
reception of the acknowledgment message, the client device stores requested mapping information in
its database. A mapping timer is also set to purge the corresponding mapping entries from its data
store when it is no longer needed. A copy of the sensing and control message is also sent to the client
device by the virtualization server to keep its status updated.
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Figure 17. Working flow diagram of an IoT client device protocol for virtual IoT network simulation.

For the sake of illustration, a graphical view of nodes internal layered architecture is highlighted in
Figure 18 (red rectangle for virtualization server, blue rectangle for client device, and yellow rectangle
for IoT node). At the virtualization server, an instance of the VirtualizationServerApp protocol is used at
the application layer. Likewise, instances of IoTClientApp and IoTDeviceApp protocol are used at the
application layer of client device and IoT nodes, respectively.

In the beginning, IoT devices are associated with designated gateway nodes. Then, all IoT devices
send registration requests to virtualization servers through the gateway node. IoT node color indicates
its registration status i.e.,

• Red: request not yet sent,
• Yellow: request sent,
• Green: registered.

Registration request contains corresponding IoT device profile information. Upon registration,
the virtualization server creates a virtual object (VO) for each IoT device to hold its profile information
which is also used for onwards communication and control with/of corresponding IoT devices.
Screen-shot given in Figure 18 is taken when the registration process of all IoT devices was completed
and the activation command message is sent by a virtualization server to an IoT device. Furthermore,
the tag on the application layer also indicates that 20 IoT devices are registered at the virtualization
server (Registered VOs = 20). Similarly, the tag on the application layer of the IoT device is changed
to Registered = yes indicating its registration with the server is successfully completed. After
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registration, virtualization servers can receive requests from client devices and send various commands
to registered IoT devices using its VO e.g., to get its operational status, to initiate data transmission,
etc. Data transmission is initiated through a request sent by Client to VirtualizationServerApp using
indicated part in an omnetpp.ini file as given in Figure 19.

Figure 18. Client, IoT device and virtualization server internal protocol stack.

Figure 19. Simulation configuration for virtualization server, IoT client, sensors and actuators.
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5. Simulation Design and Results

In the following sub-sections, we present our simulation settings and evaluation results of the
proposed IoT network virtualization scheme. Among the various use case scenarios, we have selected
a simplified one-to-one scenario where a virtualized IoT network is formed to establish a dynamic
one-to-one communication link between selected sensor and actuators. A detailed discussion about
selected scenarios’ configuration and network parameters are presented in the next sub-section.

5.1. Simulation Scenario and Parameters

We performed a set of experiments with a fixed number of IoT devices in the network with
varying packet sending rates. Figure 20 shows the simulation scenario used in these experiments.
We have considered two domains (A and B) with 30 IoT devices in each domain. All IoT devices in a
particular domain are connected with the virtualization server through a local gateway node using a
wireless link with data rate 54 Mbps. Gateway nodes are connected to the virtualization server over a
100 Mbps wired link through intermediate routers over the internet.

Figure 20. An IoT network virtualization simulation scenario in OMNET++.

During simulation start-up, all IoT devices send a registration request containing its profile
information to a pre-configured virtualization server. Virtual objects are created for every connected IoT
device. Afterwards, client node “ioTClient1” sends a request to the virtual server for the generation of a
virtualized IoT network. The client desired topology is created by creating a virtual IoT network among
selected virtual objects. In these experiments, a simple use case scenario is simulated by creating five
dynamic connections (one-to-one) between five pairs of sensors and actuators. Sensors from domain A
are connected to the actuators in domain B. Afterwards, sensors are activated to start sending data at a
specified data rate that is received by corresponding virtual objects and then forwarded to associated
actuators through device mapping. Five flows are generated to establish one-to-one communication
between sensors from domain A to actuators in domain B. Results are collected with varying data sending
rates of 80, 100 and 120 packets/s per flow. The packet size used in these experiments is 1000 Bytes.
Table 4 presents the configuration for various parameters used in simulation.

We have selected three parameters for performance analysis of the proposed system through
simulation i.e., end-to-end delay, throughput and packet delivery ratio to study the impact of varying
data sending rate on these metrics. End-to-end delay is computed by measuring the total time taken
for receiving data packets from the sensing device and sending actuation command to an associated
actuating device. In other words, end-to-end delay is the difference between the time at which a
sensing message was generated and the time at which an actuation command was received at a target
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actuating device. Throughput is the total data received at target IoT devices in per unit time from all
sources i.e., active IoT devices. Packet delivery ratio is the percentage ratio between the total number
of received data packets and the total number of data packets generated in the network.

Table 4. Simulation parameters.

Parameter Value/Range

IoT Device(s) Virtualization Server Client Device

Nodes count 60 1 1
Application-Layer IoTDeviceApp VirtualizationServerApp IoTClientApp

Size of Packet 1000 Bytes N/A N/A
Sending rate of Packets (per node) 80, 100, 120 pkts/s N/A NA

Transport-Layer UDP Protocol
Routing-Layer Static IP Protocol

MAC-Layer IEEE 802.11 Ethernet Ethernet
Bit-Rate 54 Mbps N/A N/A

Wireless Communication Range 100 m N/A N/A
Size of Area 1000 m2

Nodes Mobility Static
Simulation Duration 20 s

5.2. Results and Discussion

Impact of growing network size on throughput can be evaluated in two different ways: (a) increase
data rate i.e., packets/sec while keeping the number of sources fixed; (b) increase number of sources
i.e., active IoT device to generate more data in the network. We have used the first approach in this
study to evaluate network performance in terms of throughput. For these experiments, we have
considered a fixed network of 60 nodes with five sources i.e., active IoT devices. The same experiments
were repeated (five times) with varying data rates of 80, 100 and 120 packets/sec and the average
results for throughput and end-to-end delay are reported in Figures 21 and 22. These results show
the observed variation in throughput and delay during simulation time. With five sources, data rate
of 80 packets/sec and packet size of 1000 bytes, the total data generated in the network becomes
5 × 80 × 1000 × 8 ÷ 106 = 3.2 Mbps.

Figure 21. Throughput results.
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Figure 22. End-to-end delay results.

The mean value of throughput computed at all target actuating IoT devices through simulation
was also around 3.2 Mbps with a standard deviation of 0.02 Mbps as shown in Table 5. It means
that, with a data rate of 80 packets/sec, the packet delivery ratio in the network was 100%, which is
confirmed from the packet delivery ratio graph given in Figure 23.

Figure 23. Packet delivery ratio results.

Moreover, throughput results with 80 packets/s are quite stable and there is no variation showing
that all data packets are smoothly delivered. Minor variations in end-to-end delay results for data
sending rate of 80 packets/s as shown in Figure 22 also indicate the there is no congestion in the
network. The mean value of end-to-end delay for data sending rate of 80 packets/s was recorded
as 3.94 ms with a standard deviation of 3.25 ms. When the packet sending rate was increased, i.e.,
100 packets/s, we get data throughput around 3.99 Mbps, whereas data generated in the network
was 4 Mbps. Variations in the throughput results for data sending rate of 100 packets/s given in
Figure 21 also show that the network is getting congested and packet delivery ratio is slightly reduced
as shown in Figure 23. Furthermore, end-to-end delay results for 100 packets/s given in Figure 22
also experience higher variations as compared to delay results for 80 packets/s. The mean value of
end-to-end delay for data sending rate of 100 packets/sec was recorded as 6.38 ms with a standard
deviation of 4.51 ms which is an almost 60% increase as compared to delay with data sending rate of
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80 packets/s. Furthermore, an increase in data rate to 120 packets/sec results in mean throughput
results of 4.39 Mbps, whereas data generated in the network is 4.8 Mbps. Higher fluctuations in
throughput results are observed as shown in Figure 21. This is an indication of network congestion
and Figure 23 shows significant degradation in packet delivery ratio with an increase in the data
sending rate. Similarly, higher fluctuations were recorded in end-to-end delay results for 120 packets/s
as given in Figure 22. The mean value of end-to-end delay for data sending rate of 120 packets/s
was recorded as 13.46 ms with a standard deviation of 8.38 ms, which is an almost 240% and 110%
increase as compared to delay with data sending rate of 80 and 100 packets/s. A statistical summary
of throughput and end-to-end delay results are presented in Tables 5 and 6, respectively.

Table 5. Statistical results of throughput (Mbps).

Packet Sending Rate

Statistics 80 pkts/s 100 pkts/s 120 pkts/s

Mean 3.2 4 4.39
Stdev 0.02 0.07 0.21
Min. 0.48 0.24 0.32
Max. 0.8 1.28 1.44

Table 6. Statistical results of End-to-End Delay (msec).

Packets Sending Rate

Statistics 80 pkts/s 100 pkts/s 120 pkts/s

Mean 3.94 6.38 13.46
Stdev 3.25 4.51 8.38
Max. 42.9 45.67 73.65
Min. 0.13 1.05 0.13

Upon investigation, it was revealed from simulation trace files that, with an increase in the data
sending rate, most of the packets get dropped at the MAC layer of IoT sensor nodes. Packets are
dropped because nodes are unable to get access to the shared wireless channel due to contention.
This is due to the fact that all IoT devices are using a single gateway node that is overloaded.
Simulations results reveal that, with growing network size and data load, the gateway node becomes
the performance bottleneck. To further validate this assertion, we have conducted another set of
simulations with varying gateway nodes for similar network conditions. With an increase in packet
sending rate, packet delivery ratio results are degraded for a single gateway node as shown in Figure 24.
Significant improvement in packet delivery ratio can be observed when multiple gateway nodes are
used for data rate 120 packets/s. Similarly, the mean value of end-to-end delay is reduced from
13.46 ms (with single gateway node) to 6.82 ms and 4.12 ms (with two and three gateway nodes),
respectively as shown in Figure 25. In other words, a significant reduction in the end-to-end delay is
observed with multiple gateway nodes i.e., 49.33% and 69.39% reduction with two and three gateway
nodes, respectively, when compared to the results of the single gateway node. In extreme network
conditions, we may have to sacrifice fewer bits, which is in fact worth nothing when compared to the
flexibility and control offered by a proposed system over registered IoT devices.
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Figure 24. Packet delivery ratio results with varying gateway nodes.

Figure 25. End-to-End delay results with varying gateway nodes.

5.2.1. Analysis of Virtual Objects’ Resources Requirements

Typical representation of virtual object profile (IP Camera in this example) is given in Figure 9.
The structure of virtual object profile will remain the same; however, memory requirement may vary
depending upon the recorded properties of registered IoT devices. To study memory requirement
at virtualization servers for registered virtual objects, we have conducted another set of experiments
with growing network size. In these experiments, we consider seven different types of IoT devices
i.e., serve motor, camera, temperature sensor, axis sensor, green led, buzzer, and light sensor where
memory requirement for virtual object profile of each type device is 154, 170, 122, 122, 122, 122,
106 bytes, respectively. Results are collected from multiple simulation runs with a growing number of
IoT devices from 200-to-1000 (step-size 200). In each experiment, IoT devices of aforementioned types
were created through uniform distribution. After completion of registration process of all IoT devices
at the virtualization server, we have recorded memory requirements for holding virtual objects’ profile
information and the average results are presented in Figure 26.
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Figure 26. Analysis of memory requirements with a growing number of IoT devices.

It can observed that, with a growing number IoT devices in the network, memory requirements at
a virtualization server also exhibit linear growth. However, depending upon the type of operation that
we want to perform, computation requirements will be completely different. In these experiments,
we have considered simple operations having computation complexity between O(n) and O(n2).
In the future, we will implement complex operations that will require more computation resources
and conventional approaches will not be scalable when performed on a large scale with millions of
registered IoT devices. This will certainly require intelligent and distributed solutions.

5.2.2. Analysis of Control Overhead

The proposed system generates various control packets in the network that includes initial
registration packets, a command message to initiate and terminate various active flows in the network,
and periodic status inquiry messages for registered IoT devices. To analyze overhead traffic due to
a centralized virtualization server, we have conducted several sets of experiments. Experiments are
performed with varying data sending rates and network size. We have used a normalized control
overhead (NCO) metric to quantify network overhead of the proposed system. NCO is the ratio
between total number of control packets and total number of data packets generated in the network.
Mathematically, NCO can be computed as below:

NormalizedControlOverhead(%) =
Controlpackets

Datapackets
× 100. (1)

As given in Equation (1), this metric gives us the overhead in terms of control packets required
for generating 100 data packets. Control packets generated in the network mainly depends upon the
number of active flows and network size, while NCO also depends upon two factors i.e., data packets
and control packets. NCO will increase if the network size is growing without an increase in the data
sending rate or active flows. The same behavior can be observed in the experimental results presented
in Figure 27a. The data sending rate and number of active source nodes are kept fixed; therefore, data
packets generated in the whole network remain the same. However, the number of network control
packets will increase with growing network size. Therefore, linear growth in NCO was observed
with growing network size. With a network of size 180 IoT devices, the recorded value of NCO i.e.,
16 (approximately) indicate that a proposed system generates around 16 control packets for every
100 data packets. However, with growing network size, an increase in data rate is also expected, which
will then compensate for increasing control overhead. This assertion is validated through another set
of experiments with a network of 60 IoT devices and a growing data sending rate. More data packets
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are injected into the network with an increase in data sending rate and the number of control packets
remaining the same. This results in a decrease in NCO as shown in Figure 27b.
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Figure 27. Simulation results with five active sources sending data@100 packets/s.

6. Conclusions and Future Work

This paper presents an idea of IoT network virtualization in the cloud environment. We have
conducted performance analysis of the proposed system by implementing three application layer
protocols in an OMNeT++ simulator. Various experiments are conducted with varying network sizes
and packet sending rates. Simulation results indicate that, when the network traffic grows beyond
a certain threshold, gateway nodes then become the performance bottleneck. Utilization of multiple
gateway nodes can significantly improve the network performance in such conditions. Other solutions
include improvement in wireless connectivity protocols for IoT devices. Traffic congestion can be
avoided by dynamically adjusting the sensors’ data sending rate through performing optimization at the
virtualization server. In the proposed system, we have used simple virtual objects to create a virtual IoT
network by performing a rule-based operation. In the future, we will extend this work by enhancing the
capabilities of virtual objects for supporting complex interconnection among IoT devices through logical
and service objects based on intelligent processing along with historical data stored in the data store. We
are also looking forward to integrating this system with an IoT based application development tool and
incorporating a security module. This will enable common users to rapidly build their customized IoT
based applications by a quick selection of desired devices and services.
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