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Abstract: Ibuprofen is a non-steroidal, anti-inflammatory drug that is widely prescribed for its anal-
gesic, antipyretic, and anti-inflammatory actions to treat pain, symptoms of rheumatoid arthritis
and fever, but it is also known to cause stomach-related side effects. The development of efficient
drug delivery systems for this compound to prevent these side effects is hampered by its poor water
solubility. In this work, we show that graphite oxide and its derivatives have great potential as effec-
tive drug delivery systems not only to overcome side effects but also to increase the short biological
half-life of ibuprofen. We studied the adsorption capacity of graphite oxide and carboxylated and
sulfonated graphene oxide for this drug and its release in simulated gastric and intestinal fluid. The
obtained compounds were characterized by X-ray diffraction, thermogravimetric analysis and Fourier
transform infrared spectroscopy. DFT calculations were conducted to elucidate the Ibuprofen/host
interactions, to establish which properties of these carbon nanomaterials control the loading and
release, as well as to provide a better understanding of the orientation of the drug molecules on the
single-layer GO.

Keywords: graphene oxide; ibuprofen; release study; theoretical calculations; intercalation

1. Introduction

The efficacy of a drug delivered orally to the gastrointestinal tract depends on multiple
factors that restrict its performance. Such drawbacks can be the lack of bioavailability of
the drug, which may derive from low solubility or dissolution rate [1]. Almost 40% of new
drugs released face severe problems due to poor solubility and bioavailability [1,2], leading
to ineffective therapies or undesirable side effects caused by increasing the drug dose to
overcome these issues. Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) that
is also an antipyretic analgesic. In many cases, its use is limited by the very common
undesirable gastrointestinal side effects (>1/10 patients). Ibuprofen belongs to the category
of hydrophobic drugs, and consequently, enhancing its solubility is of great importance. A
solution to overcome these obstacles is to employ nanometer-sized delivery systems, able
to carry the drug in high concentrations so as to retain the delivery profile while avoiding
solubility and toxicity problems.

A plethora of drug delivery systems have been proposed to ensure a controlled
release rate and targeted delivery [3]; in fact, proteins, lipids, polymers, and organic and
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inorganic materials have been investigated for this purpose [4,5]. Among them, carbon-
based materials are an important class of drug carriers. Elemental carbon possesses multiple
allotropic forms and arrangements depending on the type of hybridization (sp3, sp2, sp).
This leads to structures with specific dimensions and shapes such as graphite, carbon
nanotubes, nanodiamonds, fullerenes, graphene, and many others, which, in combination
with excellent physicochemical properties [6], good biocompatibility [7] and an easily
accessible and functional surface area [8], occupy a distinctive position as nanomedical
scaffolds compared to other drug delivery systems.

Graphite oxide (GO) is ideal as a drug carrier [9–12] because it is decorated with
various oxygen-containing moieties that assure solubility and can be exploited for function-
alization. It possesses a two-dimensional planar structure with a delocalized π electrons
system, is chemical stable, has a large surface area (500 m2/g) [13] and can interact with
plenty of biomolecules [14,15]. Graphite oxide can accommodate aromatic drugs such as
ibuprofen through hydrophobic and π–π interactions [16]. GO and its derivatives with
various surface groups for interaction with proteins, genes, drugs, DNA, and antibodies
have been shown to have great potential for diagnostics and treatment processes [17–19]
related, e.g., to cancer therapy [20,21], antitumor activity [22,23], and gene delivery [24,25].

The aim of this work was, therefore, to find out if controlling the release of ibuprofen
(IBU) (Figure 1) while overcoming its side effects and increasing its short half-life (1.8–2.0 h)
can be added to the potential applications for these carbon structures. More specifically, the
intercalation of ibuprofen into graphite oxide (GO), sulfonated graphite oxide (GO_OSO3H)
and carboxylated graphite oxide (GO_COOH) was studied, and the efficacy of these
nanomaterials as delivery systems for ibuprofen was determined. The amount of ibuprofen
absorbed in each case was determined from UV–Vis measurements, and the release of the
drug in simulated gastric and intestinal fluids was investigated.

Figure 1. Structure of 2-(4-isobutylphenyl)-propionic acid (H18C13O2) or ibuprofen: (left) 2D chem-
ical structure with atom numbering; (right) 3D space-filling model of the B3LYP-optimized, most
stable conformer.

Knowing the superior properties of graphene and graphene oxide as ideal systems
for a broad range of biomedical applications (including drug delivery nanocarriers), in
this work we wanted to focus on the abilities of graphene to improve its therapeutic
profile as an efficient drug carrier by applying carbon chemistry. Three different graphene-
based nanomaterials with different functional groups on their surfaces were effectively
synthesized to study their behavior on the adsorption of ibuprofen. This study will pave
the way for future biomedical studies on different carbon-based materials.

2. Materials and Methods
2.1. Preparations of Materials
2.1.1. Preparation of Graphite Oxide (GO)

The oxidation of graphite was performed by adding 5 g of powdered graphite (purum,
powder ≤ 0.2 mm, Fluka) to a mixture of concentrated sulfuric acid and nitric acid (200 mL,
95–97 wt.% and 100 mL, 65 wt.%, respectively) while cooling in an ice-water bath for 20 min.
Thereafter, 100 g of powdered KClO3 (Fluka) were added to the mixture in small portions
under vigorous stirring. The reaction was completed after 18 h by pouring the mixture
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into ultrapure water, and the product was washed until the pH reached 6.0. Finally, the
obtained sample was dried at room temperature [26].

2.1.2. Preparation of Sulfonated Graphite Oxide (GO_OSO3H)

In a spherical flask, 6 g of graphite oxide and 300 mL sulfuric acid with concentration of
95–97% were combined, and the mixture was stirred for 3 days under nitrogen atmosphere.
Thereafter, the mixture was placed in an ice bath and 600 mL of anhydrous diethyl ether
were added in small portions under vigorous stirring. The sample was centrifuged and
washed twice with diethyl ether before being dried in vacuum at 40 ◦C overnight [27].

2.1.3. Preparation of Carboxylated Graphite Oxide (GO_COOH)

Five hundred milligrams of graphite oxide were dispersed in 250 mL of distilled water
by stirring. Twenty-five grams of ClCH2COOH and 30 mL of NaOH (1M) were then added,
and the mixture was sonicated for 3 h. After that time, an aqueous HCl solution (1M)
was added in small portions until the pH value reached 7. The resulting mixture was
centrifuged and washed with distilled water before being dried at room temperature [28].

2.1.4. Intercalation of Ibuprofen into Graphite Oxide (GO), Sulfonated Graphite Oxide
(GO_OSO3H) and Carboxylated Graphite Oxide (GO_COOH)

In the effort to study graphite oxide as an efficient drug delivery system for ibuprofen,
180 mg of IBU was dispersed in 10 mL of EtOH (absolute) and 300 mg of GO in 30 mL
of distilled water. The two dispersions were mixed, and the mixture stirred for 24 h
while heating at 50 ◦C. The solid part was separated by centrifugation (4000 rpm, 30 min),
and the supernatant was filtered through a Millipore filter (0.45 µm FG). The resulting
sample was denoted by IBU/GO. The above synthetic procedure was also followed for
sulfonated and carboxylated graphite oxide [29]; the resulting samples were denoted
by IBU/GO_OSO3H and IBU/GO_COOH. In each case, the IBU concentration in the
supernatant was determined via UV–Vis spectroscopy at λ = 222 nm after dilution, while
the intensity of the same absorption peak was determined for pure ibuprofen as a reference.

2.2. In Vitro Drug Release of Ibuprofen

One hundred milligrams of either IBU/GO or IBU/GO_OSO3H or IBU/GO_COOH
and 50 mL simulated gastric fluid were added into dialysis membrane bags. The membrane
bags were sunk in 200 mL gastric fluid (Sigma-Aldrich, St. Louis, MO, USA), and the
beakers were placed in an isothermal shaker bath at 37 ◦C, where they were continuously
shaken for 24 h. Three milliliters of the dissolution media were sampled for the UV–Vis
measurements to determine the percentages of the released Ibuprofen as explained above.
Immediately after taking these samples, the dissolution media were refilled in order to keep
the volume constant. Measurements were taken every 30 min. The procedure was repeated
with simulated intestinal fluid (Sigma-Aldrich) in place of the gastric fluid to monitor the
drug release from these nanomaterials in that medium.

2.3. Characterization Techniques

The XRD patterns were collected on a D8 Advance Bruker diffractometer by using Cu
Kα radiation (40 kV, 40 mA) and a secondary beam graphite monochromator. The patterns
were recorded in the 2-theta (2Θ) range from 2 to 80◦, in steps of 0.02◦ and a counting
time of 2 s per step. Samples were in the form of films supported on glass substrates. For
the preparation of the films, aqueous suspensions of the hybrids were deposited on glass
plates and the solvent was allowed to evaporate slowly at ambient temperature. Infrared
spectra in the region of 400–4000 cm−1 were measured with a PerkinElmer Spectrum GX
infrared spectrometer, equipped with a deuterated triglycine sulphate (DTGS) detector.
Each spectrum was the average of 64 scans collected with 2 cm−1 resolution. Samples were
in the form of KBr pellets containing ca. 2 wt.% sample. Thermogravimetric (TGA) and
differential thermal (DTA) analyses were performed using a PerkinElmer Pyris Diamond
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TG/DTA. Samples of approximately 5 mg were heated in air from 25 ◦C to 850 ◦C, at a
rate of 5 ◦C/min. UV–Vis spectra were collected on a Shimadzu UV-2401PC two-beam
spectrophotometer in the range of 200–800 nm, with steps of 0.5 nm, using a combination
of deuterium and halogen lamps as sources. Atomic force microscopy (AFM) images were
recorded in tapping mode with a Bruker Multimode 3D Nanoscope, using Tap-300G silicon
cantilevers with a tip radius of <10 nm and a force constant of ≈20–75 N m−1. Samples
were deposited onto silicon wafers (P/Bor, single side polished, purchased from Si-Mat)
from water dispersions by drop casting.

2.4. Computational Methods

DFT calculations were performed adopting the Becke, 3 parameters, Lee−Yang−Parr
(B3LYP) hybrid functional [30,31]. B3LYP is still recognized as one of the most widely used
and well-balanced functionals since its accuracy is warranted by the enormous database
of results accumulated over the years. All calculations were carried out by means of the
Gaussian 09 Quantum Chemistry Package [32], and the stable geometries were calculated
with a tight criterion geometry optimization. For all calculations and all involved atoms,
the standard 3-21G* double-ζ valence basis set [33] with more accurate results on large
systems was used and implemented in the selected geometrical models. The geometry
optimizations were carried out without imposing any symmetry restrictions and followed
by an estimation of vibration fundamentals via harmonic frequency calculations.

Specifically, the graphite surface was modeled by means of a C80H22 cluster that
represents a nanometer-size graphite crystallite (Figure 2). This cluster was used to study
the interaction of the ibuprofen molecule with the single-layer GO. The graphene nanosheet
was represented in the modeling studies by 30 fused benzene rings arranged in a single
atomic layer containing 80 carbon atoms, with the edges saturated by hydrogen atoms,
corresponding to the molecular formula C80H22. It was then treated quantum mechanically
as a single-layer hydroxylated graphene oxide model cluster (C80H30O18) GO, a single-layer
carboxylated graphene oxide model cluster (C80H30O16) GO_COOH, and a single-layer
sulfonated graphene oxide model cluster (C80H30O32S8) GO_OSO3H, calculated at the
B3LYP/3-21G* level of theory. The vibrational modes and the corresponding frequencies
for the GO cluster models with ibuprofen and ibuprofen anion were based on a harmonic
approximation (HO), which was accomplished for all calculated structures using the same
level of theory.

Figure 2. Graphene cluster (C80H22) consisting of 30 rings and saturated with hydrogen atoms
(top view).

After the optimization of the cluster models, ibuprofen was added to the system and
allowed to assume an optimized position by varying the distance between IBU and the
GO models. During structure optimization, only the adsorbed IBU molecule, the terminal
hydrogens of the graphene nanosheet and the –O–, –OH, –COOH and –OSO3H groups,
decorating the surface and the edges of the graphene layers with the corresponding linking
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carbon atoms, were allowed to relax, while the remaining atoms in the atomic layer were
kept fixed at the crystallographic positions.

3. Results
3.1. Material Characterization

Figure 3 displays the FTIR spectra of IBU/GO, IBU/GO_COOH and IBU/GO_OSO3H
together with those of pure IBU and of the host matrices. The characteristic absorption
bands of IBU appear in the spectrum of each loaded matrix, which confirms the successful
inclusion of IBU in all three nanomaterials. More specifically, the band at 1721 cm−1 is
attributed to stretching vibrations of carbonyl groups (C=O), and the bands observed in
the range of 2800–3000 cm−1 are related to the stretching vibration of alkyl groups of IBU.
The band at 1512 cm−1 corresponds to C-C vibrations, whereas the band at 1452 cm−1 is
due to the asymmetric bending vibration of C-H (CH3) and the scissoring vibration of C-H
(CH2). In the region 1100–1300 cm−1, the 3 bands at 1268 cm−1, 1230 cm−1 and 1184 cm−1

are attributed to stretching vibrations of C-O and bending vibrations of O-H [29,34].

Figure 3. FTIR spectra of (a) ibuprofen (IBU), graphite oxide (GO) and the ibuprofen/graphite
oxide composite (IBU/GO); (b) ibuprofen (IBU), carboxylated graphite oxide (GO_COOH) and
the ibuprofen/carboxylated graphite oxide composite (IBU/GO_COOH); (c) ibuprofen (IBU), sul-
fonated graphite oxide (GO_OSO3H) and the ibuprofen/sulfonated graphite oxide composite
(IBU/GO_OSO3H).

The thermogravimetric and differential thermal analyses performed on the ibupro-
fen/graphite oxide composite (IBU/GO) are compared to those of GO in Figure 4. The
TGA curve of GO (Figure 4a) presents a 14% weight loss up to 140 ◦C, indicative of the
desorption of water molecules that had adsorbed on GO during exposure to ambient air.
The DTA curve shows an exothermic peak at 240 ◦C caused by the removal of functional
groups (hydroxyl, carboxyl and epoxy), which is followed by a weight loss of 26 wt.%. A
second exothermic peak is observed at 500 ◦C due to the combustion of the carbon network,
which is followed by the total weight loss of the sample (~60 wt.%) [35]. In the case of
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IBU/GO (Figure 4b), up to 76 ◦C a weight loss of 10% is observed, which corresponds to
the loss of absorbed water, while the mass loss of ~19.8% in the temperature range between
76 and 181 ◦C corresponds to the removal of ibuprofen. The DTA curve presents two
exothermic peaks; the first one at 237 ◦C corresponds to the removal of oxygen groups of
graphite oxide and is followed by a mass loss of ~19.7%. Above 580 ◦C, the decomposition
of the graphitic lattice starts, finally accounting for a weight loss of 49.5%.

Figure 4. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of (a) graphite
oxide (GO), (b) the ibuprofen/graphite oxide composite (IBU/GO).

In Figure 5a, the XRD patterns of ibuprofen (IBU), graphite oxide (GO) and the ibupro-
fen/graphite oxide composite (IBU/GO) are presented. Pure ibuprofen is characterized [29]
by reflections at 2θ = 6.13◦, 16.6◦ and 20.27◦, while GO exhibits the principal 001 reflection
at 11.26◦, corresponding to a basal spacing of 7.85 Å. The diverse oxygen-containing func-
tional groups in the interlayer space of GO adsorb water from the atmosphere, and the
basal spacing varies between 6.1 and 11 Å depending on the amount of water adsorbed [36].
In the case of the composites, all the characteristic IBU peaks appear in the pattern, confirm-
ing that the ibuprofen has been successfully incorporated in GO. Moreover, the peaks at
2θ = 9.14◦ and 11.6◦ allow for conclusions about the way in which the ibuprofen is inserted
between the GO sheets. In fact, the peak at 2θ = 9.1◦ corresponds to the 001 peak, which is
indicative of the intercalation of ibuprofen between the graphene sheets. The interlayer
space increases to 9.68 Å, and from the size of ibuprofen (approximately 1.0 nm in length,
0.5 nm in width and 0.4 nm in height) [37], we can conclude that the molecules are oriented
parallel to the graphene sheets (in agreement with computational results, see below). The
fact that the 001 reflection peak of pure GO is present also for the final material leads us to
conclude that graphite oxide is not fully intercalated with ibuprofen but that large enough
domains of unperturbed GO are present to give rise to diffraction.

In Figure 5b, the XRD patterns of GO_COOH and IBU are compared with that of
IBU/GO_COOH. As for GO, ibuprofen reflections located at 2θ = 6.1◦, 16.6◦, and 20.3◦ [29]
are also distinguishable in the pattern of IBU/GO_COOH and confirm the successful
intercalation of the drug in the matrix. The basal spacing of GO_COOH as deduced from
the reflection at 2θ = 10.7◦ is 8.23 Å [28], while for IBU/GO_COOH the basal spacing
deduced from the peak 2θ = 11.3◦ is 7.85 Å, i.e., smaller than for the matrix alone. This
leads to the conclusion that ibuprofen must be attached to the surface and to the edges
of the GO sheets, creating tensions to the edges, which cause a minor reduction in the
interlayer space of the composite.
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Figure 5. XRD pattern of (a) ibuprofen (IBU), graphite oxide (GO) and the ibuprofen/graphite
oxide composite (IBU/GO); (b) ibuprofen (IBU), carboxylated graphite oxide (GO_COOH) and
the ibuprofen/carboxylated graphite oxide composite (IBU/GO_COOH); (c) ibuprofen (IBU), sul-
fonated graphite oxide (GO_OSO3H) and the ibuprofen/sulfonated graphite oxide composite
(IBU/GO_OSO3H).

The diffraction patterns of IBU, GO_OSO3H and IBU/GO_OSO3H are presented in
Figure 5c. In the pattern of sulfonated graphite oxide, the 002 reflection peak at 2θ = 25.0◦

corresponds to a basal spacing of 3.51 Å. The presence of this peak implies that after
sulfonation, the exfoliated sheets restack through π–π interactions [27]. Again, the peaks
characteristic of ibuprofen are distinguished in the composite. Due to the specific structure
of GO after the sulfonation reaction, interaction with ibuprofen causes its total exfoliation,
as deduced from the absence of the characteristic 001 and 002 peaks. Summarizing XRD pat-
terns from Figure 5, we conclude that IBU released into simulated gastric and intestinal juice
comes from the surface and interlayer space for GO_IBU, while for IBU/GO_COOH the
release comes mainly from the surface but also the intercalated edges of GO_COOH. Finally,
for the GO_OSO3H, the release of IBU comes from the surface of exfoliated GO_OSO3H.

Detailed AFM images of flakes of the different carbon nanostructures are shown
in Figure 6. The average thickness of the flakes was 1.5–2.5 nm as derived from the
topographic height profile (section analysis). The thickness of the un-modified IBU/GO
part in Figure 6a was 2.26 nm and the part of GO modified with ibuprofen had a thickness
of 7.93 nm. Similarly, in the AFM image (Figure 6b) of IBU/GO_COOH, the unmodified
and the IBU-modified part differ in thickness by 9.5 nm, while for IBU/GO_OSO3H,
respectively, the carbon nanosheets of graphene oxide and the their topographical height
are depicted, which indicates the successful modification with -COOH and -OSO3H groups
alongside ibuprofen (Figure 6c).
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Figure 6. AFM cross section analysis of the composites (a) ibuprofen/graphite oxide (IBU/GO),
(b) ibuprofen/carboxylated graphite oxide (IBU/GO_COOH), (c) ibuprofen/sulfonated graphite
oxide (IBU/GO_OSO3H).

3.2. Theoretical Calculations

The optimized ibuprofen−GO structures are shown in Figures 7–9. The cluster model
energies of the GO systems were found to be in close agreement with our experimental results.

3.3. In Vitro Drug Release of Ibuprofen

The amount of IBU loaded in the three graphene-based matrices was estimated by
subtracting the IBU concentration in the supernatant of the GO hybrids (measured by
UV–Vis spectroscopy) from the initial concentration of the drug. The IBU determined in
this fashion amounted to 0.810 mmol/g for IBU/GO, 0.791 mmol/g for IBU/GO_OSO3H
and 0.743 mmol/g for IBU/GO_COOH.
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Figure 7. Optimized geometry (position and orientation) calculated at the B3LYP/3-21G* level of
theory for the adsorbed ibuprofen molecule (side view) on the single-layer hydroxylated graphene
oxide modeled by the depicted cluster (C80H30O18) GO, which contains three anchored COOH
groups on its edge and eight hydroxyl and six epoxy groups divided between the top and bottom
surfaces. DE = −36.5 kcal/mol.

Figure 8. Optimized geometry (position and orientation) calculated at the B3LYP/3-21G* level of
theory for the adsorbed ibuprofen molecule (side view) on the single-layer carboxylated graphene
oxide modeled by the depicted cluster (C80H30O16) GO_COOH, which contains eight anchored
COOH groups divided between the top and bottom surfaces. DE = −32.4 kcal/mol.
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Figure 9. Optimized geometry (position and orientation) calculated at the B3LYP/3-21G* level of
theory for the adsorbed ibuprofen molecule (side view) on the single-layer sulfonated graphene oxide
modeled by the depicted cluster (C80H30O32S8) GO_OSO3H, which contains eight anchored OSO3H
groups divided between the top and bottom surfaces. DE = −30.8 kcal/mol.

The loaded matrices were brought in contact with simulated gastric fluid, and the
release of ibuprofen was monitored as described in the Experimental Details. Figure 10
shows the release profiles of IBU from IBU/GO, IBU/GO_COOH and IBU/GO_OSO3H
in gastric fluid at 37 ◦C. The release of ibuprofen in gastric fluid was relatively low and
occurred rather slowly, i.e., after 24 h of incubation, 12.0% of the stored ibuprofen was
released from 22.9% from IBU/GO_COOH and IBU/GO, and 19.5% from IBU/GO_OSO3H,
in agreement with theoretical calculations. When the same types of experiments were
performed with simulated intestinal fluid, as also shown in Figure 10, the release first
happened rapidly and then reached a plateau. Moreover, the amount of ibuprofen released
was much larger than in the simulated gastric fluid. Specifically, for IBU/GO, a maximum
release of ~43.0% of ibuprofen was reached in 200 min; for IBU/GO_COOH, a release
of ~45.9% was reached in 150 min; and for IBU/GO_OSO3H, a release of ~43.4% was
reached in 60 min. The more gradual release of ibuprofen in gastric fluid as compared to
that in intestinal fluid holds potential for eliminating the stomach-related side effects of
ibuprofen. The ibuprofen release from the three types of carbon nanomaterials that were
used in this project (GO, GO_COOH and GO_OSO3H) performed much better than from
montmorillonite, which was tested as a drug carrier in a previous study [29]. The statistical
error bar for all calculations was estimated at approximately 2%. For every release spot we
tested, 3 samples were run in triplicate.
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Figure 10. Release profiles of (a) IBU/GO, (b) IBU/GO_COOH and (c) IBU/GO_OSO3H in simulated
gastric and intestinal fluid.

4. Conclusions

In this study, graphite oxide and two of its derivatives, sulfonated graphite oxide and
carboxylated graphite oxide, were prepared, and their efficacy as drug delivery systems
for ibuprofen was investigated. For all three carriers, the release of ibuprofen occurred
more gradually in gastric fluid than in intestinal fluid. The more “controllable” release in
gastric fluid holds potential for eliminating or mitigating the very common gastrointestinal
side effects of heartburn and abdominal pain observed after ibuprofen administration
to patients.
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