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Abstract: Fault tolerance and the availability of applications, computing infrastructure, and commu-
nications systems during unexpected events are critical in cloud environments. The microservices
architecture, and the technologies that it uses, should be able to maintain acceptable service levels in
the face of adverse circumstances. In this paper, we discuss the challenges faced by cloud infrastruc-
ture in relation to providing resilience to applications. Based on this analysis, we present our approach
for a software platform based on a microservices architecture, as well as the resilience mechanisms
to mitigate the impact of infrastructure failures on the availability of applications. We demonstrate
the capacity of our platform to provide resilience to analytics applications, minimizing service
interruptions and keeping acceptable response times.
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1. Introduction

Ensuring services and cloud infrastructure operation in the face of unexpected events
is challenging. Modern solutions, such as those based on microservices architectures, which
use a simplified application structure and separate them into essential and mostly reusable
functions, help to improve application performance, scalability, and fault tolerance.

Technologies such as software containers support service packaging, deployment,
and orchestration. These technologies comply with resiliency requirements such as high
availability, scalability on demand, load balancing, and traffic limitation. In addition,
computing and network infrastructures must be allocated efficiently and dynamically, and
must adapt to changing conditions [1]. Network virtualization technologies, distributed
storage systems, and resource allocation solutions in heterogeneous environments can help
to ensure this.

Resilience at both the network and application levels is typically achieved by applying
redundancy mechanisms via hardware and software. Consequently, infrastructure has
gradually evolved to include cloud-based, hybrid, and distributed approaches. Advances in
cloud computing, containers, virtualization, DevOps, replication, distributed databases,
and network technologies have involved moving toward the greater use of software to
manage workloads and traffic intelligently, and to provide better support for resilient
services [2].

In this work, we identify the challenges we must consider to provide resilience to
services and infrastructure in the cloud. We describe the technologies used to guarantee
the resilience of applications based on mechanisms that aim to ensure that the services
and the computational and network infrastructure are available. This paper makes the
following contributions:

• A revision of the communication technologies and computational infrastructures that
provide fault-tolerance mechanisms needed to support resilient cloud services.

• A description of the challenges that need to be addressed to design resilient cloud
services over computational infrastructures.
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• The design and implementation of a resilient platform approach based on a mi-
croservices architecture and the mechanisms to provide resilience to infrastructure
and services.

• An evaluation of the viability of efficiently leveraging our platform to deploy data
analytics applications.

The remainder of this paper is organized as follows. In Section 2 we provide back-
ground information on computational and communications mechanisms to improve the
resilience of cloud systems. Section 3 describes the resilience challenges faced by cloud
infrastructure. In Section 4 we present our approach to a software platform to facilitate the
construction of resilient applications. Section 5 describes the mechanisms we designed to
ensure resilience in the proposed platform. Section 6 validates the platform through a test
scenario. Section 7 discusses related work, and Section 8 concludes the paper.

2. Background

Computational and communication resilience mechanisms leverage various technolo-
gies. Important resilience challenges are associated with the interconnection between LANs
and WANs, where a wide range of technologies are now available. In addition, computa-
tional resilience is accomplished using infrastructure that continues to support the transmission
and processing of data under failover scenarios. This section discusses the technologies that
can support resilience at both the communication and computational levels.

2.1. Communication Technologies for Resilience
2.1.1. Low-Power Wide-Area Network

A Low-Power Wide-Area Network (LPWAN) is a wireless access technology that
provides coverage from a few to tens of kilometers, depending on the environment (urban
or rural). LPWANs are optimized for low energy consumption and long range. They are
designed to allow for the connectivity of many devices that transmit small amounts of data,
mostly via up-links. LPWANs support wireless networks where services require low data
transmission rates. There are several different LPWAN technologies, the most popular
of which are Long-Range Wide-Area Networks (LoRaWANs), Sigfox, and Narrow-Band
Internet of Things (NB-IoT).

LoRaWAN is an open MAC layer standard released by the LoRa Alliance and sup-
ported over PHY wireless layer LoRa technology. It was proposed for emergency text-based
communication networks [3] and wide coverage emergency location networks in critical
environments where 3/4G cellular connectivity is not available [4].

SigfoX is a cellular connectivity proprietary solution for the Internet of Things. It was
designed for low-speed communications using ultra-narrow-band technology in the unli-
censed sub-1Ghz band. It achieves high-reliability percentages for transmitting narrow-
band data over considerable distances in urban areas [5]. It is proving to be an even more
robust technology than LoRa [6].

NB-IoT is a 3rd Generation Partnership Project (3GPP) standard. It offers better
coverage than 4G in deep indoor or remote areas, although there are trade-offs between
the battery life, coverage, and responsiveness [7]. Unlike other LP-WANs, NB-IoT is born
conditioned by the LTE architecture and must coexist with this technology without the
introduction of modifications to the cellular network structure, and architecture [8].

2.1.2. Self-Organizing Network

A Self-Organizing Network (SON) aims to minimize the costs related to the life
cycle of a wireless network by eliminating the need for manual configuration during
deployment and operation. The responsibilities of a SON involve automatically planning,
configuring, managing, optimizing, and healing the network, increasing the network’s
reliability, performance, and resilience. The main SON technologies are Mobile Ad hoc
Networks (MANETs), Wireless Mesh Networks (WMNs), and 3GPP-long Term Evolution
(3GPP-LTE).
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A MANET is a type of wireless network in which the nodes are interconnected without
a centralized infrastructure and are also free to move randomly, causing corresponding
changes in the network topology. Each node of the MANET network behaves like a
router as it forwards traffic from other nodes to another specific node in the network.
Although MANET routing protocols are primarily used for mobile networks, they can also
be useful for stationary node networks that lack infrastructure [9]. Likewise, the concept
of a MANET can be successfully applied to many existing wireless technologies, such as
satellite and cellular networks, to increase their resilience [10].

In WMN, wireless nodes are arranged in a mesh topology. However, not all of the
nodes behave as routers, and some of them are stationary. Only the intermediary nodes
between the origin and the destination are routers that forward data and work coopera-
tively to make decisions on route prediction based on the actual network topology [11].
As proposed in [12], a WMN enables broadband wireless communications in the absence
of existing infrastructure, which is ideal for first-response situations during emergencies as
it can provide the interoperability, scalability, and performance required in cases where the
areas involved are considerable in size and a mesh network topology is the most suitable.
3GPP-LTE, also known as 4G, is an evolution of the Universal Mobile Telecommunications
System (UMTS). It implements the SON paradigm, as this is one of the most promising
areas for an operator to save Capital Expenditure (CAPEX), Implementation Expenditure
(IMPEX), and Operational Expenditure (OPEX), and can simplify network management
through self-directed functions (self-planning, self-deployment, self-configuration, self-
optimization, and self-healing) [13]. A clear example of SON applications related to resilient
mobile networks is autonomous Cell Outage Detection (COD), which is a prerequisite for
triggering fully automated self-healing recovery actions after cell outages or network
failures [14].

2.1.3. Transport Layer Multi-Homing

Multi-homing connects a host to more than one network, meaning that a multi-homed
host requires multiple interfaces with multiple IP addresses. Depending on the destination,
it is possible to route data simultaneously through more than one network to increase
the connection performance. If a single link fails, packets can still be routed through the
remaining links to increase network reliability. Standardized protocols for the TCP/IP
model transport layer proposed for multi-homing include Stream Control Transmission
Protocol (SCTP) and Multipath Transmission Control Protocol (MPTCP).

SCTP supports data transfer over a network on a single IP or multiple IPs using
multi-homing, not for load balancing but for redundancy, thereby enabling transparent
failover between redundant network paths [15]. SCTP is a solution that is capable of
noticeably improving network robustness to concurrent failures, while achieving delay
behavior comparable to traditional TCP, even without modifications to the default protocol
settings [16].

MPTCP offers a way to establish communication between hosts rather than between
interfaces as in TCP. This protocol allows for redundancy and enables inverse multiplex-
ing of resources, thus increasing TCP throughput through the sum of data traffic from
available link-level connections called sub-flows [17]. We can implement load balancing
with MPTCP to distribute traffic within networks, maximize reliability and throughput,
minimize response time and avoid overloading of the systems [18].

2.1.4. Programmable Network

Programmable Network (PN) technology is a new paradigm in networking that is
increasing in popularity as it allows for converting hardware problems into software prob-
lems. PN systems have great flexibility because devices and network behavior can be
defined entirely by software that runs on general-purpose hardware. In a PN, engineers can
re-program the network infrastructure instead of re-building it physically to provide a wide
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array of functions or services. Technologies in this category include Software Defined Net-
works (SDNs), Software Defined Radio (SDR), and Network Function Virtualization (NFV).

SDR refers to radio communications systems where application-specific integrated
circuits (ASICs) perform analog radio signal processing. In contrast, baseband digital signal
processing is performed by software running on a general purpose processor (GPP) [19].
SDR enables greater resilience of wireless communication links by dynamically program-
ming their runtime properties, such as carrier frequency, modulation type, and packet size,
making them less vulnerable to physical layer attacks [20].

SDN is an emerging architecture that centralizes network management by abstracting
the data routing process (control plane) from the data forwarding process (data plane).
The control plane consists of one or more devices called network controllers, which are
considered the brain of the SDN network, while data plane tasks are carried out by SDN
switches [21]. This innovative architecture offers the following benefits:

• Lower cost: They typically cost less than their hardware equivalents because they run
on off-the-shelf servers rather than expensive single-use devices. In addition, their
deployment requires fewer resources since they allow several functions to be executed
on a single server. Resource consolidation requires less physical hardware, resulting
in lower overhead, power, and footprint costs.

• Greater scalability and flexibility: Network infrastructure virtualization allows net-
work resources to be scaled up or down as needed without adding another piece of
proprietary hardware. SDN offers tremendous flexibility that enables the self-service
deployment of network resources.

• Simplified management: SDN results in an overall infrastructure that is easier to
operate since highly specialized network professionals are not required to manage it.

These benefits mean that SDN-based resilient networks are feasible solutions for fast
disaster recovery network services at large scales [22,23].

NFV was proposed by the European Telecommunications Standards Institute (ETSI)
as a new network architecture concept that virtualizes network node functions over open
computing platforms, formerly carried out using proprietary dedicated hardware technol-
ogy. NFV improves infrastructure scalability and agility by allowing service providers to
deliver new network services and applications on demand without requiring additional
hardware resources [24].

NFV can be combined with SDN to create sophisticated network resilience strate-
gies, thus simplifying resource reallocation and minimizing network recovery time. To-
gether, these approaches can offer flexibility in terms of controlling architecture components,
allowing for smart usage of the network resources, optimizing intelligent traffic steering,
and increasing network reliability in general [25,26].

Resilient systems require higher network flexibility; hence, networks are being soft-
warized via paradigms such as SDN and NFV. These solutions reduce the demand for
specialized network hardware devices by extracting the inherently distributed control plane
of forwarding network elements, such as switches and routers, to a logically centralized
control plane.

2.2. Computational Infrastructure for Resilience

Ensuring the operation of services, networks, and computing infrastructure in the
face of events threatening resilience is challenging. Modern solutions such as those based
on microservices architecture [27], which create a simplified structure for applications
by separating them into essential and mostly reusable functions, can help to improve
application performance, scalability, and fault tolerance. Technologies such as software
containers support the packaging, deployment, and orchestration of services, and comply
with resiliency requirements such as high availability, scalability on demand, load balancing,
and traffic limitations. In addition, the computing and network infrastructure must be
allocated efficiently and dynamically and adapt to changing conditions; this is supported
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by network virtualization technologies, distributed storage systems, and resource allocation
solutions in heterogeneous environments.

2.2.1. Software Containers: Docker

The purpose of using containers is to provide the ability to run multiple processes and
applications separately, to make better use of infrastructure while maintaining the security
of separate systems [28]. Docker technology uses the Linux kernel and its features, such as
cgroups and namespaces, to segregate processes to run independently and safely. Contain-
ers such as Docker offer an image-based deployment model, which allows an application
or a set of services with their corresponding dependencies to be shared across multiple
environments. This approach also automates the implementation of the application (or
combined sets of processes that constitute an application) in the container environment,
leaving improvement features such as portability, lightness, and self-sufficiency in each
application involved.

2.2.2. Container Orchestration

Container orchestration allows clusters to be formed, which enables management
functionalities, resource planning, scalability, load balancing, monitoring, and service
discovery. The most widely used container orchestration platforms are Docker Swarm [29],
Apache Mesos [30], Nomad [31], and Kubernetes [32]. Kubernetes has become the
orchestrator par excellence, and the most important cloud providers have integrated it
into their platforms through solutions such as Google Kubernetes Engine (GKE), Amazon
Elastic Kubernetes Service (EKS), and Azure Kubernetes Services (AKS). Kubernetes allows
for managing Linux containers in private, public, and hybrid cloud environments and is
used to manage microservice architectures by most cloud service providers [33].

2.2.3. Fault-Tolerant Service Communication

Under the microservices framework, it is common to find applications that are con-
nected through the network, mainly via a cascade architecture. This highlights the need
for tools that can constantly monitor the network to mitigate errors or failures at any time.
This is where the mechanisms responsible for making decisions in the event of a failure, in
terms of actions related to load balancing and service scalability, are most important.

2.2.4. Clusters Management for Resilience

In cloud computing systems, processes are needed to guarantee the stability of the
deployed services. These processes usually monitor the status of the resources belonging to
a particular cluster. In the case of Kubernetes, these resources can be monitored by a third
party if the appropriate connector is created. Two of the best-known tools for performing
this task are Rancher [34] and Gardener [35].

Rancher is a tool that allows for the total administration of one or more Kubernetes
clusters without discriminating the creation origin. It supports EKS, AKS, and GKE clusters,
among others. When creating applications within a cluster managed by Rancher, there is a
large selection of pre-configured services of the most frequently used technologies, such
as storage, communication, and data processing services. It is currently the management
tool of choice for production environments, due to its integration with monitoring services
and alert displays for each deployed resource. Rancher can also manage multiple clusters
over the network in a single interface, which allows the user to employ different cloud
providers and unify application deployments in a single site, and creates an additional
layer of security between resources.

Gardener is a project that was developed natively in Kubernetes, which allows for
the management of all the resources deployed within Kubernetes via the project’s API.
Gardener can be seen as a parallel work environment to the main Kubernetes platform,
since the installation provides a very similar structure regarding programs and services.
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When implementing the service, there are different frameworks that are adaptable to almost
any cloud provider.

3. Resilience Challenges

This section describes the challenges that must be considered to provide resilience for
services and infrastructure.

3.1. Network Infrastructure
3.1.1. Fault-Tolerant Service Communication

A resilient system should offer fault-tolerant communication mechanisms with the
goal of minimizing the impact on the quality of service. To this end, considerations such
as limiting the number of requests that can be made during failure periods, time limits on
responses to requests, avoiding making requests to services that are not responding for
some reason, and limiting the number of concurrent requests to a service should be taken
into account.

Replication is also essential for obtaining fault-tolerant services. In active replication,
each client request is processed by all the servers. Client requests are assigned to non-faulty
servers using a mechanism for coordinating the replies. In passive replication, there is only
one server (called the primary) that processes client requests. After processing a request,
the primary server updates the state on the other (backup) servers and sends back the
response to the client. If the primary server fails, one of the backup servers takes its place.
It is a less costly scheme in terms of redundant processing and communication and is,
therefore, more prevalent in practice [36].

3.1.2. Network Monitoring

A major function of network monitoring is the early identification of trends and
patterns in network traffic and devices. Network administrators use these measures to
determine the current state of a network and then implement changes so that the observed
condition can be improved [37].

Accurate and efficient network monitoring is essential for network analysis to detect
and correct performance issues. Continuous network monitoring can help to identify
potential problems before they occur and therefore ensure that the network operates
according to the intended behavior. This means that network administrators can proactively
solve problems or enable faster failure recovery in order to improve network resilience.

3.1.3. Network Assessment

The main factors impacting network performance are network latency, congestion,
infrastructure parameters (QoS, filtering, routing), and network node health. Network eval-
uation involves reviewing and analyzing network statistics represented by these factors.
This qualitative and quantitative process that measures and defines the performance level
of a given network allows administrators to optimize the network service quality with
subsequent decisions [38].

Network assessment is an effective method for identifying performance gaps, enhance-
ment opportunities, and network functionality. The information gathered during a network
assessment can assist administrators in making critical IT infrastructure decisions.

3.1.4. Fault-Tolerant Networking

The core components for improving fault tolerance include diversity, where some
diverse fault-tolerance options result in the backup not having the same capacity level as
the primary component. The redundancy can be imposed at a system level, which means
an entire alternate computer system is in place in case a failure occurs. Replication involves
multiple identical versions of systems and subsystems and ensures their functions always
provide similar results.
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In fault-tolerant networking, the network must adapt to continue operating without
interruption in the case of failures that involve a loss of connection between nodes or their
shutdown. It can be addressed with two different approaches: one is to consider making
nodes more robust to failures. The other is to design a network topology with redundant
intermediate nodes and connections [39].

3.1.5. Data Flow Management

The practice of capturing and analyzing network data traffic and routing it to the most
appropriate resources based on priorities is known as data flow management.

When considerable volumes of data are handled in the network, traffic-prioritization
mechanisms allow for efficient bandwidth management and better distribution of node
processing loads, thus preventing vital information from being lost in transit due to network
saturation, either due to increased traffic or node loss [40].

3.2. Computational Infrastructure
3.2.1. Performance Isolation

Technologies should be used that provide the necessary mechanisms to package
microservices and mitigate the performance degradation resulting from their concurrent
execution on shared computational resources. In view of this, developers should use
virtualization solutions or software containers. Candidate technologies for microservices
packaging include Docker (software containers) [41], Linux LXD Containers (Containers
for OS Partitioning) [42], Singularity Containers (containers for scientific workflows) [43],
Shifter Containers (containers for HPC applications) [44], and KVM or Xen Virtual Machines
(lightweight virtual machines) [45,46].

3.2.2. Provision of Lightweight and Loosely Coupled Microservices

Loosely coupled, lightweight services must be provided that can be reused for the
construction of different applications. These microservices come in packages (e.g., virtual
machines and containers) with all the system libraries and dependencies they need to run.
They can be selected from public repositories, which facilitates the composition of services
in a fast and flexible way. Many of the tools and technologies for containerization and
virtualization provide public repositories. Examples of these are Vagrant Cloud [47], Image
Server for LXC/LXD [48], Docker Hub [49], Singularity Hub [50].

3.2.3. Portability and Integration with Version Control Systems

The packages must be easily exportable between different computing infrastructures.
In the same way, creating different versions of the packages must be allowed. For this pur-
pose, we can use repositories based on GIT or Apache Subversion (SVN). Such repositories
could contain, among others, provisioning files (e.g., Dockerfile, Vagrantfile, Manifest files)
and images of the packages.

3.2.4. Live Migration and Rolling Updates

The system must provide the capacity for live migrating containers to other physical
nodes, along with service rolling updates. The system must provide the functionality
needed to update the services and their configuration parameters without affecting the
service availability. This is one of the capabilities that support fault tolerance [51].

3.2.5. Redundancy and Load Balancing

The services to be implemented should be redundant as a means of improving fault
tolerance. When the platform is faced with high traffic demand, the system must distribute
the load among the different containers using various balancing algorithms, such as round-
robin; for fairly load distribution; least connection, where requests are assigned to the
servers with the least active connections; and by source, where requests are distributed
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based on the source IP address. To achieve this, implementing a system with a frontend
that receives requests and multiple backends to fulfill them is suggested.

3.2.6. Performance Monitoring and Scalability

Based on the demand for a service, the system must allow for horizontal scaling (i.e.,
adding more service instances). Horizontal scaling can be done manually or through the
use of autoscaling [52], which requires monitoring of the instances (health check) and
the resources they use (i.e., CPU, memory, bandwidth) to make real-time decisions about
the resources assigned to each microservice. The creation of decision-making systems
for scalability can be as simple as defining rules triggered depending on readings of
resource consumption, or may involve complex solutions that rely on artificial intelligence
algorithms [52,53].

3.2.7. Distributed Storage

For large volumes of information, the system must supply mechanisms for efficient
access to the data. The infrastructure should provide distributed file systems with redun-
dant storage mechanisms and fault tolerance. We must consider the hierarchy of storage
levels offered by these systems (i.e., RAMDISK, SSD, HDD, external storage) to provide
intelligent data storage techniques. Previous works [54,55] leverage this hierarchical storage
infrastructure and propose intelligent approaches to optimize data placement on modern
distributed file systems, such as HDFS (Hadoop Distributed File System) used to allocate
big data applications.

3.2.8. Efficient Planning and Resource Allocation Systems

Mapping containers to physical nodes is a complex problem, in which the aim is to
maximize the performance of the applications (i.e., their execution time) while taking into
account factors such as interference reduction (i.e., performance isolation), maximization of
the use of computational resources, use of bandwidth, and reduction of power consumption.
This requires the implementation of intelligent resource allocation algorithms. In the case of
cooperative microservices, efficient resource allocation mechanisms must be implemented
that consider the locations of the data and reduce the communication time between services.

3.2.9. Standardized Service Communication Interfaces

The use of lightweight service communication interfaces based on standardized pro-
tocols such as HTTP for service invocation is recommended. The use of application pro-
gramming interfaces such as those supported in the REST (Representational State Transfer
architecture) favors the efficient exchange of messages under high load conditions. Mod-
ern microservices-based architectures use this type of communication interface. The Web
services community is increasingly using REST in place of heavier and more complicated
approaches such as SOAP (Simple Object Access Protocol) [56].

3.2.10. Interoperability with Multiple Cloud Providers (Multicloud)

Resilient systems must allow for connectivity and interaction between the services
deployed by different cloud providers while complying with quality of service standards.
There is a trend to build services leveraging microservices-based architectures in a multi-
cloud environment where microservices solutions have to be portable and interoperable,
facilitating integration across independent cloud providers and preventing vendor-lock
issues generated for proprietary services [57].

4. A Resilient Platform Approach

We implemented a software platform (see Figure 1) to leverage the construction of
resilient applications based on the microservices architecture defined in [58]. This platform
offers developers and users the mechanisms needed to build and use resilient services
through standardized interfaces. With this in mind, our platform is deployed on a Ku-
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bernetes [59] orchestration cluster, which provides auto-scaling, load balancing, service
discovery, and self-healing, among other features. Our resilient service platform consists of
the following components:

• API gateway node: This contains a service that allows the platform to receive data
from external sources, such as user devices or access gateways. JSON was chosen as
the data representation format in order to provide a standardized mechanism to send
data to the platform

• Master node: This contains the control plane components needed to manage the
Kubernetes cluster. It provides the Kubernetes API and allows for scheduling and
cluster data management.

• Worker nodes: These host the pods, which group the containers and other resources
used by applications. The master node manages the pods and worker nodes

• Access gateway: This allows IoT nodes to send data to the platform. For this work,
we used a LoRaWAN gateway.

• Broker: This implements a publish/subscribe communication mechanism between
the platform microservices. This functionality was implemented using Zookeeper and
Kafka frameworks.

• ResCity Database: This provides storage services to the platform microservices.

Figure 1. Platform for provisioning resilient services.
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5. Platform Resilience Mechanisms

In order to provide resilience to the applications and infrastructure, we incorporated into
our platform a number of capabilities, including fault-tolerant network and service communi-
cation, access control, and scalability mechanisms. We describe these mechanisms below.

5.1. Traffic Management and Fault Tolerance

We propose several mechanisms to deal with traffic management and fault tolerance
problems in resilient systems and evaluate them on our platform, which is described
in Section 4.

5.1.1. Network Infrastructure Adaptation and Fault Tolerance

When discussing fault tolerance and traffic management, there are several factors to
consider, such as high availability, load balancing, and the definition of alternatives to
guarantee that the deployed services do not suffer from intermittency. Kubernetes already
incorporates mechanisms to address these aspects in the network. Similarly, it includes
external tools for the deployment of a complete SDN network. In this way, we can integrate
tools within resilient services to provide high availability. The use of SDN makes it possible
to provide elasticity to traditional network models and to address failure scenarios more
efficiently. Since the network architecture must allow traffic to be redirected from one host
to another in the case of failure, a mesh infrastructure is proposed.

A stable network with the SDN paradigm guarantees that all the containers of the
microservices in Kubernetes are connected. Kubernetes has compatible tools such as
Flannel and Calico that are responsible for solving this problem. Various aspects should be
evaluated to decide which tool to use, such as customization of the network configuration
parameters. Calico supports the provision of additional rules that allow us to manage the
network flow between the containers, its compatibility with future versions of Kubernetes,
and the existence of active forums that can support the tool development team.

To include Calico in resilient services, it is necessary to deploy a group of resources
within Kubernetes, which deploys a series of containers and services that allow for constant
network monitoring. This process is done through a YAML configuration file, which is
available from the official Calico website. In Calico, the design of network policies is based
on the construction of YAML files which contain instructions on what to do in the event
of network abnormalities or other situations such as high demand or blockages by the
destination microservice. The configuration file in Listing 1 shows an example of how to
configure a network policy that allows for the transfer of data between containers with a
specific label.

Listing 1. Calico network policy.

apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:

name: allow-tcp-6379
namespace: production

spec:
selector: color == 'red'
ingress:
- action: Allow

protocol: TCP
source:

selector: color == 'blue'
destination:

ports:
- 6379
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5.1.2. Fault-Tolerant Services Communication

Kubernetes allows the infrastructure to adapt to failures and high demand for services.
Unfortunately, keeping track of each of the applications deployed within the containers is a
difficult task, and external tools can help to solve this problem. Fault tolerance libraries
such as Resilience4J [60] include different patterns that are capable of monitoring and
making decisions in scenarios that affect the resilience of applications. On the other hand,
we incorporated Kafka in our platform which implements a publish/subscribe mechanism
between microservices and natively integrates fault-tolerance, replicating Kafka topics and
providing high availability.

5.2. Perception, Communication, and Distributed Computing

The computational and communications mechanisms that support the transport and
processing of data from multiple sources are described below.

5.2.1. Microservices Interconnection

Interconnecting microservices is an important task. Since we can deploy any service
in a resilient platform regardless of the programming language, we establish the following
rules for their interconnection.

• Access to the platform: An access control mechanism must be designed to control all
requests to a resilient platform.

• Distribution of services: In view of the variety of services that can be hosted on a
resilient platform, we must devise a way to group the set of services that make up the
microservice, based on the resources deployed.

• Naming service: Each of the resources that can be deployed in Kubernetes requires
access to the network, which means there will be an IP for each resource. For this
reason, it is important to design a DNS service that can manage names, in order to
avoid the problem arising from the use of dynamic IPs by Kubernetes.

• Availability of resources: The platform must have the capacity to grow in terms of the
available resources, so that if more services need to be deployed in the future, this will
not be an impediment.

• The platform must provide mechanisms to facilitate the access to data sources.

Various components were incorporated into the platform based on the proposed rules
for interconnection of the microservices.

API Gateway

The use of a single gateway for all services allows us to control each path that the data
can take. In a resilient platform based on services, the API gateway must allow interaction
with all of them when required. This offers many advantages for the management of these
services. When centralizing the information, we must devise strategies aimed at a single
resource to scale, maintain and manage the tool.

Namespaces

Namespaces allow a set of resources to be grouped in Kubernetes. Each microservice
can be separated into small groups of resources containing everything necessary to deploy
an application. This offers advantages for maintenance of the platform, as it is possible to
modify the resource configurations without affecting external services. On the other hand,
being isolated also separates the network segment to which the resources belong, thus
avoiding the need for services to share information. To prevent this issue, it is necessary to
set internal DNS policies for the set of Kubernetes resources.

DNS

To install a DNS service that is capable of maintaining connections between all the
deployed microservices, coreDNS is used. This is an open-source tool that allows a flexible



Computers 2022, 11, 118 12 of 21

DNS service to be deployed between the containers in Kubernetes. It offers a basic configu-
ration that allows us to link all Kubernetes namespaces and interconnect those of interest
to the application.

Data Access Controller

A data access controller provides the mechanisms to allow microservices the access to
data by incorporating authorization and security checks.

5.2.2. Scalability

Another important factor to take into account is the high level of availability of services.
To meet this requirement, various solutions are proposed.

Load Balancer

Kubernetes containers can be treated as replicable elements to meet the demand for
services. The replica factor or ReplicaSet allows the instances to be multiplied in a fixed
way for a given set of containers. We can do this operation manually when deploying the
resources through the replicas parameter.

Horizontal Pod Autoscaler (HPA)

This tool allows us to automatically create service instances, to adapt to CPU con-
sumption and other system metrics. As the number of containers multiplies, the need
for a load balancer arises in order to distribute the requests to each. Kubernetes uses
round-robin as the default load balancing algorithm, based on the generation of shifts and
information queues to serve the requests in each instance. It is important to remember that
sufficient resources must be available to carry out deployment on the platform nodes when
multiplying the instances.

Metrics Collection

In order to efficiently support the scalability and distribution of tasks, the platform
collects key service and infrastructure metrics, leveraging the Prometheus [61] framework
integrated to Grafana [62] for metrics visualization.

6. Results

To test our platform and its resilience mechanisms, we designed an application that
uses input data received from multiple cameras. The system receives as input images of the
faces of people and detects the proper use of face masks. We deployed this application on
our platform to supervise compliance with health measures implemented in public places
in a city, working as a tool to mitigate infections with the new coronavirus (COVID-19).

6.1. Scenario

A service was designed to monitor and notify users when COVID-19 protective
measures were not respected. Video cameras work as the data sources to be processed on
our platform, as depicted in Figure 1. The intent is to use this system in crowded places,
to detect the proper use of facial masks and keep a record, helping to enforce biosafety
regulations. We simulated a camera installed at the exit of the laboratory facilities of a
university comprised of 30 laboratories with a capacity of 30 students each. In rush time,
approximately 1000 students are expected to exit the laboratories in a period of 5 min.
Figure 2 shows the implementation made on the platform.



Computers 2022, 11, 118 13 of 21

Figure 2. Test scenario.

6.2. Experimental Setup

To run our experiments, we used a two-node Kubernetes cluster. One node was
configured as the master node and the other as a worker. Each node has 64GB of RAM, an
Intel Xeon CPU E5-2650 v4 with 24 cores, 2TB of HDD, and Ubuntu 18.04 as the operating
system. For our deployment, we used Kubernetes 1.17, Docker 1.19.3, and Python 3.7.

We defined a number of requirements for each implemented Python script that the
Docker container needs. Listing 2 shows a list of requirements for each microservice,
and Listing 3 shows the basic configuration in a Dockerfile to create the container for the
facemask service. The Dockerfile for the Apigateway is similar, only changing the exposed
port to 5000.

Listing 2. Requirements for Python applications.

opencv-contrib-python==4.5.4.58
numpy==1.21.5
requests==2.18.4
click==8.0.4
Flask==2.0.3
itsdangerous==2.1.2
Jinja2==3.1.1
MarkupSafe==2.1.1
Werkzeug==2.0.3

Listing 3. Dockerfile for the facemask service.

FROM python:3.7
LABEL maintainer="Heberth Martinez"
RUN apt-get update
RUN apt install libgl1-mesa-glx -y
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
EXPOSE 4000

6.3. Deployment

Our microservices-based architecture uses Kubernetes for container orchestration.
Kubernetes allows the separation of developed applications into small groups of containers
and provides tools to enable management and making decisions during application failures.
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A resource group is defined during service deployment in a Kubernetes cluster, allowing
deployed containers to be monitored. As shown in Figure 2, we deployed our application
using two Kubernetes services. One service runs an ApiGateway that receives client re-
quests and routes them to a service running the facemask detection algorithm. Each service
routes the traffic to a set of pods, which are “logical” host grouping Docker containers.
Pods can be replicated inside a single multicore server or across multiple servers. We
implemented a Retry pattern in the ApiGateway service configured to retry a request to
the facemask service a maximum of 10 times with a period of 10 s between retries in case
of request timeout the internal logic described in Listing 4. Our platform leverages the
implemented resilience mechanisms to scale the number of pods according to the demand.
We use CPU utilization as the metric to decide the number of active pod replicas. For our
application, an acceptable maximum response time for a request is 20 s.

Listing 4. Apigateway pseudocode.

start
while app is runing

init Flask app
define route "facemask"

receive data from the client
send request to facemask service on port 4000
response data to client with status code 200 if not exist

send message error "error" and status code 500
define route "facemask-retry"

implement retry pattern
receive data from the client
send request to facemask service on port 4000
check response and retry request 10 times each 10 seconds if not is valid
response data to client with status code 200 if not exist

send message error "error" and status code 500
expose port 5000

end

For the facemask detection service, we implemented a Python Flask application that
receives the request from the client with a JSON body that contains the image URL to
process. The service downloads the image and processes it with the help of a neural
network, and returns a JSON with objects detected information. Listing 5 shows the
internal logic of the service.

Listing 5. Facemask pseudocode.

start
while app is runing

init Flask app
define route "detect"

receive data from the client
download image from url send by client
load image with the help of opencv module
load neural network with the help of opencv module
load configuration file and labels file with the help of opencv module
process image with neural network
create JSON response with all object detected, confidence value and label detected
send JSON response to client with status code 200 if not exist

send message error "error" and status code 500
expose port 4000

end
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6.4. Test Cases

We designed three test cases to validate the fault tolerance capability of our platform.
We used JMeter tool [63] to simulate users concurrently sending requests to the service.
We configured Jmeter with 1000 threads (users) and a specific ramp-up period for each
case. Each thread pulls an image from a 100-image repository and sends the request to the
API gateway service, which is routed to the facemask service. We used JMeter to simulate
users concurrently sending requests to the service. The purpose of each test case and the
expected results are described below.

• Case 1: The ability of the system to keep instances alive in the face of malfunctions.
One of the characteristics of a fault-tolerant system is to launch new instances or restart
existing ones in case of failure. In this experiment, we sought to validate the capacity of
our platform to maintain deployed resources in the presence of development-level and
architecture-level failures. For this case, we used a Jmeter ramp-up period of 5 min and
set the number of replicas for the facemask deployment to four. As shown in Figure 3,
Kubernetes Replicasets help to keep a specified number of pods alive. In the first test,
we deleted the pods of the facemask deployment. In this case, Kubernetes took care
of making the service available again and restarted the pods in approximately 4 s.
We ran the test with and without using the retry pattern. We got 0.5% of requests with
errors when not using the retry pattern and no errors when using it.

Figure 3. Microservice ReplicaSet control.

In the second test, we ran the experiments in the presence or absence of failures
and using or not the retry pattern. In the case of failures, we injected a 20 s service
interruption and got 10% of requests with errors when not using the retry pattern.
We should note that the retry pattern allows us to keep the error percentage at 0
percent. However, as expected, the maximum response time increases during the
failure. Table 1 shows the request response times and the percentage of error in each
of the evaluated cases.

Table 1. Performance of the facemask service with 1000 users and induced failures.

Case Average(s) Min(s) Max(s) %Error

No retry pattern and no induced failures 1.6 1.1 2.1 0
Retry pattern and no induced failures 1.7 1.2 2.3 0
No retry pattern and induced failures 1.1 0.5 2 10

Retry Pattern and induced failures 10.2 1.5 17.4 0
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• Case 2: The ability of the system to create new instances in the presence of many
different requests. We assessed the ability to balance the resource load to ensure
that the system responded successfully to demands from multiple users. In this case,
we configured load balancing policies to allow the number of active instances to be
increased or decreased by considering the number of user requests. To achieve this, we
used the HPA Kubernetes services, which allowed the platform to respond to a high
volume of requests and improved the response times and the number of simultaneous
requests it could process. HPA will enable requests to be evenly distributed across
replicas, defining the total instances and the metric to be considered for tuning on the
platform. Figure 4 shows how the HPA works.

Figure 4. Microservice HPA control.

For this case, we used a Jmeter ramp-up period of 2 min and set the number of replicas
for the facemask deployment to two. We used the CPU utilization as the metric to
scale the service to four instances. We set the maximum CPU utilization to 60% and
verified that Kubernetes created the additional instances when the CPU utilization
threshold is exceeded in less than 2 min while processing the 1000 requests. This traffic
represents a bigger demand than expected during the rush time (1000 users in 5 min)
and the platform quickly responds by autoscaling the pods.

• Case 3: The ability of the system to route traffic in a controlled manner. Communica-
tion channels were established using Calico’s network policies to define routes for the
most important services, such as the API gateway and facemask detection, to improve
the security of data delivery between microservices. To validate this operation, we sent
data in compliance with the routes defined using the network policies and observed
the platform’s proper operation. When attempting to bypass a service by sending
it via an incorrect path, the platform restricts the passage of information. Figure 5
shows the network policies to enter data into the platform and connect internally to
the microservices. The network policies, in this case, allow the creation of a bridge
between both namespaces and find the services by using their names and not the IP
addresses, avoiding connectivity problems when IP addresses change. Each policy is
created with a configuration file shown in Listing 1.
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Figure 5. Network policy.

7. Related Work

We propose a novel distributed computing platform that leverages resilience mecha-
nisms to provide application fault tolerance. Although we found a number of works related
to fault tolerance on cloud computing systems, few of those seem to tackle the specific
problem of providing fault tolerance to high-latency analytics applications. Our platform is
based on a microservices architecture that allows the distribution of high-latency analytics
applications based on the rapid provision and reuse of self-contained services.

In [64] Javed et al. present an architecture for fault-tolerant IoT services deployed on
edge and cloud infrastructures. This approach is based on integrating Kafka and Kubernetes
technologies to provide a mechanism to tackle hardware and network failures. The platform
is tested by deploying a surveillance camera system. Our approach leverages fault-tolerance
capabilities integrated within Kafka and Kubernetes to provide a completely fault-tolerant
pipeline, and was tested using high-latency analytics applications. Additionally, our
approach incorporates resilience mechanisms such as the autoscaling component to adapt
infrastructure to increased workload automatically.

Torres et al. [65] propose a framework that leverages state-of-the-art cloud technolo-
gies to support the deployment of artificial intelligence services with high transmission
latency and high bandwidth consumption on edge-cloud infrastructures. They focus on
partitioning and distributing Deep Neural Networks (DNN) to improve response times.
Our approach proposes a platform based on a microservices architecture that allows the
partitioning of high-latency analytics applications, improving performance. In addition,
our approach provides a set of predefined and reusable microservices that facilitates the
fast construction and deployment of new resilient applications.

Given the memory size and processing capability of today’s commodity machines, it is
inevitable to run distributed machine learning (DML) on multiple machines [66]. Wang et
al., propose a scalable, high-performance, and fault-tolerant Distributed Machine Learning
(DML) network architecture on top of Ethernet and commodity devices. BML builds on
BCube topology and runs a fully-distributed gradient synchronization algorithm. In our
approach the goal of the Kubernetes orchestration cluster is also to process machine learning
datasets, node/link failures were simulated, and fault tolerances and traffic management
were achieved to keep services performance.

One of the most critical challenges of the Internet of Things (IoT) is to provide real-
time services. Bakhshi et al., propose in [67] a comprehensive SDN-based fault-tolerant
architecture in IoT environments. In the proposed scheme, a mathematical model called
Shared Risk Link Group (SRLG) calculates redundant paths as the main and backup non-
overlapping paths between network equipment. When comparing the suggested scheme to
two policies for constructing routes from source to destination, it is found that the proposed
method improves service quality parameters such as packet loss, latency, and packet
jitter while reducing error recovery time. In our work, SDN technology provides a fault-
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tolerant network architecture to support the Kubernetes cluster, offering redundant paths
to guarantee that all the containers of the microservices in Kubernetes remain connected.
This setup can also be used for IoT applications with nodes prone to failure.

Fault-tolerant frameworks are also applicable for fog computing. Zhang et al., propose
in [68], a model based on a Markov chain to use it as a fault-tolerant system. This system
allows them to predict the number of fog nodes that can fail and change them to reduce
delays and costs. This approach is focused only on nodes, whereas our work is focused on
microservices that can be used with resilience mechanisms to reduce the impact of different
types of failures.

Tang in [69] proposes a scheduling algorithm that integrates fault tolerance and cost
reduction for applications in the cloud. Tang’s model is based on the DAG model, which
considers task priorities to select the best VM for executing the entire application. At
the same time, the scheduling algorithm tries to find a backup to support the task that is
not running correctly in the VM previously selected. The goal of our approach is not to
schedule or allocate applications. Still, it is to provide a infrastructure with some resilient
mechanisms to support the execution of applications.

8. Conclusions

In this paper, we provide a first evaluation of the computational and communications
infrastructure requirements that must be met by a resilient cloud system. We present the
design and implementation of a microservices-based platform that provides resilience to
applications and evaluate it by deploying and testing a high-latency analytics applica-
tion. Resiliency features such as hot migration and modification, redundancy, autoscaling,
optimal computing and storage resource allocation systems, and load balancing services
are crucial for this type of platform. In regard to the computing infrastructure require-
ments, the need for performance isolation mechanisms based on virtualization solutions
and software containers was evidenced. These solutions also allow for the provision of
lightweight, loosely coupled microservices and their distribution through public repos-
itories. In terms of the communications infrastructure requirements, resilient solutions
must support fault-tolerance mechanisms and traffic management in order to minimize
the impacts on the quality of service when failures occur. Services should use lightweight,
standardized communication interfaces based on protocols such as HTTP. In the same
way, the use of protocols and technologies with low energy consumption is imperative.
Performance isolation in the network and adaptation of the network infrastructure to
failure, supported by efficient monitoring systems, are also required features. Trying to
meet these requirements, we proposed a computational platform and demonstrated its
ability to provide resilience to high-latency analytics applications. Our microservice-based
platform, which leverages current container and orchestration technologies, allowed us to
quantify the impact of different resilience mechanisms.
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