
Deep Learning Approaches for Determining Optimal Cervical Cancer Treatment

Chaitanya Asawa
Stanford University

Dept. of Computer Science

Yushi Homma
Stanford University

Dept. of Mathematics

Stuart Sy
Stanford University

Dept. of Computer Science

Abstract

Cervical cancer can be effectively prevented if detected
in the pre-cancerous stage. However, the treatment type is
dependent on physiological differences, and often this re-
quires medical expertise to determine. We use deep learn-
ing approaches in computer vision, such as Convolutional
Neural Networks and Transfer Learning, to classify an im-
age of a cervix as one of 3 different types. We experiment
with training strategies such as Dropout, Batch Normaliza-
tion, and Image Augmentation, and dataset strategies such
as scaling the loss function and cropping. We also incorpo-
rate image preprocessing techniques, filtering a given noisy
additional dataset based on distance from the clean dataset
distribution and image sharpness with the 2D Laplacian
kernel filter. Our best model consists of an ImageNet trained
ResNet as a feature extractor combined with a custom deep
Inception-like residual network. With the categorical cross
entropy loss as the score metric, our best model is currently
122nd place out of 829 teams on the Kaggle leaderboard
for this task with a loss of 0.7451.

1. Introduction
In 2012, there were an estimated 528,000 cases of cer-

vical cancer worldwide, of which 266,000 were fatal [6].
Approximately 85% of those cases occurred in less devel-
oped regions. Today, there exist treatment methods that
can effectively prevent cervical cancer if detected in its
pre-cancerous stage. Even in low-resource settings, early
stage cervical cancer can be identified and treated in a sin-
gle visit. However, one of the greatest challenges of these
treatment programs is determining the appropriate method
of treatment. Different methods, depending on physiologi-
cal differences, have varying effectiveness and often times
in rural areas health care providers are not able to discern
which treatment is most effective. If the wrong treatment
is applied, one may falsely believe that the patient has been
cured, when in fact they have not been – posing a significant
health risk.

In particular, the difference between various cervix types

is quite small, depending specifically on a region known
as the “transformation zone.” Figure 1 describes visually
the main difference between different cervix types, showing
the difficulty of the problem, and Figure 2 displays sample
images.

Figure 1: Differences between different type of cervices [9].

MobileODT and Intel have designed a Kaggle competi-
tion to tackle this particular issue and have released an as-
sociated dataset. In this paper, we attempt to develop an
algorithm which, given an image of a cervix, uses Con-
volutional Neural Networks (CNNs) to output a womans
cervix type. Specifically, we are investigating various CNN
architectures, strategies such as Batch Normalization and
Dropout, and as transfer learning to obtain the best possible
classification.

Figure 2: Examples of different classes of cervices.

2. Related Work
To our knowledge, there is no published work on cervix

type classification from images using deep learning because

1

currently, medical specialists perform this analysis by hand.
The method that they use requires making an excision in the
transformation zone and using a colposcopy to view it, and
the specialist classifies the type based on the properties of
the excision [2]. Of course, the weakness with this approach
is that it requires a medical specialist.

Hence, we are motivated to use deep learning methods
instead, based on their success in image classification - cut-
ting edge models have even outperformed humans in the
ImageNet challenge [7]. Examples of recently success-
ful convolutional architectures are Inception-v3 [21] and
ResNet [7], which we examine in detail in later sections.
Previous work has also found techniques like Dropout [20],
Batch Normalization [8], and Image Augmentation [11] to
help with training and generalizing deep neural networks.
Transfer learning has also found much success recently by
using models pretrained on other tasks to train models on
tasks that have much smaller amounts of data available
[12, 1, 14, 13].

Additionally, deep learning approaches have found sub-
stantial success in medical imaging classification and detec-
tion tasks, such as dermatologist-level skin cancer classifi-
cation [5], breast cancer growth characterization [18] and
tumor tissue classification [23] among others [22, 15, 3].
For example, in performing dermatologist-level skin cancer
classification, Esteva et. al apply transfer learning, using
Google’s Inception-v3 architecture pretrained on ImageNet,
removing the final classification layer and adding their own
classification layer. They then retrain the entire model, fine
tuning all the layers, with their data. They were aided by cu-
rating a dataset consists of 129,450 clinical images, which
is two orders of magnitude larger than previous datasets [5].

3. Methods
3.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are neural net-
work architectures that employ convolution layers, which
are layers that aim to capture meaning from spatial local
connections. CNNs have demonstrated much success for
image classification tasks, superior to previous methods, as
demonstrated by Krizhevsky et. al [11] . For CNNs that
do not involve pre-trained models, as described in the next
section, we will distinguish them by referring to them to as
vanilla CNNs.

3.2. Transfer Learning

Transfer Learning is a technique in which we use net-
works that have proven to do well on some task and try to
adapt what is learned from this task to a separate but po-
tentially related task. In our case, we would like to use
networks that have performed very well at general image
classification (specifically, on the ImageNet challenge, that

tries to classify images into 1000 categories and has over
one million training examples [16]), and try to adapt them
to classifying images of cervices into different types.

4. Dataset
4.1. Description

We use the dataset provided by the aforementioned Kag-
gle competition [9]. The initial dataset the competition pro-
vides consists of the following distribution of classes:

Type Number of Images Percentage
I 250 17%
II 781 53%
III 450 30%

The competition also later provided additional data,
however it is noted that some of these additional images
might look alike they are taken in the same session, and
some images were ones that were not selected because of
image quality. In addition, sometimes there are other arti-
facts in these images such as gloves and some of the images
are not even of a cervix. The amount and distribution of the
additional data is as follows:

Type Number of Images Percentage
I 1191 18%
II 3567 53%
III 1976 29%

While the additional data significantly boosts the amount
of data we have, because of the potential concerns with this
data, we initially focused on using the initial data supplied
and experimenting with image augmentation as described in
section 5.2. We later experimented with methods of clean-
ing the additional dataset in order to include it in our train-
ing dataset.

4.2. Evaluation

Both for our loss function and for evaluating our model,
we will use the categorical cross entropy loss, which is de-
fined as

− 1

N

N∑
i=1

C∑
j=1

yij ln ŷij

where N is the number of examples, C is the number of
classes, yij is 1 if the the ith example is truly of class j and
0 otherwise, and ŷij is the predicted probability that the ith
example belongs to class j.

In practice, note for a given image the class we would be
predicting is the one with the highest predicted probability.
Our categorical accuracy is then

1

N

N∑
i=1

1[argmax j∈{1,2,...,C}ŷij == argmax k∈{1,2,...,C}yik]

2

However, we will focus on categorical cross entropy be-
cause it is better able to capture the strength of our predic-
tions, and is also the metric the competition will be using
for evaluation.

If we were to just predict classes with equal probabil-
ity, we would expect that our loss in expectation would be
-ln (13) ≈ 1.099. However, as our data is not evenly dis-
tributed, if we predicted classes with probability propor-
tional to the distribution, our loss in expectation is

−0.17 ln (0.17)− 0.53 ln (0.53)− 0.3 ln (0.3) ≈ 0.999

5. Technical Approach Details
We are using Keras as the main deep learning library

with a Tensorflow backend [4].

5.1. Preprocessing

The preprocessing we do depends on our model’s
architecture, particularly because different base models we
use for transfer learning may have different preprocessing
approaches.

Resizing: Our images were initially of size 4096 by
3072 pixels. To reduce the number of parameters and
subsequent computational time, we resize these images to
320 by 240 pixels.

Vanilla CNNs: With vanilla CNNs, we calculate the
mean image across the training set, and subtract this from
all the training examples, shifting the mean to 0. Note that
we also shift the validation and test sets using the training
set mean image.

Inception-v3, ResNet: For both Inception-v3 and
ResNet, as they were trained on ImageNet, we subtract the
mean image from the training set of ImageNet.

5.2. Strategies to Aid With Generalization

Dropout: Using dropout, while training, we randomly
drop neurons and their connections with some probability
p (a hyperparameter), aiming to prevent the neurons from
co-adapting too much. At test time, we essentially average
over all of the subsampled neural networks during training
[20].

Batch Normalization: Batch Normalization is a recent
technique that helps with the problem of properly initial-
izing neural networks by explicitly forcing the activations
throughout a network to take on a unit Gaussian distri-
bution at the beginning of the training. Networks that
use Batch Normalization are significantly more robust to
bad initialization. Additionally, batch normalization can
be interpreted as doing preprocessing at every layer of

the network, but integrated into the network itself in a
differentiable manner [8].

Image Augmentation: In addition to our initial data, we
also generate more data using flips, translations, shears, and
zooms, inspired by successful use of image augmentation
by Krizhevsky et. al in the 2012 ImageNet Challenge [11].
These augmentations allow us to make our model invariant
to transformations such as flips and translations, since they
should be classified the same.

5.3. Transfer Learning Base Architectures

We have tried to do transfer learning with the following
models, varying at which layer we get features from the
different models and the architectures we specify on top of
the outputs of these models:

Inception-v3: Inception-v3 aims to scale networks,
specifically trying to make the additional computation as
efficient as possible using inception modules. The goal
of the inception module is to act as a ”multi-level feature
extractor” by computing 1×1, 3×3, and 5×5 convolutions
within the same module of the network. The output of these
filters are then stacked along the channel dimension and
before being fed into the next layer in the network [21].

ResNet-50: First introduced by He et al. in their 2016 pa-
per, Deep Residual Learning for Image Recognition [7], the
ResNet architecture has become a seminal work, demon-
strating that extremely deep networks can be trained us-
ing standard SGD (and a reasonable initialization function)
through the use of residual modules which allow for better
gradient flow through the network [7].

6. Baseline Results

As an initial baseline, we used a vanilla CNN with 14
sets of convolutions and 3 affine layers on the raw train-
ing data, excluding additional data and image augmentation.
We also try some naive transfer learning by using Inception-
v3 and ResNet as feature extractors and adding just a few
convolution and affine layers on top of them.

One early result we find is that we are able to overfit to
the initial training set fairly easily. With the ResNet model
for example, we achieve 95% training accuracy, but vali-
dation accuracy of 44.93%, and this large gap leads us to
indicate it is not doing any real learning and just memoriz-
ing the relatively small training set.

We summarize in the following table the best results, af-
ter tuning, we have been able to achieve with the following
architectures on a self-designated validation set.

3

Model Type Validation Loss Validation Accuracy
Vanilla CNN 0.9723 51.52%

ResNet 1.0963 59.12%
Inception-V3 0.8953 60.47%

7. Inception-like Residual Network
We found that adding one or two layers to ImageNet

models was not successful, and the model had difficulty
learning. Hence, we decided to experiment with using the
ImageNet models as a general feature extractor and then
having our own more complex architecture take these ex-
tracted features and determine how to use them best for our
task.

Specifically, we chose to use Inception-like layers with
residual connections inspired by ResNet for our custom ar-
chitecture. We chose such an architecture because resid-
ual connections would allow us to train deeper models, and
Inception-like modules significantly reduces the number of
parameters in the network, enabling more efficient training.

We detail our model below, using ResNet as a feature
extractor:

Figure 3: Architecture of our best model involving
Inception-v3.

We find that this model does overfit, and so we use a
dropout probability of 0.4 and L2 regularization of 5e-4
when experimenting with a model. We use the Adam op-
timizer and a learning rate decay of 0.01 each epoch.

8. Cropping
Looking more carefully at our data, we found that the

transformation zone, which is the key to the classification
decision in our problem, would often be in the center of the
image. Additionally, in many of the images, there would be
visual artifacts such as black borders or metallic speculums

on the edges. Given this information, we decided to
experiment with cropping out the center of the images so
that the irrelevant visual artifacts could be removed. We
tried cropping at several magnifications of the images, and
the results of the experiment are below:

% Centered Validation Loss Validation Accuracy
100 0.8168 63.18%
85 0.8114 64.53%
70 0.7725 68.24%
55 0.8249 61.15%
40 0.8567 60.14%

A small amount of cropping did yield slightly better re-
sults, but overall this technique was too volatile to be used
consistently. It is likely that the convolutional structure of
our neural network would have allowed for our model to
learn that those visual artifacts were irrelevant by itself, and
we show this in Section 13.

9. Class Weights and Scaling the Loss Function
As noted in section 4, our dataset is quite unevenly dis-

tributed, and hence, it is very easy for our model to bias
towards the more frequent classes.

We show a confusion matrix of one of our experiments
using a model very similar to our best one:

Figure 4: Confusion matrix

We find that our model is best at predicting class 2, the
most frequent class, and so much so that it predicts most of
the true class 1 images as class 2. For true class 3 images,
we also predict a portion of the images to be class 2, but for

4

the most part we predict them correctly. We wanted to see if
we could increase the recall in predicting class 1 and class
3, while not sacrificing much precision in predicting class
2. Hence, we experimented with penalizing our model dif-
ferently for different classes. For classes which we weight
more, in order to minimize the loss, the model tries to avoid
making mistakes on an example of those classes more so
than an example of another class.

Our modified loss function during training is then

− 1

N

N∑
i=1

C∑
j=1

αjyij ln ŷij

where αj represents a scalar weight for class j.
We initially explored using weighting inversely propor-

tional to the dataset distribution, which corresponds to
weights of 5.88, 1.89, 3.33 for class 1, class 2, and class
3 respectively. We hoped this would need the model to be
good across all classes, and not just class 2. Below, we show
the results of some experiments with class weights.

Weights (1, 2, 3) Validation Loss Validation Accuracy
5.88, 1.89, 3.33 0.9931 48.31%
4.88, 1.89, 3.33 0.9696 54.39%
4.88, 1.89, 2.33 0.9652 56.08%

2.5, 1.0, 1.5 0.8583 57.77%

We find generally that class weights made it harder for
the model to learn, with greater confusion across classes,
and so we chose to keep equal weights for most of our ex-
periments.

10. Additional Data
In this dataset from Kaggle, we were provided an addi-

tional dataset of images whose quality is not guaranteed to
be as high as the initial dataset images, and sometimes even
consists of completely irrelevant images. In order to effec-
tively use this additional dataset in our training, we utilized
two different techniques to clean the additional dataset.

First, we want the additional dataset to have images that
actually show the cervix and are relatively similar to the ini-
tial dataset, since the test dataset is likely to have the same
higher quality as the initial dataset. Hence, we want the ad-
ditional dataset images to come from a similar distribution
to that of the initial dataset.

To do this, we produced a vector representation of each
image. This representation is generated by creating a his-
togram for each of the three channels based on the fre-
quency of RGB values in the image, using 17 bins. This
characterizes the color distribution in the image. We also
did the same with each subrectangle of a 3 × 3 grid of the
image, using 15 bins. This makes the representation take

into account positioning of objects in the image. These his-
tograms are concatenated together to create the vector rep-
resentations of the images.

Once the images are converted into this vector format,
we calculate the mean image and an approximate covari-
ance matrix of the initial dataset. We assume that these im-
ages are samples of a multivariable Gaussian distribution
with the aformentioned mean and covariance, and compute
the pdf values of the additional dataset images. Each of
these values is a relative similarity score of each additional
image to the initial dataset images. Thus, we take only the
additional images that are closest to the initial dataset by
this metric.

Figure 5: The three images above are examples of images
in the additional dataset that were filtered out for being too
different from the initial dataset.

This first technique looks only at the color distribution,
but does not take into account the quality of the images. We
use the sharpness of each image to characterize the quality
of the image. To calculate sharpness, we convolve the cen-
ter subrectangle of the images with the 2D Laplacian kernel
filter and find the maximum value among all three channels
and pixels. The idea is that we want the center of the image,
which usually contains the relevant information, to be rel-
atively sharp. We filter the additional dataset by including
only images that at least as sharp as the least sharp image
in the initial dataset. We then add this twice-filtered to the
initial dataset to form our training dataset.

Figure 6: These three images are examples of images in
the additional dataset that were filtered out due to blurriness
(lack of sharpness).

In experiments involving the additional data, we limit the
additional data to the training set, and have the validation

5

set come solely from the original dataset, hoping this would
give us the closest measure of real performance on the test
set. As we detail in coming experiments, we do find a gain
of a couple hundredths in categorical cross entropy loss us-
ing the additional data.

We note though that, across training epochs with addi-
tional data, the score on the validation set is slightly un-
stable because of the differences that still do exist between
training and validation data. We checkpoint our model at
our best possible validation score to ultimately use for the
competition.

11. Experiments With Feature Extraction
With the additional data, which we generally found helps

our performance, we experimented with the feature extrac-
tion transfer layers, to see if with additional data we could
better learn feature extraction.

11.1. Feature Extraction Model

We first compare the use (or not use) of different pre-
trained models on ImageNet for feature extraction. In this
case, the models are not being trained and we use the first 3
layers of the pre-trained models.

Feature Model Validation Loss Validation Accuracy
None 0.8016 63.51%

Inception-v3 0.7592 68.24%
ResNet 0.7157 69.93%

We find that pre-trained models for feature extraction do
help as opposed to not having one, and we move forward
with ResNet as a feature extractor.

11.2. Number of Layers of ResNet

We then explore how the number of layers of ResNet we
use affect performance. The more layers of ResNet we use
might result in extracting more and more ImageNet specific
features, and so we try to find a good number of layers to
use for feature extraction in our problem. Here, we train all
of the layers so that, while we use more specific layers, we
are able to hopefully adapt a little better to our dataset.

Num. Layers Validation Loss Validation Accuracy
3 0.7734 62.16%
6 0.7629 67.23%

12 0.7565 64.86%
20 0.7894 63.18%

We find, generally, very similar losses despite large
changes to the number of layers. We use 6 layers then, be-
cause we find the higher accuracy is promising, as the model
knows the correct class and can keep updating the probabil-
ities to bring down the categorical crossentropy loss.

11.3. Training Layers of ResNet

Finally, we experiment with seeing the effects of fine-
tuning layers of ResNet on performance.

Training Validation Loss Validation Accuracy
Yes 0.7734 62.16%
No 0.7157 69.93%

We find that not training layers actually helps perfor-
mance – perhaps not training these layers keeps them more
general rather than adapting more to the slightly different
additional data.

12. Ensembling

Finally, once we optimized our custom architecture, our
experiments with scaling the loss function with different
class weights led to another idea: we wanted to try creating
three separate models that slightly specialized more in pre-
dicting each cervix type (as they were penalized more for
being incorrect for those classes), then ensembling the re-
sults of those models. We trained three models with cervix
type 1, 2, and 3 weighted higher respectively, and gener-
ated predictions on the test set with each. Then, we com-
bined them by using a weighted average for each probabil-
ity value, weighted by the difference between 0.95 and the
validation loss of that model. This weighting technique en-
sures higher contributions from the better scoring models.
This resulted in our best test loss of 0.74517 on Kaggle,
beating our model without ensembled class weightings.

13. Visualizing Our Model

To qualitatively evaluate our model, we applied several
visualization techniques in order to gain an intuitive sense
of what our model learned. We used keras-vis [10] to help
generate many common types of neural network visualiza-
tions.

13.1. Saliency Maps

Saliency maps was first introduced in the paper: Deep
Inside Convolutional Networks: Visualising Image Classi-
fication Models and Saliency Maps [19]. The idea behind
saliency maps is to determine which sections of the im-
age are most important we compute the gradient of output
category with respect to input image. This should tell us
how output category value changes with respect to a small
change in input image pixels. All the positive values in
the gradients tell us that a small change to that pixel will
increase the output value. Hence, visualizing these gradi-
ents, which are the same shape as the image, should pro-
vide some intuition of what our model is focused on when
making classification decisions.

6

Figure 7: Saliency Maps for sample Type 1, 2 and 3 cer-
vices.

The above image shows the saliency maps for three
sample images of Type 1, Type 2, and Type 3 cervices taken
from our training dataset. The dots show the locations in the
image that contribute the most to the class prediction, and
it appears that our model does focus on the transformation
zone which is the actual physiological difference between
the different cervix types.

13.2. Class Activation Maps

Similarly, we use class activation maps, proposed by
Zhou et. al [24], which are an alternative way to visual-
ize the discriminative image regions used by the CNN to
identify the image label. We specifically the more robust
grad-CAM method [17] to generate our visualizations.

Figure 8: Class Activation Maps for sample Type 1, 2 and
3 cervices.

The above image shows the class activation maps for
three sample images of Type 1, Type 2, and Type 3 cervices
taken from our training dataset. A brighter (redder) color of
the overlay indicates that the region contributes more to the
class prediction. Again, we can see that our model focuses
mostly on the transformation zone of the cervix, and ignores
background artifacts such as black borders and the metallic
outlines of the speculums used in taking the images.

14. Conclusion
At the time of writing, our best model is 122nd place

on the Kaggle leaderboard out of 829 teams. Overall, we

found that a small amount of transfer learning combined
with a powerful Inception-like residual network yielded the
best results, as this was a fine discrimination task without
much data. Ensembling several re-weighted versions of this
model also increased test set performance.

In addition, we created our own technique to incorporate
additional data, using only images close to our desired dis-
tribution and sharp enough as determined by the 2D Lapla-
cian kernel filter, and we found this to help performance by
extensive preprocessing and filtering of the dirty examples.

This was a difficult problem due to the minute visual
differences between classes, and the relatively small biased
training dataset, but we find that our model is able to pick
up on these fine differences.

15. Future Work
There remains a lot to experiment with to continue im-

proving our model. We found that adding a custom, com-
plex architecture on top of a pre-trained model on ImageNet
provided a substantial boost to our results, but there are
many more architectures that we could experiment with.

Another experiment that could be interesting is, espe-
cially given the uneven distribution of the data, is create
3 separate models for each of the 3 classes that performs
binary classification for that class. We could then bring to-
gether the results of those 3 models as our final prediction
for the probabilities for each class our image belongs to.
While such an approach is not feasible on tasks such as the
ImageNet competition, which has a 1000 classes, it may be
more reasonable in our scenario given that we only have 3
classes.

Finally, we also want to experiment with using different
tolerances for the additional dataset cleaning. It is possible
that we eliminated too much or too little of the additional
dataset, so it would be beneficial to test what levels of simi-
larity to the initial dataset and levels of sharpness to include
in our training dataset.

References
[1] Y. Bengio et al. Deep learning of representations for un-

supervised and transfer learning. ICML Unsupervised and
Transfer Learning, 27:17–36, 2012.

[2] J. Bornstein, J. Bentley, P. Bösze, F. Girardi, H. Haefner,
M. Menton, M. Perrotta, W. Prendiville, P. Russell,
M. Sideri, et al. 2011 colposcopic terminology of the in-
ternational federation for cervical pathology and colposcopy.
Obstetrics & Gynecology, 120(1):166–172, 2012.

[3] T. Brosch, R. Tam, A. D. N. Initiative, et al. Manifold learn-
ing of brain mris by deep learning. In International Confer-
ence on Medical Image Computing and Computer-Assisted
Intervention, pages 633–640. Springer, 2013.

[4] F. Chollet et al. Keras. https://github.com/
fchollet/keras, 2015.

7

https://github.com/fchollet/keras
https://github.com/fchollet/keras

[5] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter,
H. M. Blau, and S. Thrun. Dermatologist-level classifi-
cation of skin cancer with deep neural networks. Nature,
542(7639):115–118, 2017.

[6] GLOBOCAN. Cervical cancer estimated incidence, mortal-
ity and prevalence worldwide in 2012, 2012.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[9] Kaggle. Intel and mobileodt cervical cancer screening, 2017.
[10] R. Kotikalapudi. keras-vis. https://github.com/

raghakot/keras-vis, 2016.
[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[12] F.-F. Li. Knowledge transfer in learning to recognize visual
object classes. International Conference on Development
and Learning, 2006.

[13] S. Liao, Y. Gao, A. Oto, and D. Shen. Representation
learning: a unified deep learning framework for automatic
prostate mr segmentation. In International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion, pages 254–261. Springer, 2013.

[14] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. J.
Goodfellow, E. Lavoie, X. Muller, G. Desjardins, D. Warde-
Farley, et al. Unsupervised and transfer learning challenge:
a deep learning approach. ICML Unsupervised and Transfer
Learning, 27:97–110, 2012.

[15] A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and
M. Nielsen. Deep feature learning for knee cartilage seg-
mentation using a triplanar convolutional neural network. In
International conference on medical image computing and
computer-assisted intervention, pages 246–253. Springer,
2013.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[17] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell,
D. Parikh, and D. Batra. Grad-cam: Why did you say that?
visual explanations from deep networks via gradient-based
localization. arXiv preprint arXiv:1610.02391, 2016.

[18] M. Shah and C. Rubadue. Deep learning assessment of tumor
proliferation in breast cancer histological images, 2016.

[19] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

[20] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2818–2826, 2016.

[22] Y. Xu, T. Mo, Q. Feng, P. Zhong, M. Lai, I. Eric, and
C. Chang. Deep learning of feature representation with mul-
tiple instance learning for medical image analysis. In Acous-
tics, Speech and Signal Processing (ICASSP), 2014 IEEE In-
ternational Conference on, pages 1626–1630. IEEE, 2014.

[23] X. Yang. A deep learning approach for tumor tissue image
classification, 2016.

[24] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba. Learning deep features for discriminative localization.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2921–2929, 2016.

8

https://github.com/raghakot/keras-vis
https://github.com/raghakot/keras-vis

