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Abstract: The majority of car accidents worldwide are caused by drowsy drivers. Therefore, it is
important to be able to detect when a driver is starting to feel drowsy in order to warn them before
a serious accident occurs. Sometimes, drivers are not aware of their own drowsiness, but changes
in their body signals can indicate that they are getting tired. Previous studies have used large and
intrusive sensor systems that can be worn by the driver or placed in the vehicle to collect information
about the driver’s physical status from a variety of signals that are either physiological or vehicle-
related. This study focuses on the use of a single wrist device that is comfortable for the driver to
wear and appropriate signal processing to detect drowsiness by analyzing only the physiological skin
conductance (SC) signal. To determine whether the driver is drowsy, the study tests three ensemble
algorithms and finds that the Boosting algorithm is the most effective in detecting drowsiness with
an accuracy of 89.4%. The results of this study show that it is possible to identify when a driver is
drowsy using only signals from the skin on the wrist, and this encourages further research to develop
a real-time warning system for early detection of drowsiness.

Keywords: driver monitoring; drowsiness detection; skin conductance; galvanic skin response;
machine learning; wearable devices; active assisted living

1. Introduction

Drowsy driving is one of the known causes of road accidents, which account for ap-
proximately 1.35 million deaths each year, according to the 2018 World Health Organization
(WHO) report [1]. A recent review of motor vehicle crashes in the United States in 2020,
published by the National Highway Traffic Safety Administration (NHTSA), states that
while the number of police-reported crashes decreased by 22% from 2019 to 2020, the
number of people killed in traffic accidents increased by 6.8% over the same period [2]. In
Europe, according to 2021 road safety statistics [3], 44 road deaths per million inhabitants
were reported, which is an increase of 5% compared to 2020 but a decrease of 13% compared
to 2019 before the pandemic.

Several studies show that deaths and injuries from traffic crashes are primarily caused
by human factors, including distraction and drowsiness, strictly related to driver fatigue.
Specifically, on the basis of extensive collections of statistical data on traffic accidents, the
NHTSA found that many crashes associated with drowsy driving involve a single vehicle,
with no passengers other than the driver, running off the road at a relevant speed with
no evidence of braking. In most cases, drowsy driving crashes occur on rural roads and
highways. Similarly, the road safety thematic report on fatigue published by the European
Commission’s European Road Safety Observatory in 2021 [4] estimates that fatigue is a
contributing factor in 15% to 20% of serious crashes, although individual studies report
quite different results. A meta-analysis of 14 different studies [5] found that fatigued drivers
have a 29% increased risk of crashing.
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In view of the situation described in the above-mentioned reports, research in the field
of driving safety is moving toward the development of automatic techniques for detecting
the driver’s drowsy state, through the appropriate selection of sensor technologies and
data processing approaches based on Machine Learning (ML) and Artificial Intelligence
(AI) in order to alert the driver as soon as possible [6]. Automatic fatigue detection systems
aim to warn drivers when they are getting tired. Since 1 September 2020, in Europe, the
presence of a driver drowsiness and attention warning system has become mandatory for
all vehicle categories and included in the motor vehicle type approval requirements. It is
possible to find solutions that mainly use sensors that monitor the vehicle’s operation or
the driver’s condition. In the latter case, cabin-mounted or wearable sensors can be used.

Existing safety technologies can detect the effects of drowsy driving and warn the
driver by monitoring the vehicle’s lane departure attitude combined with analysis of
steering wheel rotation [7]. These warning systems are already embedded in vehicles
manufactured by Ford Motor Company and Volkswagen [8,9]. However, these systems
detect the sleep status of the driver, not the drowsiness. Other solutions use cameras
installed in the vehicle cabin to track the driver’s eye movements, facial expressions, and
head position [10], such as the driver attention monitoring system developed by Lexus and
Toyota [11]. Camera-based solutions [12] are more reliable in providing timely detection
of drowsy behavior, but on the one hand, they require one or more cameras installed in
the vehicle cabin (which is not yet common), and on the other hand, they may suffer from
several limitations or constraints due to the operating conditions (e.g., different and variable
lighting scenarios or possible occlusions of the driver’s face, such as glasses or sunglasses).
For these reasons, researchers and car manufacturers have explored different and innovative
solutions. In addition to approaches using image-based and vehicle-based data, biosignals
can be collected from the driver and processed to detect drowsiness and possibly merged
with other sensor data to implement hybrid drowsiness detection systems. In this scenario,
an innovative approach is the use of skin conductance (SC) or galvanic skin response. SC
signals can be analyzed, in fact, through non-invasive integrated sensor platforms.

Based on these premises, the aim of this manuscript is to investigate the ability of the
SC signal collected from the wrist to detect the drowsiness of a driver through the use of
a wearable device, which in this study has been selected as the Empatica E4. This paper
technically extends the investigations of a preliminary study by the same authors [13]. In
this enhanced and extended version, the classification accuracy of the SC signals collected
by the wearable device is further assessed, providing a comparison with the classification
accuracy of the SC signals collected by a reference instrument, namely the ProComp Infiniti
DAQ [14]. For a proper comparison, signals are obtained simultaneously by the wearable
and the ProComp from the same subjects. The results show that the signals from the wear-
able device need to be appropriately resampled, filtered, and cleaned of motion artifacts
in order to achieve a classification accuracy comparable to that obtained from the signals
acquired by the reference instrument. Finally, the tested ML algorithms show a classifi-
cation accuracy above 89%. This is an important result to support experiments to detect
driver drowsiness using a simple wrist-worn device, independent of other technological
equipment on board the vehicle.

The paper is structured as follows. Section 2 provides an analysis of the state-of-the-art
about drowsiness detection systems based on physiological signals. Background concepts
about the acquisition of the SC and the removal of motion artifacts are given in Section 3.
In Section 4, the study methodology is described, including the description of the driving
simulator, the acquisition devices, data analysis and the test procedure. Preliminary results
and filtering improvements are given in Section 5. In Section 6, the comparison between
the two devices and the final results are discussed. Finally, conclusions and perspectives
for future studies are explained in Section 7.
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2. Drowsiness Detection Based on Physiological Signals

A recent review by Albadawi et al. [15] presents several systems that use different
measures to track and detect drowsiness. The main challenges for the use of biosignal-
based systems are related to the characteristics of the devices used and the hardware
setup. As a condition affecting driver behavior, drowsiness is related to the activity of
the Autonomous Nervous System (ANS), which is reflected in physiological changes [16].
Nowadays, such changes can be monitored by means of comfortable wearable devices
available either on the market or as research prototypes under different designs, such as
wristbands [17,18] and rings [19]. In drowsiness studies based on biomarker collection
reflecting ANS activity, the electroencephalogram (EEG) is commonly used as a reference
signal, often in conjunction with the electrocardiogram (ECG). Furthermore, features of
photoplethysmogram signals [20] or signals related to ECG—heart rate (HR), heart rate
variability (HRV) and phonocardiogram [21–23]—can be considered.

In [24], electromyogram (EMG), hand pressure, and SC signals are measured in a
minimally invasive manner using an integrated sensing platform mounted on a steering
wheel sleeve. This allows the proposed sensing platform to be installed in any existing
vehicle, enabling convenient and widespread driver monitoring. In fact, as already men-
tioned in the Introduction, if we focus on the skin, the ANS activity can be studied by
analyzing SC, which is a biomarker that varies as a consequence of sweat gland secretion.
The SC signal can be decomposed into two main components: a tonic component that
varies slowly over time, also known as Skin Conductance Level (SCL) [25], and a phasic
component characterized by rapid changes in signal amplitude, also known as Skin Con-
ductance Response (SCR) [26], which is typically associated with stimuli-related events.
The process of exosomatic SC acquisition is minimally invasive and can be performed
during normal daily activities, especially when using wearable devices: data collection
does not require controlled laboratory settings, and the portability of the devices makes
them affordable. However, evidence from the literature shows that SC signals collected by
wearable devices inevitably show limitations in terms of their quality compared to those
acquired by laboratory equipment and DAQ (Data Acquisition) boards [27]. For example,
movements performed by subjects during daily activities can strongly affect the signal
with noisy artifacts. Therefore, appropriate processing steps must be applied to SC signals
collected from a wrist-worn device to make them suitable for the reliable classification of
drowsiness by ML algorithms.

The collection of multiple signals and biomarkers to achieve reliable drowsiness de-
tection has been exploited in the literature. For example, Awais et al. [21] proposed the
combined acquisition and processing of electroencephalographic (EEG) and electrocar-
diographic (ECG) signals to discriminate between alert and drowsy states, achieving an
accuracy of 80.90% with the Support Vector Machine (SVM) ML classifier. Similarly, in [23],
the authors present a drowsiness detection model that fuses physiological (from ECG, respi-
ration sensor, and camera), postural, and vehicle information. Recently, Arjunan et al. [28]
proposed a monitoring system that uses the combination of data from multiple wearable
sensors, namely blood pressure, heart rate, blood oxygen, body temperature, EEG, and
electromyography (EMG) sensors, to detect the status of the driver.

The SC signal, either alone or combined with other physiological signals, has been
used to detect a subject’s drowsiness, with or without using ML algorithms to perform
automatic classification of the drowsy state. For example, a wearable device capable of
detecting the subject’s SC has been designed by the authors and presented in [29]. The
signal collected by the proposed device shows obvious and distinguishable physiological
variations that occur with the drowsy driving of the subject performing the test. Similarly,
in [30], significant changes of the SC are visible when the subject falls asleep: this effect
can be exploited as a meaningful property to identify an increasing drowsiness. In both
studies, no classification of driver status was performed. A recent review of ML techniques
applied to arousal classification from SC signals [31] shows that SVMs and Artificial Neural
Networks (ANNs) emerge among the supervised learning methods, as they are able to
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provide high accuracy values. On the contrary, unsupervised methods are not found in the
literature as a viable way to classify arousal from SC signals. This finding may be helpful for
the correct selection of the classification algorithm to be applied in the detection of driver
drowsiness. Wang et al. [32] combined SC with pulse oximetry and respiration signals
to predict drowsy driving, using a Random Forest (RF) classifier combined with Hilbert–
Huang transforms to maximize prediction accuracy. In [33], SC and Blood Volume Pulse
(BVP) signals are jointly acquired and processed to detect and classify driver drowsiness by
testing different ML algorithms.

In a recently published study [34], behavioral and physiological measures collected by
a multi-sensor system using a camera to capture facial features from videos and a Galvanic
Skin Response (GSR) sensor applied to the subject’s skin are combined to detect drowsiness.
The proposed hybrid system can achieve an accuracy of 91% in identifying the transition of
a driver’s status from awake to drowsy in all conditions tested with a driving simulator.
Similarly, Horng et al. [35] and Choi et al. [36] focused on the physiological prediction of
drowsiness by using a wrist-worn multi-sensor device that collects SC, EEG, and ECG data
to monitor the driver’s stress, drowsiness, and fatigue states. In both works, ML classifiers
were used to recognize the driver’s status. High classification accuracy was achieved
by implementing the Support Vector Machine algorithm combined with an ensemble
method for the multi-class classification problem. High classification performance was also
achieved by [35], who focused on physiological prediction of drowsiness by measuring
GSR, eye movements, HR, and brain waves from multiple wearable sensors. However,
due to the bulky setup (e.g., electrodes for EEG placed on the head, those for ECG on the
chest, and those dedicated to SC on the fingers/wrist), multimodal systems prove to be
uncomfortable and intrusive arrangements for real-life adoption in driving situations. In
addition, the use of multiple signals (from both wearable and ambient sensors) increases
the complexity of the acquisition system, which could affect the data analysis procedure;
consequently, the assessment of the driver status becomes more time-consuming, possibly
leading to a delay in warning generation and reduced safety for the driver.

Detecting driver fatigue is a challenging task: any fatigue detection method becomes
feasible if it is able to process data as quickly as possible while providing accurate results.
Hybrid methods, based on multi-sensor systems and on the fusion of features extracted
from signals of different types, can ensure better classification accuracy but also increase the
complexity of the system. Therefore, it is of interest to investigate whether a single signal,
such as the SC collected by a wrist-worn device, can be properly processed to achieve
acceptable sleepiness classification accuracy.

3. Background Concepts

This section provides background concepts on the skin conductance signal and issues
affecting its measurement for a better understanding of what is presented later on. A brief
overview of common artifact removal methods is also provided.

3.1. Skin Conductance

According to [37], SC may be defined as the phenomenon that the skin temporarily
becomes a better conductor of electricity due to a change in sweat secretion, when either
external or internal stimuli occur that are physiologically arousing. As such, SC is an
electrical signal measured indirectly according to Ohm’s law, and it is represented by the
variation in the electrical conductivity of the skin.

It is important to emphasize that the physiological response that generates the SC
variation is a time-limited phenomenon; therefore, time plays an important role in the ex-
perimental phase, both in the administration of the stimulus and in the measurement of the
induced SC variation. Sweat secretion cannot be consciously controlled because it is driven
by the ANS. The ANS includes sympathetic (SNS) and parasympathetic (PSNS) branches:
the former represents a rapid response system for immediate motor action; therefore, it
is also related to the fight or flight response. Increased sympathetic activity is associated
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with physical indicators of autonomic arousal, such as increased heart rate, respiratory rate,
blood pressure, and sweating. The unconscious processes of sweat secretion reflect changes
in arousal and are therefore controlled solely by the SNS. Arousal, in turn, has been found
to be a strong predictor of attention and memory both in mental workload experiments
and in simulated driving [38,39].

SC can be measured by endosomatic or exosomatic methods. In the former, an electrical
potential difference is measured across the palmar and plantar skin in the absence of an
applied external voltage or current. Typically, a single electrode is placed at the active site
and a reference electrode is placed at a relatively inactive site, such as the forearm. The latter
methods can be completed in DC with a constant small voltage (e.g., 0.5 V) applied between
two electrodes placed on the skin surface. Using Ohm’s law, the skin resistance (SR) or
its reciprocal SC can be derived. In DC measurements, electrode polarization can occur
and affect the accuracy of SC measurement. In the AC modality, which avoids electrode
polarization, skin impedance or its reciprocal (skin admittance) is measured.

Regardless of the specific method used to measure SC, several quantities and condi-
tions can affect the quality of the measured data, among which it is worth mentioning:
ambient temperature and humidity (possibly influencing the subject’s sweating); correct
use and positioning of the electrodes; and body movement. The latter is an issue that has
been addressed in the literature by different approaches, which are summarized in the
following section.

3.2. Motion Artifacts and Correction Approaches

The increasing use of wearable devices for a long-term and minimally invasive acqui-
sition of SC in real-life scenarios (e.g., out of ambulatory and controlled settings) makes
the signal more vulnerable to noise and artifacts. The latter are typically due to electronic
noise or changes in the skin surface-recording electrode contact because of varying pressure
related to the measurement site chosen (such as the ventral wrist), excessive movement (de-
pending on the specific situation under which the signal is acquired), or device adjustment.
SC artifacts can be easily misunderstood as SCRs, i.e., stimuli-related variations of the SC,
so it is evident that effective approaches to remove or mitigate artifacts in the SC signal are
needed for a correct extraction of meaningful information from the signal itself [40]. At the
same time, because SC does not exhibit periodicity (differently from other physiological
signals) and also features a quite remarkable intra- and inter-subject variability, the issue of
correctly identifying motion artifacts remains still open.

Heuristic removal methods are based on visual inspection of the SC signal, looking
for atypical portions of it, compared to models derived from Boucsein’s analyses [37,41,42].
Such methods, however, do not generalize effectively beyond the contexts in which they
have been designed based on signals acquired under specific conditions. Similar limitations
hold for more recent methods based on curve fitting or sparse recovery [43], as they also
rely on a model used to generate an artifacts-free version of the signal against which the
one collected in the field is compared.

Common non-heuristic approaches for motion artifacts removal in SC signals exploit
low-pass filtering or exponential smoothing [44]. These methods are effective in removing
high variations in the SC signal but do not perform well when high-amplitude changes
occur in a very short time in the signal because of the subject’s motion. On the other hand,
methods exploiting machine learning and features-based classification have proven to be
capable of handling spiky motion artifacts featuring huge changes in signal amplitude, but
then they perform poorly on different types of noise contributions possibly present within
the signal. For example, Taylor et al. proposed the use of a Support Vector Machine (SVM)
as the selected classifier for the automatic detection of motion artifacts in EDA signals [40],
while simple decision rules were applied in [45] but with limited generalization. In [46],
three unsupervised learning methods and a threshold selection process were jointly applied
to remove artifacts in EDA signals.
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Motion artifacts removal methods based on Wavelet Transforms have gained popu-
larity in different fields dealing with noisy physiological signals, and they have been in
the literature for several years thanks to their time-frequency localization capability. Re-
garding the removal of motion artifacts from SC or EDA signals, Chen et al. [40] proposed
the use of a Stationary Wavelet Transform (SWT), modeling the Wavelet coefficients as
a Gaussian mixture distribution, to match both the SCL and SCRs. Their method could
remove motion artifacts better than previously proposed solutions while keeping safe the
noise-free portions of the signals. This method, combined with a specific modeling of the
Wavelet coefficients, was used in a previous study from the authors to obtain artifacts-free
SC signals [13]. In this work, the same filtering approach is modified and optimized by
analyzing the impact that artifacts removal has on the automatic classification algorithms
aimed at identifying the driver’s drowsiness.

4. System and Methods

The objective of the proposed analysis is to investigate the feasibility of an automatic
detection of driver drowsiness by analyzing the SC signal alone. To this end, the driver’s
SC signal is acquired with the Empatica E4 wearable device, as it would emulate a realistic
scenario where drivers can wear their smartwatch to monitor physiological parameters.
This device will therefore be the target device of this study.

The subsequent data analysis is performed first in a MATLAB environment and then
using the WEKA tool [47] to evaluate the drowsiness classification accuracy achievable us-
ing different ML classifiers. In the following, all the required components of the acquisition
system are presented.

4.1. Driving Simulator and Acquisition Devices

With the aim to collect SC signals from subjects realistically engaged in a driving task,
experiments are conducted in a driving simulator hosted at the Department of Engineering
of the University of Modena and Reggio Emilia, as shown in Figure 1. An overnight
driving path is selected as the simulated scenario, which is realized as a three-lane high-
way with no traffic and a length of 80 km. In order to reduce the influence of random
effects/disturbances on SC acquisitions, the average temperature of the room hosting the
driving simulator is kept stable at 23 ◦C without changing the condition of humidity. Each
of the simulated driving sessions has a duration of 40 min.

A further need was to relate the level of sleepiness to the physiological changes
measured in the SC signal. For this purpose, we resorted to the use of the Karolinska
Sleepiness Scale (KSS), which is a 9-item questionnaire that matches verbal sentences to
the psychophysical state experienced by the respondent [48]. To facilitate the collection of
the driver’s perceived level of drowsiness, our simulator was therefore equipped with a
tablet, as shown in Figure 1. We deliberately developed a simple application in Android
Studio [49] and installed it on a tablet (namely a Samsung Tab S6 Lite), which helped to
easily collect the KSS value from the driver. As shown in the figure, the user interface
consists of a main 3 × 3 grid and an additional large colored area in the topmost part of
the screen, normally red. Each element of the grid is a clickable button corresponding to
a value on the KSS scale from 1 to 9. During the test, the perceived alertness/drowsiness
status is recorded periodically every 10 min, which is related to the previous time window,
and to facilitate this process, the color of the top bar, which is red for most of the period,
turns green to indicate to the participant to provide the perceived KSS value. As shown
in Figure 1, the tablet is placed to the left of the simulator cockpit to avoid disturbing the
driver during the test but at the same time to ensure that the driver can easily notice the
green button and rate his level of drowsiness.
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Figure 1. Experimental setup including: driving simulator, monitor presenting the overnight scenario,
Empatica E4 device on the wrist, and tablet with KSS graphical interface.

Empatica E4 is a multi-sensor wrist-worn device [18] able to collect the user’s SC
signal changes during the simulated driving through the SC electrodes on the bracelet.
With the E4 device, SC is exosomatically acquired in AC: a very small amount of alternating
current (maximum peak-to-peak value of 100 µS) at a frequency of 8 Hz is injected through
Ag/AgCl electrodes located on the bottom side of the bracelet, and the electric conductance
across the skin, expressed in µS, is recorded. The sampling frequency of the SC sensor is
4 Hz.

For the sake of completeness, the system design also involves a second acquisition
device. This is not a wearable device that can be used in substitution of the Empatica E4;
rather, it has been introduced to assess the E4 acquisition capabilities and limitations in
order to discover possible effects that could hinder the effective detection of drowsiness
from the collected SC signals. Therefore, signals acquired from the E4 are compared to those
collected by using a benchtop DAQ, namely the Procomp Infinity shown in Figure 2, which
can be considered as a gold standard in the physiological measurements field. ProComp
Infiniti DAQ is a high sampling frequency physiological signals acquisition system, which
includes five channels, with multiple modalities: in particular, the first two channels
allow the acquisition of EEG, ECG, and HR/BVP signals with a sampling frequency of
2048 Hz. The last three channels, on the other hand, allow monitoring slower signals such
as respiration, temperature and SC at a frequency of 256 Hz. Channels are interchangeable,
i.e., they can be used with any combination of sensors. As for the SC Flex/Pro sensor
equipped with Ag/Ag/Cl electrodes, the signal input range is [0, 30] µS, and the declared
accuracy is ±5% and ±0.2 µS. At the hardware level, the system comprises a TT-USB
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interface unit, a fiber optic cable and four AA-type alkaline batteries for portable use. The
ProComp system, therefore, encodes and transmits the data via the fiber optic cable to
the TT-USB unit, which is in turn connected to the USB port of the PC. The companion
BioGraph Infiniti software allows to easily record and export the measured values for later
processing.

Figure 2. The ProComp Infiniti physiological signals DAQ. The TT-USB hardware interface and the
SC sensor are shown.

4.2. Artifacts Removal

As discussed in Section 3.2, movements of the wrist on which the sensor is worn
while driving, and undesirable losses of the skin–electrodes contact, can strongly impact
the quality of the SC signal and consequently decrease the accuracy of ML algorithms in
detecting the driver’s drowsiness. Therefore, exploiting past experience in the scientific
literature [40], the detection of changes in the SC signal typically referable to motion ar-
tifacts and their actual removal is dealt with by the Stationary Wavelet Transform (SWT)
denoising with Haar mother Wavelet (7 levels of decomposition). In particular, according to
the literature [50], the N Wavelet coefficients are modeled using a zero-mean Laplace distri-
bution. Motion artifacts are removed from the samples if the corresponding coefficients fall
out of the two thresholds, namely Thigh and Tlow, calculated for each decomposition level,
and defined as in [50] by: {

Tlow = ( 1
N ∑N

n=1 |dj|) · loge(δ)

Thigh = −Tlow
(1)

where j is the Wavelet decomposition level, dj indicates the j-th Wavelet coefficient, N is
the number of considered points, and δ is the proportion of motion artifacts in the original
signal, thus quantifying how much motion artifacts affect the signal. The SWT must be
calculated on a segment equal to N = 2j points or on an integer multiple of N. In the case
of the filter discussed here, we chose j = 7, and the filter is applied over non-overlapped
segments of 27 = 128 points. As in [50,51], the value of δ is set by exploiting the information
about the subject’s motion provided by the three-axial accelerometer embedded in Empatica
E4, which collects wrist acceleration values simultaneously with the SC samples. Thus,
δ can assume two different values depending on the magnitude of the subject’s wrist
movement.

In particular, in our study, the value of δ is set based on the standard deviation (σ) of
the acceleration samples collected from each single directional component (accx, accy, accz),
as follows: {

δ = 0.01, σ(accx ,accy ,accz) < 0.04 m/s2

δ = 0.10, otherwise
(2)
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Based on Equation (2), the limit on the value of σ has to be satisfied by all the three
acceleration components. The threshold value on the acceleration, equal to 0.04 m/s2,
is heuristically selected following a visual inspection of the time evolution of both the
acceleration and SC signals. In fact, similarly to what was completed in [51], the presence of
motion artifacts is identified by evaluating the σ of each acceleration component: if just one
out of the three components is greater than 0.04 m/s2, then a motion artifact is identified
and consequently removed from the signal.

After the artifact removal phase, the inverse SWT (ISWT) is applied to reconstruct the
denoised signal.

4.3. Features Selection and Extraction

After the filtering phase, both the SC signal and its components (SCR and SCL) are
divided in short-term time windows of fixed size equal to 15 s [52], each containing
60 samples acquired by the Empatica E4 device. Then, each segment is labeled with the
corresponding KSS response given by the users. To investigate the drowsiness prediction
capability of the SC signal variations, the KSS scores are grouped from the original 9 possible
values into three classes, depending on the drowsiness level: KSS scores between 1 and 5 are
grouped in class 1 (labeled as alert), scores equal to 6 and 7 are grouped in class 2 (labeled
as slightly drowsy), and scores 8 and 9 are grouped in class 3 (labeled as drowsy). Since one
recorded KSS value is referred to a period of 10 min, while the SC signal segment is 15 s
long, each SC segment inside the same KSS interval has been labeled with the same KSS
value. Then, from samples contained in each window, a total of 23 features (some already
used in previous studies [26,53–55]) are initially computed in the MATLAB environment,
either in time and frequency domains, to explore the temporal and spectral information
content of the SC signal. For what concerns the frequency domain, before computing the
selected features, Fast Fourier Transform (FFT) was applied to the original data.

Among the features extracted, however, some might have similar information content,
resulting in high correlation, and hence in detrimental redundancy for discriminating
classes with an ML algorithm [56]. The classification task addressed in this work exploits
supervised features selection: being the class labels available, it is possible to effectively
select those features that are truly discriminative in distinguishing samples from different
classes. In WEKA, the so-called Correlation Attribute Evaluator performs an evaluation
of each feature by computing the average Pearson’s correlation between the feature and
the class. By definition, the Pearson’s correlation coefficient of two variables X and Y is
calculated as:

ρ = cov(X, Y)/[σ(X) · σ(Y)] (3)

Namely, it is the covariance of the two variables divided by the product of the standard
deviation (σ) of each of them. Coefficient ρ may take negative or positive values: in general,
a value below -0.5 or above 0.5 is assumed to be related to a notable correlation. In this
study, |ρ| > 0.90 is assumed as the condition to identify a strong correlation among the
features tested and thus select only those features helpful to maximize the classifier accuracy.
According to the condition set, five features, namely SC mean, SC maximum, SC median,
SCL mean and SCL maximum, are discarded, thus resulting in 18 features to use, which are
listed in Table 1. Finally, once computed on the acquired SC, SCL and SCR signals, each
feature value is associated with the corresponding class label.
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Table 1. Features extracted from the SC signal and its components.

Type of Signal Domain Features

SC signal

Time

standard deviation (µS)
minimum (µS)
kurtosis (µS), skewness (µS)
variance ((µS)2), range (µS)

Frequency

mean (µS/Hz), standard deviation (µS/Hz)
minimum (µS/Hz), maximum (µS/Hz)
kurtosis (µS/Hz), skewness (µS/Hz)
variance ((µS/Hz)2), range (µS/Hz)
median (µS/Hz)

SC components Time
SCR number of peaks
SCL standard deviation (µS)
SCL minimum (µS)

4.4. Machine Learning Algorithms

Once the relevant features are selected, three ML algorithms are tested and their
classification performances are compared. In particular, Random Forest (RF), Bagging, and
Boosting, as implemented and provided in WEKA, are considered, similarly to previous
works [52,57]. The proposed ML-based drowsiness detection models are evaluated through
the 10-fold cross-validation method. Then, according to [58], the classification performance
is assessed based on the resulting accuracy (number of correctly classified instances related
to driver status over the total number of instances), precision (number of correctly classified
instances over the total number of instances labeled as belonging to the correct class),
and recall (number of correctly classified instances over the total number of instances that
actually belong to the correct class). These performance figures, expressed as percent values,
are calculated as follows: (i) accuracy = (TP + TN)/(TP + TN + FP + FN); (ii) precision =
TP/(TP + FP); (iii) recall = TP/(TP + FN). Therefore, they depend on the amount of true
positive (TP), true negative (TN), false positive (FP) and false negative (FN) instances.
Moreover, the confusion matrix is computed to summarize the classification performance
of the resulting best ML algorithm. The aforementioned procedure for the analysis of the
measured SC signals is graphically represented in Figure 3, where the right side represents
a detailed block scheme of the filter designed for artifacts removal.

Data acquisition

Artifacts removal

Features extraction

Features selection

ML analysis

Parameters setup

Signal segmentation

SWT

Check Wavelet 

coefficent

ISWT

a) b)

Figure 3. (a) Block scheme of the entire data processing; (b) Block scheme of the filter.



Sensors 2023, 23, 4004 11 of 18

5. Filter Design Improvement

As discussed in Section 4.2, to remove motion artifacts due to the driver’s wrist
movements while simulating driving, we introduced a specific filtering stage. This process
relies on the SWT: in particular, it considers non-overlapped segments of the signal and
works on them. We have observed that the inverse SWT (ISWT) step used at the end of the
process to reconstruct the denoised signal often would create two peaks, at the beginning
and the end of the considered signal segment, as shown in Figure 4. We can easily notice the
effect of ISWT: peaks are equally spaced with a period equal to the length of the considered
signal segment, but their magnitude differs from peak to peak. Unfortunately, these peaks
modify the signal, influencing all the analytical processes, and therefore, the correct driver
status assessment. For example, the number of peaks over a certain period of time is one
of the most used parameters to analyze SC signals, and hence the application of the filter
discussed in Section 4.2 modifies such a parameter.
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Figure 4. Comparison between the effect of the filter based on [51] and the modified filter. In (a), a
portion of the acquired SC signal—the red line—that should not be affected by the filter, since it is
not altered by appreciable movements, is shown. The blue line shows the signal filtered according
to [51]: the visible spikes causing signal distortion are due to the ISWT; indeed, they are spaced out
by 128 points, which is the length of segments the filter works on. In (c), the two components of the
SC signal are shown (SCL in purple and SCR in black), from which several features are considered in
our study. In (e), there is a detailed image of the SCR components where the orange dotted line is
the threshold (Thr) used to consider an SCR peak relevant. The threshold is 0.01 µS, as it is usually
considered. It is clear that the peaks generated by the old filter overcome the threshold and thus
affect the number of peaks as a relevant feature of the SC signal. The filter distorts both components
and thus the value of the features. In (b), the same portion of the SC signal in (a) is presented, but it is
elaborated with the modified filter. In this case, there are no differences between the raw and filtered
signals. As a result, there are no distortions of the signal components and no misinterpretations of
features, as represented in (d) and in (f).
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An improved version of the filter has been studied to overcome this issue. As shown
in Figure 5, the modified filter is based on the same structure as the original one: SWT
is used to remove motion artifacts, thresholds are calculated similarly, and the analysis
process is applied to signal segments. However, in the new version, the segments have a
length of N = 2 · (2j) samples, with j being the Wavelet decomposition level. Furthermore,
in this case, the segments were overlapped with an overlapping window equal to (2j)/2.
In the filtering process, during the last step, only the central part of the signal segment is
considered. This way, the head and tail of each segment are not retained, and the peaks
generated by the ISWT are not considered, either. As a result, the motion artifacts are
removed without any additional distortion.

128 points

SWT

Coefficents control

ISWT

Raw signal segment

256 points

Raw signal segment

SWT

Coefficents control

ISWT

Filtered signal 

segment

Old Filter Scheme New Filter Scheme

b)

Considered segment

128 points

256 points

Filtered signal 

segment

a)

Considered segment

128 points

128 points

64 points64 points

Figure 5. Comparison of the old and the new filter with a Wavelet decomposition level, j, equal to 7:
(a) the old filter where the entire elaborated signal is considered at the end as a filtered signal; (b) the
new filter where the filtered signal is the middle part of the elaborated one

6. Experiments and Analysis of Results

For the experimental assessment carried out in this work, a set of volunteers has been
constituted, which is composed of nine healthy subjects, four males and five females. As
it is well-known from the literature, the age and gender of subjects can highly influence
the changes in their physiological data, especially in the case of SC [59]. Therefore, a male
and a female were selected in each cohort of 10 years width, from 20 to 60 years of age, to
represent a variety of active drivers. Increasing the dimension of the test population would
allow us to obtain a more refined representation of drivers’ behavior as well as include also
those age groups that were not included in this study.

Following data acquisition and motion artifacts removal according to the improved
filter design, the significant features listed in Table 1 were extracted. Then, three classifi-
cation algorithms were tested. In particular, we used the WEKA tool to test the ability of
Random Forest, Boosting and Bagging algorithms to detect the driver’s drowsiness level.
The modified filter described in Section 5 was used with a decomposition level equal to 10
since, as described in [50], the Wavelet decomposition level is defined by:

j = log2 fs + 2 , (4)

where fs is the sampling frequency of the acquisition device and j is the decomposition
level of the Wavelet to be used. E4 has a sampling frequency of fs = 4 Hz; thus, j is 4,
whereas ProComp DAQ has fs = 256 Hz; thus, j is 10.
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6.1. Drowsiness Classification: Comparison between Procomp and E4 SC Signals

As a first step of our experimental assessment, a detailed comparison of the signals
acquired by both the E4 and the ProComp devices was necessary in order to verify the
impact that different technical specifications have on the final classification outcomes.
To this aim, the focus has been on the obtained signal features rather than the overall
confidence about drowsiness detection. In this work, nine healthy subjects were involved
(four males and five females) of different ages and gender to avoid physiological influences,
as in [13]. Since Procomp Infinity is quite invasive, to maintain the ergonomics of the
experiment and to avoid influences on physiological signals due to the discomfort caused
by the probes of Procomp Infinity, we collected another smaller dataset to compare the
classifications performance of Procomp and E4 signals. Therefore, using the driving
simulator shown in Figure 1, two more volunteers were engaged: one male and one female,
both healthy subjects, 28 years old. Drivers wore the E4 in the dominant hand wrist
and the ProComp SC probe at the index and middle fingers of the same hand. Signals
were acquired simultaneously and in the same body position in order to guarantee their
coherence. Moreover, this condition allows assuming that the movements of the fingers
and wrist are coherent as well. This way, the acceleration signals provided by the E4 can be
used also for the analysis of ProComp data as an indicator of the amount of body motion
affecting both acquisitions. Both volunteers repeated the test five times in a non-consecutive
way to avoid the influences of drowsiness level due to overload.

Table 2 summarizes the figures used to evaluate the classification performance of the
three algorithms on the subset collected. The overall accuracy refers to the ability to identify
the three classes in which features were divided: alert (class 1), slightly drowsy (class 2) and
drowsy (class 3). For ProComp Infiniti DAQ, the best results were obtained by Boosting
classifier, but the differences with the other classifiers are actually very small. For E4, the
best results were obtained by the RF classifier, according to all the performance figures
evaluated, although all the results are very similar as for E4.

The results of Table 2 show higher performance for Procomp Infinity than E4; thus,
despite the limitations related to the subset collected, it is possible to say that the signal
acquired by the ProComp Infiniti board allows a more reliable detection of the driver’s
drowsiness than E4. This is almost obvious, in our opinion, and the reasons could be several.
The two most relevant ones are related to the measurement site and to the acquisition board.
Fingers are the best measurement site for the SC signal [60] since they are rich in sweat
glands and, in addition, they are very outward, which allows a better gathering of the SC
variations. For this reason, most studies focus their attention on fingers. Unfortunately,
acquiring SC signals from fingers means having electrodes on them. This could be invasive
and not suitable for automotive applications.

Another important aspect to take into account is the acquisition board. Empatica
E4 is a minimally invasive and comfortable wearable device that allows the collection of
several physiological signals in the long term, featuring several hours of battery lifetime.
This makes it a very useful device to acquire the driver’s physiological signals during
driving without any discomfort, and it enables the driver’s status monitoring in a fully
non-invasive way, as already demonstrated in [13]. However, these features are available
at the expense of a trade-off between user comfort, power consumption, and data quality.
Very often, portable devices such as smartwatches sacrifice their performance to reduce
physical dimensions and improve battery lifetime. The E4, for example, has a sampling
frequency of the SC signal of only 4 Hz, which is a design choice by the manufacturer
that is justified by the slow-varying nature of the SC signal. On the other hand, ProComp
Infiniti is a board specifically designed to acquire physiological signals with high accuracy,
and it is often used to characterize prototypes. With respect to E4, it is not a fully portable
device (and cannot be used as a wearable one), and it has not been designed with power
consumption- or dimensions-related constraints in mind. ProComp Infiniti samples the SC
signal with a frequency equal to 256 Hz, which is much higher than the 4 Hz of E4. This
means that every second, the ProComp Infiniti collects 64 times the number of samples



Sensors 2023, 23, 4004 14 of 18

with respect to E4. This improves the quality of the signal and, consequently, the extracted
features and ML results.

Table 2. Classification results of Procomp Infinity and E4 over the subset. Below the table, there is a
summary of the motivations for the differences between the two cases.

Procomp Infinity E4

Random Forest
Accuracy
Precision

Recall

91.3%
91.3%
91.3%

83.3%
83.2%
83.3%

Boosting
Accuracy
Precision

Recall

91.7%
91.2%
91.2%

83.2%
83.1%
83.2%

Bagging
Accuracy
Precision

Recall

90.2%
90.2%
90.2%

82.8%
82.7%
82.8%

Features

SC acquired on finger
Higher sampling frequency

Invasive
Not portable

SC acquired on the wrist
Lower sampling frequency

Non-invasive
Portable

6.2. Drowsiness Classification by Oversampled E4 SC Signals

This research aims to investigate the ability of the SC signal to detect driver drowsiness
using a commercially available wrist-worn wearable device. According to [13], the SC
signal collected by E4 can give information about the driver’s status. At the same time,
the results of the previous section demonstrated how using a more powerful device, with
electrodes attached to the finger and with a higher sampling frequency, can provide (as
easily expected) a better drowsiness detection accuracy.

Nevertheless, the goal of our research is to maintain a fully non-invasive data collection
modality, which points to the exclusive use of a wearable device that would be compatible
with real driving scenarios. Indeed, other solutions would interfere with the driver and the
monitoring would become invasive. Therefore, in order to improve the accuracy drowsiness
detection, we propose to increase the number of points per second collected by wearable
E4 devices by oversampling.

Data processing is maintained the same as explained in Section 4.3, but we introduced
an additional step to oversample the E4 signals and have the same number of samples
as for the ProComp Infiniti signals. This step was made after data acquisition, since we
did not want to modify the E4 device and its integrity, to maintain the FDA certification.
To achieve this purpose, we made an interpolation before the motion artifacts removal
phase. The interpolation was implemented in the MATLAB environment, as for the other
pre-processing phases, by using the interp1 function. This function performs the 1-D data
interpolation of a 1-D vector exploiting the interpolation method requested by the user: we
chose the linear method that linearly interpolates the values at neighboring points. This
choice was justified by an in-depth study of all the possible methods, showing that the
linear interpolation produces a signal closer to the original one. Since signals are now both
sampled at 256 Hz, according to the Equation (4), the Wavelet decomposition level of the
filter is set equal to 10.

The results obtained with this enhanced technique are reported in Table 3 with respect
to the same tested classifiers used during the previous tests: RF, Bagging and Boosting.
The best result was achieved by Boosting with an accuracy of 89.4%, precision of 89.5%
and recall of 89.5%, but there is only a 0.1 difference among percent values with RF. For
ease of comparison, Table 3 reports the results obtained using the original signal at 4 Hz
provided by the Empatica E4. Please notice that the numbers in the right column of the
table differ from the ones reported in Table 2, and this is because Table 3 refers to the
whole dataset introduced in Section 6. It is clear that the modified filtering, joint with
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a proper oversampling of the E4 SC measurements, provides an improvement for all
classifiers, which is similar for all the figures in the case of RF and Bagging, and more
evident for Boosting.

Table 3. Comparison between classification results of E4 signals oversampled at 256 Hz with the ones
of E4 signals at the original 4 Hz sampling frequency.

E4 with Oversampling
at 256 Hz

E4 with Original
Signals at 4 Hz

Random Forest
Accuracy
Precision

Recall

89.3%
89.4%
89.3%

84.1%
84.2%
84.1%

Boosting
Accuracy
Precision

Recall

89.4%
89.5%
89.5%

82.8%
82.8%
82.8%

Bagging
Accuracy
Precision

Recall

88.4%
88.4%
88.4%

83.2%
83.3%
83.2%

7. Conclusions

This study focused on the detection of driver drowsiness based on the physiological
variation of the SC recorded by a wrist-worn device. Based on a previous analysis, we
developed a new version of the artifact removal algorithm that made the entire data
processing more robust. We compared the wearable device, E4, with a gold standard
instrument for SC monitoring. We found that a signal with more samples per second allows
more efficient detection of driver drowsiness. Indeed, with the ProComp Infiniti DAQ,
the accuracy of drowsiness detection was 91.3% for Random Forest, 91.7% for Boosting
and 90.2% for Bagging. On the other hand, the classification accuracy obtained with E4
was 83.2%, 83.2% and 82.8% for the three algorithms. These are significant differences.
Since we want to keep the data acquisition mode completely non-invasive, we applied an
oversampling of the E4 signals at the beginning of the processing chain. Thus, the detection
accuracy results are 89.3% for Random Forest, 89.4% for Bagging, and 88.4% for Boosting.
These values are higher than the results obtained without oversampling.

The improvement with respect to the first analysis is almost 5 percent points, on
average. Higher accuracy means a higher ability to distinguish the driver’s status between
alert, slightly drowsy and drowsy. Moreover, the results have demonstrated that it is feasible
to detect driver drowsiness using only SC signals acquired from a single wrist-worn device
in a heterogeneous population in terms of gender and age. Additionally, the classification
performance is obtained with short-term time windows, which is essential for detecting
short-term events such as natural drowsiness onset. When abnormal changes in skin
conductance are detected, proper timely alerts can notify the driver, such as suggesting
taking a short break to rest. Based on these promising results, future activities focus on
extending the experimental dataset for a more robust and statistically significant evaluation
of the drowsiness detection capability of SC signals alone.
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