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Abstract: The research describes an effective deep learning-based, data-centric approach for diag-
nosing autism spectrum disorder from facial images. To classify ASD and non-ASD subjects, this
method requires training a convolutional neural network using the facial image dataset. As a part
of the data-centric approach, this research applies pre-processing and synthesizing of the training
dataset. The trained model is subsequently evaluated on an independent test set in order to assess
the performance matrices of various data-centric approaches. The results reveal that the proposed
method that simultaneously applies the pre-processing and augmentation approach on the training
dataset outperforms the recent works, achieving excellent 98.9% prediction accuracy, sensitivity,
and specificity while having 99.9% AUC. This work enhances the clarity and comprehensibility
of the algorithm by integrating explainable AI techniques, providing clinicians with valuable and
interpretable insights into the decision-making process of the ASD diagnosis model.

Keywords: deep learning; convolutional neural network; ASD diagnosis; augmentation; facial image

1. Introduction

Autism spectrum disorder (ASD) is a neurological disorder that severely impairs the
communication skills necessary for regular living. Most people with autism have mild
difficulties but occasionally severe ones that necessitate specialized care. As a result of their
difficulties communicating with others, people with ASD often struggle in social situations.
Most of the neurophysiological symptoms of ASD are known to medical professionals, but
no definitive biosignature or pathological technique can diagnose autism at any time [1].
Despite the absence of a specific treatment protocol, receiving a diagnosis at a very early
age can improve outcomes significantly. Children with ASD may have a better chance of
improving their socializing skills in early childhood with proper intervention due to greater
flexibility in brain development at this age. Scientific evidence suggests that children who
receive medical care before age four have a higher average IQ than those who wait until
they are older [2]. Despite these efforts, a new study estimates that only 34% of children
with ASD are identified by the age of three in the United States. However, the proportion is
substantially lower in underdeveloped nations [3]. Currently, there is no particular treat-
ment protocol for ASD. However, specialists have carefully explored several intervention
techniques to minimize symptoms, enhance cognitive capacity, and improve daily living
skills. Early and precise identification of ASD is essential for successfully implementing
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various intervention modalities. The conventional interview-based diagnosis methods, the
Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic Interview-
Revised (ADI-R), have been considered a golden standard in this regard [4]. These methods
primarily depend on the skilled physicians and the precision of the information provided
by patients’ attendants or the parents. Although highly dependable, human bias may
reduce the accuracy of these procedures. Recent advances in artificial intelligence have
prompted the desire to implement it in this advanced medical diagnosis system. AI can im-
prove the accuracy and efficiency of medical diagnoses by providing doctors with valuable
information and insights that can aid in their decision-making processes [5].

1.1. Literature Review

The accurate and early diagnosis of autism spectrum disorder (ASD) is crucial for
facilitating timely intervention and providing individualized care for affected individu-
als. Rapid advances in deep learning techniques in recent years have ushered in a new
era of medical image analysis, particularly in the context of ASD detection using facial
images. This section offers a comprehensive analysis of modern deep-learning approaches
employed in diagnosing autism spectrum disorder (ASD) through facial imaging. The
focus is particularly placed on the crucial significance of data pre-processing in the domain
of medical image analysis.

1.1.1. Deep Learning-Based Method for ASD Detection

Recent works in the literature have demonstrated that methods based on deep learn-
ing can play a significant role in the diagnosis of ASD. The use of neuroimaging data is
one of the most investigated methods for diagnosing ASD in recent studies, as compared
to interview-based methods, which are considered the gold standard. Structural MRI is
one modality of neuroimaging data, while functional neuroimaging consists of electroen-
cephalography (EEG). Both images are used to train various deep neural networks, such as
convolutional neural networks (CNNs), recurrent neural networks (RNNs), autoencoders
(AEs), generative adversarial networks (GANs), etc. [6]. The fusion of neuroimaging data
from both modalities with algorithmic deep features makes the detection of ASD more
robust and accurate [7]. While neuroimaging offers higher specificity and relevance for
autism spectrum disorder (ASD) detection, it is expensive and time-consuming for patients
to acquire the necessary images. A second method for diagnosing ASD is based on a
dataset of behavioral characteristics, including capturing special activity (video) [8], eye
gaze pattern [9], subsequently analyzing speech pattern [10] and handwriting [11] and so
on. All of these methods initiated by behavioral datasets necessitate a substantial amount
of time and extensive pre-processing steps. Rather, another very promising ASD diagnosis
technique is analyzing facial features [12] using deep learning. This approach avoids
causing any discomfort to children as a result of lengthy medical protocols, is devoid of
human prejudice, and is inexpensive, which could potentially provide a more objective and
efficient method compared to current diagnostic practices. However, the accuracy of this
method is still under investigation, and more research is needed to validate its efficacy.

1.1.2. Deep Methods for ASD Diagnosis by Facial Image

Early screening for ASD from facial images can greatly benefit using convolutional
neural network (CNN) models with a transfer learning approach [13]. The advantage of
transfer learning is that it allows a machine learning model to leverage knowledge from
a pre-trained model and apply it to a different but related problem. This can save time
and resources and improve performance compared to training a model from scratch [14].
This approach avoids causing unwarranted injury to children due to lengthy medical
protocols, is devoid of human prejudice, and is inexpensive. This method aims to automate
the diagnosis process by analyzing facial features from individuals’ images or videos,
which could provide a more objective and efficient method compared to current diagnostic
practices. However, the accuracy of this method is still under investigation, and more
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research is needed to validate its efficacy. Recently, excellent progress has been made in
screening ASD from facial images. Mohammad-Parsa et al. (2022) demonstrated the first
amazing result by using the same MobileNet model to obtain 94.6% prediction accuracy in
autism identification with a cleaned dataset [15]. Later, Zayed A. T. Ahmed et al. (2022)
concentrated on the same study and obtained 95% accuracy with the MobileNet model [16].
B. R. G. Elshoky et al. (2022) analyzed their performance using shallow ML and deep
neural networks before implementing the automated program TPOT AutoML to achieve a
classification accuracy of 96.6% [17]. Taher M. Ghazal et al. (2022) used a modified version
of Alexnet to create their own ASD detection model, ASDDTLA, which showed an accuracy
of just 87.7% [18]. M. S. Alam et al. (2022) conducted a systematic ablation study to tune
the optimizers and hyperparameters and, utilizing Xception and the optimal parameter
set, reported a maximum accuracy of 95% [12]. In 2023, both Narinder Kaur et al. (2023)
and M. Ikermane et al. (2023) conducted identical research with accuracies of 70% and 98%,
respectively [19,20]. In every research, CNN-based models were used to extract features
from the photos in the Kaggle ASD [21,22] dataset. They were pre-trained on the ImageNet
dataset containing 14 million images divided into 1000 categories.

Table 1 illustrates the relatively latest research on the diagnosis of ASD using the
transfer learning approach by the Kaggle ASD dataset, which consists of facial photos
of youngsters. All the prior researchers concentrated principally on the model-centric
approach. They focused mostly on fine-tuning CNN models with an optimal set of hyper-
parameters. Not a single study could be explained in terms of particular features of facial
traits causing ASD or other observational factors. However, the success of AI relies heavily
on optimal training [23], and the quantity of high-quality, categorized datasets is a crucial
factor in this regard. Industry experts expect that the most significant restriction of AI, the
lack of high-quality data, will become increasingly apparent [24]. In order for machine
learning to be effective, there must be a vast and varied dataset to analyze, and there comes
the need for a data-centric approach.

Table 1. Recent research on CNN-based transfer learning algorithms for diagnosing autism spectrum
disorders.

Ref. Method Sample Size Accuracy (%) Explainability Dataset Pre-Processing Data-Centric Approach

[15] MobileNet 3014 94.64 none not done cleaning only
[16] MobileNet 3014 95 none not done cleaning only
[17] AutoML 2936 96.6 none not done no
[18] ASDDTLA 2940 87.7 none not done no
[12] Xception 3014 95 none not done cleaning only
[20] VGG16 2940 70 none not done no
[19] Densenet 2897 98 none not done no

1.1.3. Data Augmentation in Medical Image Analysis

To work with medical image-based datasets, researchers face a few obstacles when
training deep neural network models. The availability of annotated medical images is
limited, and collecting these data is expensive and time consuming. In contrast, the
images from different sources vary in terms of acquisition protocols, image modalities, and
image resolutions, making it challenging to standardize the data [25]. Class imbalance
is another challenge, where one class dominates over the other, leading to a bias in the
model [26]. Thus, deep learning (DL) models are prone to overfitting when trained on
small datasets [27]. In this context, data pre-processing can be highly useful for minimizing
noise and achieving a uniform image dataset size. On the other hand, augmentation
techniques can assist in overcoming practically all of the aforementioned obstacles by
adding new samples to the dataset [28]. Medical data augmentation refers to the process
of synthesizing additional training samples from existing data to increase the size of the
dataset. This technique is widely used in medical imaging to overcome the limitations of
small, unbalanced, and annotated datasets [29]. One popular method of data augmentation
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in medical imaging is image transformations. This involves applying various geometric and
intensity transformations to the original image to generate new samples. Some commonly
used image transformations include rotations, translations, flips, and scaling [30]. Another
approach to medical data augmentation is data synthesization, which involves creating
new data samples by combining or altering existing data. These methods can increase
the dataset’s size and improve the model’s robustness by exposing it to variations in the
data [31].

A growing body of literature demonstrates the effectiveness of dataset pre-processing
and augmentation. In medical image classification, for example, researchers have found that
augmenting the training dataset with random transformations can substantially improve
accuracy and stability. For example, Deepak et al. 2020 [32] applied data augmentation
to MRI images to detect brain tumors; after augmentation, the CNN classifier’s detection
accuracy increased by 6.7%. Ju et al. 2021 [33] utilized the generative adversarial network
(CycleGAN) model on the UWF fundus image dataset. It demonstrated an improvement of
2.87% for precision and 4.85% for F1-score on diabetic retinopathy (DR) classification, lesion
detection, and tessellated fundus segmentation after augmentation. By synthetic image
augmentation technique using X-rays, D. Srivastav et al. (2021) improved the prediction
accuracy of COVID-19 pneumonia detection by 3.2% [34]. No substantial literature to
date has adopted the data-centric approach for ASD diagnosis with facial features, but
recent research reported a 3% increment in prediction accuracy using augmented eye-
tracking data [35]; consequently, we wish to investigate the benefits of pre-processing
and augmentation to synthesize this dataset and evaluate the likelihood of improving
performance matrices. In this study, we employ a data-centric method to screen for ASD,
utilizing a facial image dataset and CNN algorithms that have been pre-trained. With a
data-centric approach, we develop studies based on data manipulation. Instead of focusing
on models and hyperparameter tuning, the performance evaluation is based on various
data pre-processing and augmentation strategies. The major contributions of our work are
as follows:

1. We developed a novel data-centric protocol using a robust data pre-processing
pipeline and state-of-the-art augmentation techniques to synthesize the Kaggle ASD
dataset, increasing data diversity and model generalization.

2. This study marks the pioneering effort to incorporate essential observational explain-
able AI factors for face-based ASD diagnosis, providing clinicians with interpretable
insights into the decision-making process.

3. This study introduces an innovative image visualization method to investigate the
attention of deep models on various ASD facial features for gender and pose variation,
thereby substantially advancing the field of ASD diagnosis using faces.

The upcoming section of this paper is structured as follows, where Section 2 discusses
the materials and methods used to create pre-trained DL models. Sections 3 and 4 contain
the results and discussion on different models. Section 5 concludes the paper with the
contribution of this research and future works.

2. Materials and Methods

Implementing deep neural networks in autism spectrum disorder diagnosis can in-
volve the following steps as shown in Figure 1:

1. Data collection: The first step in using AI for ASD diagnosis is to collect a large
amount of relevant data, such as patient symptoms, medical history, test results, and
diagnosis information.

2. Data pre-processing: This step involves cleaning and transforming the data into a
format suitable for models to process.

3. Model selection and training: Select an appropriate model and train it on the pre-
processed data. The goal is to train the model to predict the diagnosis based on the input
data accurately.
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4. Model evaluation: Evaluate the performance of the model by testing it on a separate
set of data and comparing the results to actual diagnoses. This step helps to determine the
accuracy and reliability of the AI-based diagnostic system.

5. Explainability: Explainable AI concerns the ability to understand how a model
arrived at a particular output and to what extent the output is trustworthy, resulting in
increasing the transparency and accountability of machine learning models. This section
discusses the above-mentioned steps employed to execute the experiment.

Figure 1. The workflow of the study.

2.1. Dataset

DL models require a very large training dataset to reach a high-performance level. If
the model is trained for almost all possible scenarios, the model’s accuracy will increase
dramatically [36]. In this experiment, the autistic children dataset from the Kaggle reposi-
tory [21,22] was employed to train Deep CNNs, which is named Kaggle ASD in Table 2.
Kaggle ASD consists of a total of 3014 photos of children between the ages of 2 and 14,
where most of them are 2 to 8 years of age. Though the number of facial images of males is
three times that of the number of female populations, the ratio of the autistic and normal
control class is 1:1. The contributor, Gerry Piosenka, gathered the photographs from dif-
ferent online sources. The dataset does not contain any medical profiling, the severity of
illness, or the children’s nationality. A few images are subpar in terms of facial alignment,
brightness, and image size.

Table 2. Autistic children dataset from the Kaggle repository.

Dataset Class Number Label

Train Normal Control (NC) 1327

NC-0
ASD-1

Autistic (ASD) 1327

Test Normal Control (NC) 140
Autistic (ASD) 140

Valid Normal Control (NC) 40
Autistic (ASD) 40

2.2. Transfer Learning for ASD Diagnosis
2.2.1. Dataset Pre-Processing

To maintain the accuracy and consistency of results, the dataset used for model training
should include an all-inclusive group of images that depicts all conceivable scenarios for
extracting ASD diagnostic features. The prior literature taught us that the photos in the
dataset have noisy backgrounds and alignment issues, affecting the DL models’ accuracy.
To solve this issue, our dataset required cleansing and alignment [37].

2.2.2. Align Dataset

A few steps are taken to align the images, and CNN is employed. Face recogni-
tion is performed as an auxiliary task using multi-task cascaded convolutional networks
(MTCNNs), a deep CNN designed as both a face detection and alignment solution. The
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MTCNN consists of three stages of CNNs that can identify faces and landmarks, such as the
eyes, nose, and mouth [38]. A fully convolutional network (FCN) is in the initial stage of
MTCNN, called P-Net. This FCN differs from ordinary CNNs in lacking dense layers at all
stages of its architecture. Bounding box vectors are created around the desired face objects,
and the overlapping regions are excluded to reduce the number of boxes. The CNN layer
is required to further reduce the number of bounding boxes by merging the overlapped
region employing non-maximum suppression (NMS). This CNN is called R-Net, which
defines whether the input image is a face and returns ten element vectors to locate the
landmarks of a face. The last stage, called O-Net, is very similar to R-Net, which returns
the five landmarks of the face—the left eye, right eye, nose, left corner of the mouth, and
right corner of the mouth. The first task of this process is face identification, where the
cross-entropy loss for each sample is given by

Ldet
i = −(ydet

i log(pi) + (1− ydet
i )(1− log(pi))) (1)

where pi gives the probability of sample i = 0, 1, . . ., n being a face which the P-Net decides,
and the ydet

i is the ground truth level.
For R-Net to create a bounding box, four corners of the box must be located, which is

treated as a regression problem, and the Euclidean loss for each sample is calculated by

Lbox
i = ||ŷbox

i − ybox
i ||

2
2 (2)

where ŷbox
i is the desired level obtained from the neural network and ybox

i is the ground
level coordinate. For making the bounding box, four co-ordinate-like top, width, and height
are required, so ybox

i ∈ R4.
In the last steps, the Euclidean loss is again minimized as per the below equation to

formulate the task of face landmarks detection:

Llandmark
i = ||ŷlandmark

i − ylandmark
i ||22 (3)

where ŷlandmark
i is the co-ordinates of facial landmarks—left eye, right eye, nose, left corner

of the mouth, and right corner of the mouth—and ylandmark
i is the ground truth co-ordinate

for the ith number of images, and thus, ylandmark
i ∈ R10.

After detecting the left and right eye coordinates, we can obtain the angle θ from the
length of the triangle’s three sides. The length of each edge can be found from the Euclidean
distance [39]. Now the image has to be rotated anti-clockwise at an angle θ as shown in
Figure 2a.

Figure 2. Facial image pre-processing. (a) Alignment. (b) Crop.

Algorithm 1 presents the pseudocode for image rotation, which takes an input path for
images and an output path for rotated images. The algorithm proceeds for each image in the
input path by detecting the face and landmarks using the detect_face and detect_landmarks
functions, respectively. The x and y coordinates of the left and right eye landmarks are
stored as xl,

yl, xr, and yr. The rotation angle θ is then calculated using the arctan function with the
expression θ = tan−1((yr− yl)/(xr− xl)). Finally, the image is rotated by the angle θ using
the rotate_image function and saved to the output path using the save_image function.
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Algorithm 1 Image rotation algorithm
Input: img_path, out_path
Output: img_a
for img in img_path do

read_image(img);
face[]← detect_face(img);
landmarks[]← detect_landmarks(face);
xl, yl← landmarks[‘left eye’];
xr, yr← landmarks[‘right eye’];
θ ← tan−1((yr− yl)/(xr− xl)) ; // rotation angle

img_a← rotate_image(img, θ);
save_image(img_a, out_path);

end

2.2.3. Crop Dataset

Cropping is an essential procedure for enhancing the aesthetic quality of digital pho-
tographs, as it removes undesired regions outside of a rectangular selection. The dataset
includes facial images in the training set with a noisy texture and superfluous patterns in the
background, which can impair the model’s training. Cropping is the process of removing a
portion of an image to reframe it. Similar to the alignment procedure, MTCNN is used for
face recognition, creating a bounding box around the face region; for cropping, the bounding
box must be precise and tightly confined to the face region only. The upper left point of the
bounding box is called the origin, and the lower right corner is called the end. The pixels
inside the box are copied to a new image; thus, we obtain the cropped [40] one as shown in
Figure 2b.

Algorithm 2 represents a face-cropping algorithm that takes the path for the input
images and the output path where cropped images are stored. The algorithm reads each
image from the input path and detects the face in each image using the function detect_face.
Then, it calculates the x and y coordinates of the top left corner and the bottom right corner
of the face’s bounding box using the function convert_xywh. The image is then cropped
using the function crop_face, with the width and height calculated as the difference between
the x and y coordinates. Finally, the cropped image is saved to the output path using the
function save_image. The algorithm iterates through all images in the input path and
applies the same process to each image.

Algorithm 2 Face-cropping algorithm
Input: img_path, out_path
Output: img_c
for img in img_path do

read_image(img);
face← detect_face(img);
xo, yo, xe, ye← convert_xywh(face);
img_c← crop_face(xe − xo, ye − yo);
save_image(img_c, out_path);

end

2.3. Dataset Augmentation

Augmentation is a technique used to enhance the amount of an existing dataset by
modifying and manipulating the original data. This strategy enables the model to discover
or anticipate all possible real-time data patterns. Both pre-processed and unprocessed
photos from the Kaggle ASD dataset are augmented. Different types of augmentations
include horizontal flip, grey cycle, resize, rotation, shear, zooming, addition and removal of
noise, changing brightness, hue, saturation, etc.
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2.3.1. Horizontal Flip

When working with facial images, the horizontal flip is the most typical technique
for augmentation. The human face is highly symmetrical, so a single-sided feature can
frequently cause confusion during training. A complete horizontal flip allows learning
the features from both sides of the face. Horizontal flip is obtained from the Transform
module of the Torchvision library [41]. The input images are fed from the PIL rather than
tensors. The image’s width, height, and pixels are obtained from the PIL library using
image functions, and then the image is transposed, as shown in Figure 3.

Figure 3. Facial image only augmentation pipeline.

Algorithm 3 is an image-flipping algorithm that takes an image path, an output path,
and a probability as input. For each image in the input path, the algorithm reads the image
and creates a new image by copying the original image into a new variable, img_f. The
algorithm then loops through the width and height of the original image and checks if a
random number is less than the given probability. If the condition is satisfied, the pixel
value at position (x, y) in the new image is replaced by the original image’s pixel value at
position (width − x − 1, y).

Finally, the new image is saved to the output path.

Algorithm 3 Image-flipping algorithm
Input: img_path, out_path, probability
Output: img_f
for img in img_path do

read_image(img);
img_f← img;
for x← range (0 − img[width]) do

for y← range (0 − img[height]) do
if random() < probability then

img_f[x, y]← copy_image_pixel(img[width] − x − 1, y);

end
end

end
save_image(img_f, out_path);

end

2.3.2. Add Pepper–Salt Noise

Noisy face images were identified as one of the primary causes of poor accuracy
in previous investigations [12]. Some image quality is so poor that the class cannot be
predicted during testing. If noise can be added manually to the training set, the model
will be able to learn and extract their features. Therefore, the PIL and NumPy libraries are
utilized to alter the photos. The PIL opens the input facial images, which are converted
into NumPy arrays. Additionally, the user must provide the probability or density of noise
imposition. Random probabilities are compared to a threshold value for every image pixel
in order to place noise in the required pixels [42].
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The salt-and-pepper noise algorithm, presented in Algorithm 4, takes an input path for
images, an output path for the noisy images, and a probability parameter. The algorithm
randomly assigns black and white pixels to generate salt-and-pepper noise on the input
images. The probability parameter controls the degree of noise to be added to the input im-
ages. For each image in the input path, the algorithm reads the image, creates a new image,
and then walks through each pixel. The random number between 0 and 1 is generated to
compare with the threshold, which is set to be the complement of the probability. If the
generated number is less than the threshold, the pixel is black (pepper noise); otherwise,
if the number is less than the probability, the pixel is white (salt noise). Finally, the noisy
image is saved to the output path.

Algorithm 4 Salt-and-pepper noise algorithm
Input: img_path, out_path, probability
Output: img_n
Threshold← 1 − probability

for img in img_path do
read_image(img);
img_n← img;
for x← range (0 − img[height]) do

for y← range (0 − img[width]) do
r← random number between 0–1;
if r < Threshold then

img_n(x, y)← 0; ; // pepper pixel (black dot)
end
else if r < probability then

img_n[x, y]← 255; ; // salt pixel (white dot)
end

end
end
save_image(img_n, out_path);

end

2.4. Convolutional Neural Networks

Since the 1980s, convolutional neural networks (CNNs) have been utilized in image
classification and recognition [43]. CNNs were initiated from the research of the brain’s
visual cortex. CNNs have achieved superhuman performance on some challenging vi-
sual tasks in recent years because of the development in computer power, the quantity
of data samples accessible for training deep neural networks, and transfer learning for
user-modified classification [44,45]. The main function of the face-recognition or object-
classification models is to extract an entity’s features, making it feasible for the binary
classification of two classes, autistic and non-autistic faces, by acquiring knowledge from a
vast collection of pictures by transfer learning approach [46]. A machine learning method
can be used for similar kinds of work by adapting changes in the pre-trained models’ top
layers. The core convolutional layers of CNN-based models, which were previously trained
with the ImageNet dataset, can be used to extract the features of autistic and normal faces.
The classification layers are modified for binary classification. This study is based on three
pre-trained deep CNN models: MobileNetV2 [47], ResNet50V2 [48], and Xception [49].
These models were determined to perform best among contemporary works [12].

2.4.1. MobileNetV2 Model

MobileNetV2 is a lightweight deep CNN model that is thus perceived to develop
mobile phone applications to implement classification tasks. The basics of this MobileNetV2
model are to establish the connection from one bottleneck layer to another [50]. The inverted
residual architecture consists of 19 residual bottleneck layers; 32 full convolution layers
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exist before these layers. These convolution layers perform depth-based convolutions,
utilizing non-linear filter characteristics.

2.4.2. ResNet50V2 Model

ResNet50V2 comprises several units that promulgate both forwards and backward
direction mapping identities and are residual in nature. Through block-to-block propa-
gation, classification accuracy is maintained at a high level. With the assistance of these
residual mappings, training will be substantially easier and more generalized. In Ima-
geNet or COC contests, ResNet models frequently have more than 100 layers and have
outstanding accuracy.

2.4.3. Xception Model

This model has a very simple modular structure based on Google’s Inception model.
The model comprises three primary blocks, entry, center, and exit, with separate con-
volutional layers and Relu activation functions for each block. The input image size
is 299 × 299 × 3. The input is processed by the entry flow, which extracts features of
19× 19× 728 dimensions. The residual connections take the maximum value of each layer
as output after every block. In the middle block of the feature map, the feature map remains
preserved despite being passed nine times through convolution layers. The output of the
final component for a standard-size input image has 2048 features. Finally, the prediction
layer receives the features via an FC layer, and the modifications are made to the final
layers for binary classification.

2.4.4. Regularization

Some deep neural networks can have millions of parameters, although most have
thousands. This allows DL networks unprecedented flexibility and the ability to accom-
modate a wide range of complex datasets. However, high adaptability increases the risk
of model overfitting while training the dataset. Regularization is a process that can be
implemented to avoid overfitting. Some regularization techniques are early stopping, batch
normalization, `1 and `2 regularization, dropout, and max-norm regularization [51]. Also,
choosing the best optimizer is another factor that will help prevent overfitting.

In this paper, we use AdaGrad, which we obtained from the ablation study of the
previous literature [12]. Gradient descent first rushes down the sharpest slope, which does
not lead directly to the global optimum, before slowly proceeding down to the valley floor.
If the algorithm could rightly change the direction earlier, heading more directly toward
the global optimum, that would be great. In order to make this adjustment, the AdaGrad
algorithm scales the gradient vector according to the equation below:

s← s +∇θ J(θ)⊗∇θ J(θ) (4)

θ ← θ − η∇θ J(θ)�
√

s + ε (5)

Here, s is a vector whose i-th element is si and adds all the partial derivatives of the
cost function in a square according to θi. Thus, after each iteration, si becomes larger. The
next equation almost refers to the gradient descent function, but here, the factor is kept
less by factor

√
s + ε. This θ is a vector that represents the i-th element as θi. Thus, it is

evident that this algorithm can alter the learning rate for steep slopes considerably more
rapidly than for gentle slopes. Consequently, this adaptive learning rate facilitates the
model’s propagation towards the global optimal. So, minimal adjustment of the learning
rate hyperparameter is required [52].

Dropout is another regularization technique that can be used to address the overfitting
problem [53]. The dropout method is quite straightforward in that, at each layer, some neu-
rons are disregarded so that they can be reactivated in the subsequent step. The maximum
dropout rate is normally between 10% and 50%, with the probability p controlling this rate.



Technologies 2023, 11, 115 11 of 27

This is limited to 40% to 50% for CNN, whereas 50% dropout is employed in our transfer
learning models just before the topmost decision layer. It considerably lessens the training
load and prevents overfitting.

2.5. Explainable AI

Explainable AI is a branch of artificial intelligence that focuses on developing systems
that can produce accurate predictions and provide human-understandable explanations
of their decisions. Explainable AI aims to increase the transparency, accountability, and
interpretability of machine learning models and algorithms [54,55].

Grad-CAM (gradient-weighted class activation mapping) is a visualization technique
that can explain the predictions made by deep neural networks [56]. Grad-CAM generates
a heatmap that highlights the regions of the input image that are most important for the
prediction made by the network. The heatmap is generated by computing the gradients of
the output class scores with respect to the feature maps in the last convolutional layer of
the network. These gradients are then used to weigh the feature maps, and the resulting
weighted feature maps are averaged to produce the final heatmap. Grad-CAM can be used
to visualize the internal workings of deep neural networks and explain the predictions
made by the network. This can be particularly useful in medical imaging, where accurate
predictions are important, but it is also important to understand why the network made a
certain prediction.

When working with a large number of identical image samples for recognizing or
extracting a given pattern, the mean image might play a crucial role [57]. The mean image
is simply the average of all images in the dataset. It is computed by summing up all pixel
values of all images and dividing by the total number of images. The resulting image
represents the average intensity of each pixel in the dataset.

The simple equation to calculate the mean image is
Input: A set of N images I_1, I_2, . . ., I_N
Output: The mean image M
M = (I_1 + I_2 + . . . + I_N) / N
The importance of mean images in explainable AI is increasingly recognized in the

recent literature. One of the key benefits of the mean image in explainability is its ability to
facilitate feature visualization [58]. Feature visualization refers to the process of visualizing
the features that the AI system learned during training. By subtracting the mean image,
we can visualize the features that the AI system has learned, which can help interpret
its decision-making processes. These visualizations can also be used to identify features
important for classification, which can help improve the accuracy of the AI system.

2.6. Experimental Setup

The three primary phases of this research are (1) pre-processing and augmentation of
the dataset; (2) optimizing the deep CNN models with hyperparameters; and (3) assessing
the models with appropriate performance metrics. The success of artificial intelligence is
highly dependent on optimal training and the quantity of high quality; thus, categorized
datasets are a critical aspect in this regard. The more data algorithms have to work with,
the faster they may learn and enhance their judgment of future outcomes. In order for
machine learning to be effective, a large and diverse data collection must be analyzed.
When sufficient high-quality data are available, AI systems can readily outperform baseline
methods. Thus, in this study, the experiments are mostly data-centric, and the dataset is the
main focus. It is well recognized that medical datasets are very difficult to acquire, making
the number of datasets required to train DL models difficult. Here, the autistic children
dataset from the Kaggle repository is used, named ASD Kaggle as stated in Table 2. With a
view to enhancing the training, the training set consisting of the facial images of a total of
2654 children (1327 ASD and 1327 normal) was pre-processed as described in Table 3.
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Table 3. The details of the training dataset after pre-processing and augmentation.

Sl No Processing Status Name of the Dataset Training Size

1 Without
Pre- processing

Kaggle ASD 2654
2 Flippedk 2654
3 Noisyk 2654

4
Pre- processed

ASDp 2654
5 Flippedkp 2654
6 Noisykp 2654

The pre-processing algorithms and techniques are explained at the start of this section.
The images were first aligned and then cropped at the time of processing, as indicated in
Figure 4. The resulting set is named ASDp. This ASDp was fed through an algorithm that
flips and adds noise to 2654 facial images, termed Flippedkp and Noisykp. Two additional
datasets, Flippedk and Noisyk, were subjected to the flip and noise addition augmentations
of Kaggle ASD, respectively as shown in Figure 5, for the purpose of comparison. The
details of all datasets are shown in Table 3.

Figure 4. Facial image pre-processing pipeline.

Figure 5. Facial image pre-processed augmentation pipeline.

During training, we merged the Kaggle ASD with the full training set since the Kaggle
ASD is the original uncured set we obtained (Table 2), resulting in a twofold increase in
the number of training sets (Table 4). As an illustration, the flipped training set for the
augmentation-only approach combines the Kaggle ASD and Flippedk datasets presented
in Table 3. Thus, the train column in Table 4 gives the number of training samples we
obtained after pre-processing or augmentation. The subscripts in datasets labeled as All for
both the augmentation-only and augmentation with pre-processing approaches represent
the combination of datasets listed in Table 3 according to the provided Sl No. The test set
and valid set used for testing and validation are the same across all experimental setups, as
we wish to compare our results to those of contemporary research.

We employed the Deep CNN-based MobileNetV2, ResNet50V2, and Xception pre-
trained using the ImageNet dataset of 4.2 billion photos of 1000 classes. The models
were modified so that the prediction layer receives the features via an FC layer, and the
modifications for binary classification were made to the final layers. The main reason for
choosing these models is that among the recent research, only one performed a complete
ablation investigation on five different models, and it was found that these three models
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performed the best. The hyperparameters listed below were also fine-tuned as part of the
same research, and the same values were retained for this study.

Table 4. The details of the dataset for the experiments.

Approach Training Set Training Test Valid Labels

Augmentation Only
Flipped 5308 280 80
Noisy 5308 280 80 ASD-1

All T3 (1 + 2 + 3) 7962 280 80

Pre-processed Only ASDP 5308 280 80 NC-0

Augmentation
with Pre-processing

Flipped 5308 280 80
Noisy 5308 280 80 Ratio-1:1

All T3 (1 + 4 + 5 + 6) 10,616 280 80

We employed a handful of performance matrices to evaluate the model’s effectiveness.
The most evident one is the binary classification accuracy stated as “accuracy”. One
assessment matrix includes the area under the curve (AUC), used in some earlier studies
to measure how well a model predicts outcomes. Since it is based on the ROC curve, this
AUC is more convincing evidence of the model’s efficacy than accuracy alone. Precision
and recall, the other two matrices, reflect the accuracy with which the desired classes could
be predicted. Accuracy, precision, recall, and F1-score can be expressed mathematically as

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1-score = 2× Precision× Recall
Precision + Recall

(9)

3. Result

The codes were developed in Python and run on the Kaggle platform. The results were
analyzed using several tools for data analysis, including matplotlib, sklearn, and Pandas.
We trained the model using deep transfer learning from the Keras API Library [59]. The
performance of three distinct DLs (MobileNetV2, ResNet50V2, and Xception) was evaluated
in terms of accuracy, precision, recall, and F1-score in this work using Equations (6)–(9).
The DL networks were selected based on the ablation study conducted by M. S. Alam et al.
(2022) while retaining their optimal hyperparameters and optimizer [12] as shown in Table 5.
The batch size was set to 32, and Adagrade was utilized as an optimizer. The convolutional
neural network (CNN) was trained for a maximum of 50 epochs, utilizing a learning rate
of 0.001, in order to facilitate the effective learning and accurate prediction of samples
associated with autism spectrum disorder (ASD). In the context of binary classification,
the loss function selected is BinaryCrossentropy. This loss function is accompanied by the
use of the ReLU activation and the sigmoid function in the final layer. The best values of
several performance matrices derived from various data-centric approaches are displayed
with bold fonts in tables. Our experiments are primarily data-driven. The initial part of this
study is titled the augmentation-only approach because the training sets were generated
by applying two fundamental augmentations to the Kaggle ASD dataset: flip and noise
addition. As shown in Table 4, the image was labeled as ‘0’ for normal control (NC) children
and ‘1’ for ASD children while producing a data frame, and no dataset pre-processing was
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applied. Table 6 summarizes the comparative training and test evaluation matrices of the
deep learning models using the set of hyperparameters stated in Table 5.

Table 5. The list of essential parameters for model training.

Hyperparameters and Other Settings

Number of Batch 32
Maximum Epoch 50

Optimizer AdaGrad
Activation function Relu

Learning rate 0.001
Loss function BinaryCrossentropy

Classification layer Sigmoid

Table 6. Performance of Deep CNN models for augmentation-only approach.

Training Test

Augmentation DCNN Accuracy AUC Precision Recall F1-Score Accuracy AUC Precision Recall F1-Score

Flip
Xception 0.998 1.000 0.998 0.998 0.998 0.925 0.979 0.925 0.925 0.925

ResNet50V2 0.999 1.000 0.999 0.999 0.999 0.882 0.943 0.882 0.882 0.882
MobileNetV2 0.996 1.000 0.996 0.996 0.996 0.896 0.950 0.896 0.896 0.896

Noise
Xception 0.996 1.000 0.996 0.996 0.996 0.918 0.959 0.918 0.918 0.918

ResNet50V2 0.998 1.000 0.998 0.998 0.998 0.900 0.952 0.900 0.900 0.900
MobileNetV2 0.982 0.998 0.982 0.982 0.982 0.861 0.938 0.861 0.861 0.861

All
Xception 0.997 1.000 0.997 0.997 0.997 0.904 0.964 0.904 0.904 0.904

ResNet50V2 0.999 1.000 0.999 0.999 0.999 0.900 0.955 0.900 0.900 0.900
MobileNetV2 0.994 1.000 0.994 0.994 0.994 0.914 0.967 0.914 0.914 0.914

Flip augmentation was used for the Kaggle ASD training dataset, and the best training
and testing performance was achieved. The ResNet50V2 model performed the best for
training with a 99.9% accuracy and 100% AUC value, while the Xception model ranked
first in testing with 92.5% accuracy and 97.9% AUC. Figure 6 displays the training and
validation accuracy along with the loss graphs for all three models. The training and
validation curves clearly demonstrate that the model began to overfit beyond a certain
point because the validation curve is ascending and descending while the training loss is
constantly dropping. Clearly, the model cannot extract features for every potential scenario
from these training and validation sets.

Table 7 demonstrates the performance of the evaluation matrices after the pre-processing
of the Kaggle ASD dataset. The pre-processing flow is shown in Figure 3, where the facial
image is first aligned and then cropped, keeping only the facial region. The training
accuracy is maximal when using ResNet50V2 with a value of 99.5% and an AUC of 100%.
Similarly, for these approaches also, the testing performance is better while predicting ASD
with the Xception algorithm. Accuracy is 97.9%, AUC is 99%, and the precision, recall, and
F1-score are all reported to be 97.9%. Figure 7 depicts the training and validation accuracy
as well as the loss graphs for the three models with a pre-processing-only approach. Unlike
Figure 6, Figure 7 displays a highly orderly increase in training accuracy over time. The
graph of validation accuracy is parallel to the graph of the training accuracy. For the
Xception model, these two lines tend to overlap to illustrate the consistency of the training
and validation trend. For the training and validation loss graphs, the pre-processing-
only approach yields symmetric plots, indicating that the prior approach’s overfitting
is minimized.
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Figure 6. Training and validation accuracy plot for (a) MobileNetV2, (b) ResNet50V2, and (c) Xception
and training and validation loss graph for (d) MobileNetV2, (e) ResNet50V2, and (f) Xception for the
flip augmentation approach.

Figure 7. Training and validation accuracy plot for (a) MobileNetV2, (b) ResNet50V2, and (c) Xception
and Training and validation loss graph for (d) MobileNetV2, (e) ResNet50V2, and (f) Xception for the
pre-processing-only approach.

Table 7. Performance of Deep CNN models for pre-processing-only approach.

Train Test

DCNN Accuracy AUC Precision Recall F1-Score Accuracy AUC Precision Recall F1-Score

Xception 0.995 1.000 0.995 0.995 0.995 0.979 0.990 0.979 0.979 0.978571
ResNet50V2 0.997 1.000 0.997 0.997 0.997 0.975 0.987 0.975 0.975 0.975

MobileNetV2 0.990 0.999 0.990 0.990 0.990 0.943 0.983 0.943 0.943 0.942857
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After applying augmentation to a pre-processed picture dataset, the performance of
models is outlined in Table 8. The ResNet50V2 achieves the highest training accuracy,
precision, recall, and F1-Score, while the AUC is reported to be 100%. The Xception
demonstrates the highest testing accuracy, 98.9%, with a 99.9% AUC. The assessment
matrices for this approach yielded the highest values among these three data-centric
approaches. Figure 8 depicts the accuracy and loss performance of the training and
validation sets. For the Xception model, the growth of the training and validation graphs is
highly similar, with a minor variation, and the curves are a perfect match. The ResNet50V2
model demonstrates superior performance when comparing training and validation loss
while maintaining minimal overfitting. Overall, this experimental setup performs the best.

Table 8. Performance of Deep CNN models for augmentation with pre-processing approaches.

Train Test

Augmentation DCNN Accuracy AUC Precision Recall F1-Score Accuracy AUC Precision Recall F1-Score

Flip
Xception 0.996 1.000 0.996 0.996 0.996 0.979 0.998 0.979 0.979 0.979

ResNet50V2 0.997 1.000 0.997 0.997 0.997 0.971 0.991 0.971 0.971 0.971
MobileNetV2 0.993 1.000 0.993 0.993 0.993 0.907 0.972 0.907 0.907 0.907

Noise
Xception 0.990 0.999 0.990 0.990 0.990 0.946 0.983 0.946 0.946 0.946

ResNet50V2 0.987 0.999 0.987 0.987 0.987 0.900 0.957 0.900 0.900 0.900
MobileNetV2 0.968 0.995 0.968 0.968 0.968 0.893 0.949 0.893 0.893 0.893

All
Xception 0.997 1.000 0.997 0.997 0.997 0.989 0.999 0.989 0.989 0.989

ResNet50V2 0.998 1.000 0.998 0.998 0.998 0.975 0.999 0.975 0.975 0.975
MobileNetV2 0.990 0.999 0.990 0.990 0.990 0.971 0.996 0.971 0.971 0.971

Figure 8. Training and validation accuracy plot for (a) MobileNetV2, (b) ResNet50V2, and (c) Xception
and training and validation loss graph for (d) MobileNetV2, (e) ResNet50V2, and (f) Xception for the
pre-processing with augmentation approach and mixing All training set.

AUC is defined as the area under the curve, with a greater AUC indicating a greater
likelihood of accurate prediction. Figure 9 depicts the ROC curve of the best data-centric ap-
proach, whereas Figure 9a depicts the curve for the flip augmentation approach without pre-
processing, Figure 9b illustrates the AUC of three different models for the pre-processing-
only approach, and Figure 9c depicts the AUC performance of the pre-processing with
augmentation approach while mixing the All training set. The Xception model performs the
best in terms of accuracy and AUC across all three approaches, indicating that the predic-
tion rate for diverse test samples in the real-world scenario is greater. Figure 10 depicts the
confusion matrix for the 280 test samples, where blue boxes represent accurate predictions
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of the autistic or non-autistic classes, and white boxes represent incorrect predictions, i.e.,
individuals who were incorrectly identified as autistic or non-autistic despite belonging
to the opposite class. In Figure 10a, the first row displays the confusion matrices for the
augmentation-only approaches of the ResNet50V2, MobileNetV2, and Xception models for
flip augmentation, from left to right. Here, the performance of the models is abysmal, as
Xception has a total of 21 misclassified test samples, which is the lowest of the models.

Figure 9. ROC curve of the best data-centric approach. (a) Flip augmentation approach without
pre-processing. (b) Pre-processing-only approach. (c) Pre-processing with augmentation approach
and mixing All training sets.
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Figure 10. Confusion matrix of (a) ResNet50V2, MobileNetV2, and Xception algorithm, respectively,
for flip augmentation approach without pre-processing (b) ResNet50V2, MobileNetV2, and Xception
algorithm, respectively, for pre-processing-only approach and (c) ResNet50V2, MobileNetV2, and
Xception algorithm, respectively, for pre-processing with augmentation approach and mixing All
training set.

The confusion matrices for the pre-processing-only approaches of the ResNet50V2,
MobileNetV2, and Xception models are displayed from left to right in the second row

Figure 10. Confusion matrix of (a) ResNet50V2, MobileNetV2, and Xception algorithm, respectively,
for flip augmentation approach without pre-processing (b) ResNet50V2, MobileNetV2, and Xception
algorithm, respectively, for pre-processing-only approach and (c) ResNet50V2, MobileNetV2, and
Xception algorithm, respectively, for pre-processing with augmentation approach and mixing All
training set.

The confusion matrices for the pre-processing-only approaches of the ResNet50V2,
MobileNetV2, and Xception models are displayed from left to right in the second row
in Figure 10b. Here, the performance of the models is significantly enhanced by the pre-
processing of the training dataset, and the Xception model has the fewest misclassified test
samples, with only six samples.
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The confusion matrices of the ResNet50V2, MobileNetV2, and Xception models are
depicted from left to right in the last row as stated in Figure 10c for the augmentation with
pre-processing approach while mixing the entire training set. Applying the augmentation
after pre-processing on the training dataset results in the greatest model performance, and
the Xception model has the maximum prediction accuracy with only three misclassifica-
tions. Table 9 depicts the total number of incorrectly predicted samples throughout training
and testing using various data-centric approaches. The total number of misclassifications is
the sum of false positive and false negative classifications. MTr is the number of incorrectly
predicted samples during CNN model training. MTs are the number of incorrectly pre-
dicted samples while evaluating the performance of a model using the unique test set. As
the number of test samples is the same in all scenarios, the Xception model achieves the best
results for all data-centric approaches, with only three mispredictions, when the training
set is pre-processed, augmented (both flipped and noise added), and then completely syn-
thesized. Table 10 details the training duration for three distinct DL models. Te denotes the
time required for model training per epoch in seconds. While training sizes vary amongst
approaches, a new parameter, Tes, represents the training time per epoch per sample that
the model requires. This parameter hints at which model is time-efficient for a certain
data-centric approach. The training times are highest for Xception’s unprocessed dataset,
at 18.23 milliseconds, and lowest for ResNet50V2 after pre-processing and augmentation,
at 13.46 milliseconds. Xception’s training time is longer due to its complicated structure
and huge number of layers, as well as its accuracy being the highest of any approach.

Table 9. Statistics of incorrectly predicted training and test samples for each data-centric approach.
MTr = missed prediction of the train set, MTs = missed prediction of the test set.

DNN
Augmentation Only

Pre-Processing Only
Augmentation with Pre-Processing

Flip Noise All Flip Noise All

MTr MTs MTr MTs MTr MTs MTr MTs MTr MTs MTr MTs MTr MTs

Xception 8 21 22 23 23 27 24 6 20 6 52 15 28 3

ResNet50V2 7 33 11 28 9 28 15 7 14 8 67 28 18 7

MobileNetV2 21 29 95 39 50 24 52 16 38 26 166 30 99 8

Table 10. Comparative training durations for three deep learning models. Te = time required per
epoch in seconds, Tes = time required per epoch per sample in ms.

Net
Augmentation Only

Pre-Processing Only
Augmentation with Pre-Processing

Flip Noise All Flip Noise All

Te Tes Te Tes Te Tes Te Tes Te Tes Te Tes Te Tes

Xception 95.88 18.06 96.42 18.17 145.16 18.23 88.80 16.73 89.62 16.88 88.68 16.71 170.84 16.09

ResNet50V2 83.32 15.70 83.56 15.74 124.20 15.60 75.24 14.17 75.56 14.24 76.84 14.48 142.88 13.46

MobileNetV2 82.10 15.47 83.64 15.76 124.90 15.69 74.84 14.10 75.78 14.28 75.84 14.29 144.74 13.63

Table 11 displays the accuracy and loss results for the validation dataset. The graphical
representation for each epoch is shown in Figures 6–8 for the three different approaches for
the best accuracy performance. ResNet50V2 demonstrates the best result for the validation
set with 100% validation accuracy and nearly no validation error. It demonstrates the
quality of the model’s training and learning for feature extraction.
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Table 11. Accuracy and loss performance on the validation set. Vac= Validation accuracy, Vlo =
validation loss.

Net
Augmentation Only

Pre-Processing Only
Augmentation with Pre-Processing

Flip Noise All Flip Noise All

Vac Vlo Vac Vlo Vac Vlo Vac Vlo Vac Vlo Vac Vlo Vac Vlo

Xception 0.96 0.17 0.90 0.30 0.91 0.22 0.99 0.05 0.96 0.08 0.99 0.08 0.99 0.09

ResNet50V2 0.93 0.21 0.94 0.24 0.95 0.19 0.98 0.17 1.00 0.01 0.95 0.27 1.00 0.00

MobileNetV2 0.93 0.18 0.94 0.21 0.98 0.04 0.96 0.13 0.95 0.10 0.94 0.26 0.99 0.03

Explainable AI

Explainable AI refers to the ability of an AI system to explain its reasoning and decision-
making processes in a way that is understandable to humans. Transfer learning, on the other
hand, refers to the ability of an AI system to transfer knowledge learned from one task to
another related task. These two concepts are related in that explainability can enhance the
effectiveness of transfer learning by providing insights into the decision-making process of
the AI system.

One method of explaining the decision-making process of a neural network is through
visualization techniques, such as Grad-CAM. It highlights the most important regions of
an input image that contribute to the neural network’s prediction. Thus, ASD classification
based on facial images can be used to explain where the transfer learning models concen-
trate on extracting the ASD-specific features. By visualizing the acquired knowledge, we
can comprehend how and where to focus on facial images, which can aid in debugging
transfer learning models and discovering transferability restrictions.

Figure 11 depicts the facial feature region of autistic and non-autistic individuals. These
two samples were selected at random from 280 test samples. Grad-CAM shows where the
various models acquire the characteristics that characterize them as ASD or normal control
children. The Grad-CAM heatmaps were built using the model weights from the data-centric
models with the highest performance. With Xception, the primary focus area is between the
eyes, whereas ResNet50V2 focuses mostly on the nose and lips for autistic children. For a
normal child, the Xception and ResNet50V2 models focus mostly on the nose, the area below
the nose, the area between the eyes, and the upper and lower lips. In contrast, the MobileNetV2
model focuses primarily on the upper nose sections, such as the eyes and upper nose.

Figure 11. Grad-CAM feature map for the two random samples from the test set (autistic and normal
control child).
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While the test set contains numerous sorts of images, it is impossible to draw a simple
conclusion about the results, as there are so many differentiating aspects, such as gender
and face pose, which might lead to varied Grad-CAM outcomes. To generalize the focus
areas for autistic and non-autistic children, we require a generalized image pattern, i.e.,
a mean image. The mean image is a critical component of the pre-processing pipeline in
image classification tasks, which helps to normalize the data. It is composed of the average
value of every pixel in a collection of photos. All the photos in the test set are either autistic
or non-autistic. Each sort of image is distinguished by gender, as the demographics of male
and female faces should differ. Moreover, images can be divided into two categories based
on the position of face landmarks, namely the frontal pose and the side pose. In the frontal
pose, the face is at a zero-degree angle with the surface, and the picture is therefore staring
directly at the viewer. It is assumed to be the perfect candidate for testing, as the facial
feature may be easily predicted from the frontal view. There are photos in the test set that
are not precisely straight and whose facial alignment is skewed to the left or right but not
the front. This is referred to as the side pose.

Additional factors may be responsible for distinguishing features and the distinct
focus area in the Grad-CAM output. Instead, we separated the images of the test set into
autistic and non-autistic groups. The photos were then divided in two based on gender
for autistic and non-autistic groups. For both autistic and non-autistic samples, the photos
were grouped afterward according to frontal and side face poses. Table 12 describes the
grouping details for deducting the mean image. Hence, based on the above table, we
obtained five mean images for the autistic sample, representing the average of all autistic
samples, male and female samples, and frontal and side pose samples. Similarly, for the
non-autistic group, we could deduce the same images. Subsequently, the Grad-CAM was
applied to these images to locate the normalized region of interest for these various deep
neural network models in order to extract autistic or non-autistic characteristics.

Table 12. The number of test samples.

Criteria
Number of Test Samples Total

Autistic = 140 Non-Autistic = 140 280

Gender Male = 112 Female = 28 Male = 88 Female = 52 280

Facial orientation Frontal Posture = 108 Side posture = 32 Frontal Posture = 103 Side posture = 37 280

Using the Grad-CAM heatmap, Figure 12 depicts the focal regions of the autistic facial
images for the three CNN models. The first column contains the mean images from the
total number of images of autistic children as seen in Table 11. These photos contain the
facial characteristics of autism for various scenarios, such as gender and pose. So, we may
conclude that the heatmap derived from the trained model with Grad-CAM on these mean
images indicates the region of interest or features to be discovered in the autistic samples.
Instead of selecting a random sample of male autistic children, it is justified to examine the
heatmap on the mean image of all male autistic children in the test dataset. In the first row
of Figure 12, the common areas where the different models focus on male autistic samples
are depicted. These areas include the nose, the middle of the eye, and the upper lips for
the Xception model, a portion of the nose primarily on the lips for ResNet50V2, and the
forehead for MobileNetV2. Even for other types of mean images, the Xception focuses
mostly on the nose, the center of the eyes, and the upper lips.

For the frontal stance, which is regarded as the optimal condition for this type of
binary classification, Xception focuses mostly on the nose, the center of the eyes, and the
upper lips, whereas ResNet50V2 focuses primarily on the nose and lips, and MobileNetV2
focuses on the center of the forehead. The final row of Figure 12 is the mean of all autistic
samples in the test set, and the general focus of autistic children is identical to that of the
preceding mean images.
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Figure 12. Grad-CAM results of the mean images created from various groups from the test set for
autistic samples.

Although the second row of Figure 13 primarily shows the mean of three models, it
can be regarded as the general compiled area of focus for recognizing autistic children. The
mean image of the three models’ Grad-CAM heatmaps illustrates all the regions where
the models concentrate while extracting autistic traits. A “T”-shaped region consisting
of the forehead, the center of the eyes, the nose, and the lips are the frequent regions of
focus when attempting to forecast the autistic sample irrespective of different genders and
postures. Occasionally, models may also concentrate on the cheeks.

Figure 13. Overall Grad-CAM focus areas of a particular mean image summarizing the Grad-CAM
outcome for three CNN models for autistic samples.

Figure 14 displays the mean images of non-autistic samples derived using the same
methods as for the preceding autistic images. The center of the eyes, the nose, and the
upper lip are the principal focal points for all non-autistic samples of the Xception model,
which remain the same as those identified previously for autistic children. With the other
two models, ResNet50V2 and MobileNetV2, non-autistic characteristics are identified from
the peripheral area of the face rather than the center.

Hence, the overall performance and feature isolation on the face for Xception is rather
consistent for almost all the cases, regardless of gender, face pose, or autistic and non-
autistic samples. The Grad-CAM results conclude that the Xception model selected the
same area for feature extraction and that the classification is based on nearly identical facial
regions. For the other two models, however, the autistic traits are nearly identical and
isolated. In contrast, the non-autistic features originate from many regions of the face, as
indicated by the decentralized Grad-CAM heatmap for the mean photos of non-autistic
samples.



Technologies 2023, 11, 115 22 of 27

Figure 14. Grad-CAM results of the mean images created from various groups from the test set for
non-autistic samples.

Figure 15 shows the Grad-CAM results or focal areas of the face for the incorrectly
predicted autistic samples for the pre-processing with augmentation approach, where we
obtained the most accuracy in prediction. The fundamental cause is that the models focus
on the incorrect areas. Uncertain as to why the models failed to concentrate on the areas
required to extract facial features, we can assume that these images are in a side posture
or extreme facial expression. The fact that there is no repletion in the failed images is
intriguing since it indicates that various models fail to forecast distinct test samples.

Figure 15. Grad-CAM results of the failed images different models for autistic samples for the best
results (pre-processing with augmentation approach mixing all dataset).

4. Discussion

This research discusses the use of DL and explainable artificial intelligence (AI) to
diagnose ASD using facial images. The paper highlights the importance of the early
diagnosis of ASD and focuses mainly on the use of AI in this emerging medical application.
The paper proposes a data-centric approach that involves pre-processing and synthesizing
a large dataset of facial images of children with and without ASD. We then train some DL
models using the dataset to accurately diagnose ASD from facial images using different pre-
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processing and augmentation techniques. In addition to providing insights into the model’s
decision-making process and the components that contribute to the diagnosis, explainable
AI techniques are also applied. Finally, we discuss the efficiency of this approach and
compare it to other state-of-the-art methods in order to show that it beats other approaches
in terms of accuracy and efficiency.

For data pre-processing, we adopt two important steps—alignment and cropping.
Alignment is the process of adjusting the image orientation so that the object of interest
is in a consistent position across all images in the dataset. Cropping is another process
of removing unwanted parts of the image, such as the background or other objects that
are not relevant to the task at hand. In addition to improving model accuracy, alignment,
and cropping can also help to reduce the computational complexity of CNN models. By
removing unwanted parts of the image, cropping reduces the input size of the CNN
model, which can significantly reduce the number of parameters and computation required.
Several studies have shown that these pre-processing steps can significantly improve the
accuracy of CNN models trained on image datasets. A study by Junliang Xing et al. [60]
showed that alignment improved the accuracy of CNN models for the face recognition
dataset by up to 6%. Similarly, a study by Ruoning Song et al. [61] showed that cropping
improved the accuracy of CNN models on an object recognition dataset by up to 1%.

There are quite a few studies that have been undertaken exclusively in this area. To
our knowledge, this data-centric approach has never been tried for ASD diagnosis using
facial image datasets to achieve higher accuracy. Previous research showed that poor image
quality in the training dataset substantially contributes to inaccurate model outcomes.
Pictures of children’s faces often suffer from noise, poor resolution, misalignment, and
other issues. Rather, more researchers likewise concentrate on optimizing the models or set
of hyperparameters with no promising improvement in accuracy. The results of the most
recent studies in this area are compared in Table 13.

Table 13. Performance comparison of our proposed model with the existing related studies.

Ref. CNN Model Sample Size Accuracy Precision Recall F1-Score

[15] MobileNet 3014 94.64 - - -

[16] MobileNet 3014 95 94 97 95

[17] AutoML 2936 96.6 96.2 96 96

[18] ASDDTLA 2940 87.7 87.6 88 87

[12] Xception 3014 95 95 95 95

[20] VGG16 2940 70 - - -

[19] Densenet 2897 98 98.1 97.7 97.9

Our Proposed data-centric approach

Augmentation-only approach Xception 5668 92.5 92.5 92.5 92.5

Pre-processing only Xception 5668 97.9 97.9 97.9 97.9

Augmentation with Pre- processing approach Xception 10,976 98.9 98.9 98.9 98.9

Mohammad-Parsa et al. [15] and Zeyad A. T. Ahmed et al. [16] both applied the same
strategy utilizing the MobileNet model, obtaining the highest accuracy of 95%. Although
M. S. Alam et al. [12] conducted an exhaustive ablation study to determine the optimal
models and hyperparameters, they were only able to achieve an accuracy of 95% at best. In
a later study, Basma R. G. Elshoky et al. [17] employed the automated tool Hyperpot with
tree-based pipeline optimization to attain a prediction accuracy of 96.6%. The 98% success
rate claimed by Mohamed Ikermane et al. [19] is not backed up by the data. The comparison
with two other studies, by Taher M. Ghazal et al. [18] and Narinder Kaur et al. [20], whose
claimed accuracy was only 87.7% and 70%, respectively, is not so significant in this regard.
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Compared to the previous research, the augmentation-only approach has a prediction
accuracy of 92.5% with the Xception algorithm. Subsequently, after the training dataset
was pre-processed, this model’s performance increased to 97.9% with the same CNN
model, which is a substantial improvement in this regard. When both pre-processing and
augmentation are applied to the training dataset, we obtain a prediction accuracy of 98.9%,
which clearly outperforms all prior ASD diagnosis research results.

The implementation of Grad-CAM, an artificial intelligence (AI) tool that exposes the
diagnostic outcomes of transfer learning models carries substantial clinical ramifications for
the domain of medical diagnosis, specifically within the realm of assessing autism spectrum
disorder (ASD). This explainable AI enables healthcare practitioners to enhance their ability
to make informed and precise evaluations, improving patient care and facilitating well-
informed treatment decisions. Lastly, we highlight the importance of carefully observing
distinct facial characteristics, including the forehead, area between the eyes, nostrils, lips,
and occasionally the cheeks, in children diagnosed with autism spectrum disorder (ASD)
as well as normal control individuals. The identification of reliable and readily observable
facial markers linked with autism spectrum disorder (ASD) can contribute to the early
detection of the illness, facilitating prompt interventions and care for children affected by
it. If these non-intrusive visual cues are confirmed and integrated into clinical practice,
they have the potential to function as an extra screening tool that complements current
diagnostic approaches. This, in turn, can have substantial advantages for individuals
affected by ASD and their families, as it enables prompt access to suitable interventions
and support services.

Limitation of the Study

During our research, we encountered a number of limitations that can be addressed in
future studies as follows:

• Firstly, there are some potential drawbacks to dataset pre-processing, as alignment and
cropping can introduce some loss of information as parts of the image are removed or
altered. Training time is greatly decreased after pre-processing; however, processing
big datasets with high-resolution photos can be computationally expensive. Hence,
we can automatically highlight specific facial areas utilizing improved nets rather than
eliminating portions of the image.

• Secondly, this Kaggle ASD dataset is the only openly accessible dataset in this regard
on the internet and is not backed by clinical evidence. Moreover, the dataset consists
only of RGB modality, not 3D (depth or shape) facial images. The lack of supporting
data, such as gender, age, nationality, and sibling information, for each sample makes
it impossible to validate the results demographically.

• Third, this Kaggle ASD dataset is not distributed symmetrically regarding gender,
facial postures, or emotions. Additionally, the data were not collected using a certain
protocol or attention mechanism. Hence, when analyzing the explainability of CNN
models, it is quite difficult to develop a normalized pattern or specific facial regions
to focus on. We hope that the medical research institute will publish or share a
comprehensive dataset that can answer all of these issues.

5. Conclusions

The primary objective of this study is to explore the various data-centric approaches
for diagnosing ASD using deep CNN models and to maximize the accuracy of prediction.
We utilize the Kaggle ASD dataset. Rather than focusing on model and hyperparameter
tuning, we apply several pre-processing and augmentation techniques to the training set to
determine the most effective method for ASD diagnosis. After pre-processing and com-
bining two augmentation approaches—flipping and adding noise—the best performance
parameters were obtained with 98.9% accuracy, precision, recall, and F1-score and 99.9%
AUC while evaluating the trained models with a fixed dataset. We use the pre-processing
and synthesis technique for the training dataset to overcome the limitations of earlier
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research in this area. We present Grad-CAM, an AI approach that reveals the test results of
transfer learning models. We prefer to observe, rather than conclude, that the forehead, area
between the eyes, nostrils, lips, and rarely the cheeks are diagnostic of autism spectrum
disorder (ASD) or normal control children. This technique may serve as a beneficial tool
for the early detection and diagnosis of ASD, resulting in improved clinical outcomes for
affected individuals if these facial regions are validated as ASD biomarkers that require
future investigations. The acquisition of a comprehensive clinical dataset containing diverse
modalities and detailed demographic information and then incorporating advanced tech-
niques, such as active learning, attention learning, and vision transformers, has significant
potential to drive future advancements in this domain.
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