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Abstract: Saliva production by salivary glands play a crucial role in oral health. The loss of salivary
gland function could lead to xerostomia, a condition also known as dry mouth. Significant reduction
in saliva production could lead to further complications such as difficulty in speech, mastication,
and increased susceptibility to dental caries and oral infections and diseases. While some palliative
treatments are available for xerostomia, there are no curative treatments to date. This study explores
the use of Egg White Alginate (EWA), as an alternative scaffold to Matrigel® for culturing 3D salivary
gland cells. A protocol for an optimized EWA was established by comparing cell viability using
1%, 2%, and 3% alginate solution. The normal salivary simian virus 40-immortalized acinar cell
(NS-SV-AC) and the submandibular gland-human-1 (SMG-hu-1) cell lines were also used to compare
the spheroid formation and cell viability properties of both scaffold biomaterials; cell viability was
observed over 10 days using a Live–Dead Cell Assay. Cell viability and spheroid size in 2% EWA was
significantly greater than 1% and 3%. It is evident that EWA can support salivary cell survivability
as well as form larger spheroids when compared to cells grown in Matrigel®. However, further
investigations are necessary as it is unclear if cultured cells were proliferating or aggregating.

Keywords: tissue engineering; hydrogel; egg white; alginate; Matrigel; salivary tissue culture

1. Introduction

Salivary glands are characterized as exocrine saliva-secreting tissues that reside
throughout the oral cavity. Human salivary glands consist of three major pairs: the sub-
mandibular glands, sublingual glands, and parotid glands [1,2]. Additionally, 600–1000 minor
salivary glands can be found throughout the oral cavity, namely, the buccal, labial, distal
palatal, and lingual mucosal regions and pharynx [2]. Together, these salivary glands
function to secrete saliva which in turn aids in lubricating the oral cavity, digesting food,
maintaining homeostasis of oral cavity, providing microbial protection, and remineralizing
teeth [3,4]. Because saliva plays such a crucial role in the oral cavity, complete or significant
reduction in saliva production can lead to a condition known as xerostomia, also known
as dry mouth, which will have devastating effects in the mouth and one’s quality of life.
The main etiology of xerostomia are adverse effects from medication for other diseases
and conditions, radiotherapy for head and neck cancer (HNC) patients, and those with
Sjörgren’s Syndrome. HNC patients and individuals with Sjörgren’s syndrome have their
salivary glands destroyed as a result of cytotoxic doses of radiation and autoimmune
attacks on the glands, respectively [5,6]. Annually, there are approximately 500,000 new
cases of HNC and 75,000 new cases of primary Sjörgren’s Syndrome worldwide [4,7]. Those
that suffer with xerostomia typically also experience difficulty in speech, mastication and
swallowing, taste loss, and have increased susceptibility to dental caries and oral infections
and diseases [4]. Furthermore, these patients only have palliative treatments, e.g., frequent
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water sipping, using gel or spray saliva substitute, and/or taking saliva-stimulating drugs
such as pilocarpine hydrochloride or cevimeline hydrochloride. [8,9]. The high prevalence
of xerostomia in addition to the lack of treatment options highlight the urgent need for
research and development towards a curative treatment.

One branch of research that contributes toward the development of a curative treat-
ment is biomaterial development, which include the scaffolds being used to culture cells
in 3D. Optimizing these scaffolds can result in cells, spheroids, or organoids grown with
phenotypes and functions that more closely resemble their normal biological counterparts.
This would ultimately facilitate more reliable and reproducible results when using these
cells in other studies such as drug therapy testing, disease modeling and analysis, and
genetic screening and editing. There are many factors to be considered when developing
an ideal biomaterial scaffold, which varies between cell types as many factors includ-
ing essential nutrients, physical properties, anchorage points, growth factors, hormones,
and vitamins, all contribute to specific developmental outcomes [10–12]. However, three
fundamental components of organogenesis which require higher attention, are the type
of cells in the system, the growth factors that guide and nurture the growth of the cells,
and the scaffold hosting the cells. Together these components are known as the triad of
tissue engineering; optimizing each fundamental component improves the outcome for
successful organogenesis [13]. The cells in proximity to each other can have influence on
cell morphogenesis, development, and differentiation through cell–cell interaction. In a
study by Nogawa and Mizuno (1981), they showed that the presence of mesenchymal
cells can influence quail salivary epithelial cells to elongate and branch [14]. In a study
by Patel et al. (2006), it was suggested that even neuronal cells can impact salivary gland
cell branching and development [15]. Cellular activities can also be influenced by growth
factors. The presence and binding of growth factors to cell surface receptors can induce
changes in cellular metabolic activity, migration, differentiation, proliferation, morpho-
genesis, and survival [16]. It is known that specific cells require specific growth factors
to grow and differentiate, e.g., neurocytes require the addition of nerve growth factors
(NGF), keratinocytes require epidermal growth factors (EGF), and endothelial cells and
fibroblasts require basic fibroblast growth factors (bFGF) [17]. Cell attachment is a major
function of the final fundamental component to prioritize in organogenesis—the scaffold.
A scaffold used for tissue engineering is typically composed of some biocompatible ma-
terial and serves to protect the cells, act as a template for tissue formation, and form a
specific microenvironment that is niche to the tissue of interest which may include specific
temperatures, oxygen and carbon dioxide saturation level, pH level, stiffness/compliance
of surrounding tissue, osmolality, attachment substrates, and availability of nutrients and
growth factors [13,18,19]. An ideal candidate scaffold should also be: (1) degradable, ideally
at the rate of tissue regeneration; (2) biocompatible, which means the biomaterial or its
degradation product does not illicit an immune reaction and allows normal cell migration
and integration; (3) mechanically tunable, for example, in shape, stiffness, porosity, etc.;
and (4) cost-effective [13,20].

Matrigel® is a hydrogel composed of extracellular proteins including collagen IV,
laminin, fibronectin, entactin, and perlecan, and growth factors which are derived from
Engelbreth-Holm-Swarm mouse sarcoma cells. It is often considered as the gold standard in
3D cell culture research due to its ability to accommodate cell attachment, morphogenesis,
proliferation, and organization [21,22]. While many studies have successfully grown and
studied 3D salivary cells using Matrigel®, its disadvantages are that it is expensive to use,
has a quick degradation rate, and is potentially tumorigenic and/or immunogenic [22].
As a result, there is a need for a more biocompatible and accessible alternative for 3D cell
culture scaffolds.

This paper explores the use of a novel hybrid hydrogel, Egg White-Alginate (EWA).
In recent years, egg white (EW), a protein-dense substance, demonstrated excellent ca-
pability in supporting cellular attachment, differentiation, and survivability when being
used as a scaffold. The egg white component is mainly composed of ovalbumin (>50%);
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however, it also contains other ECM-resembling proteins that can act as a substrate for
cellular attachment [23,24]. In a study by Kaipparettu et al. (2008), the use of egg whites as
a scaffold to culture epithelial breast tumor cells, demonstrated it has similar cell growth
and differentiation capabilities as those grown on Matrigel® [23]. Similar observations
have also been noted in another study comparing egg white and Matrigel® in culturing
human umbilical vein endothelial cells [24]. Alginate is also a very commonly used bioma-
terial due to its versatile and tunable properties. The stiffness, elasticity, compressibility,
viscoelasticity, degradation rate, and shape, among other physical properties can easily
be manipulated [25]. By combining these two biomaterials, it provides researchers with
an extremely affordable and accessible alternative to culture cells in 3D. This pilot study
aimed to establish a protocol for creating Egg White-Alginate and to explore the feasibility
of using Egg White-Alginate as a biomaterial scaffold to culture salivary gland cells in 3D.

2. Materials and Methods
2.1. Scaffold Development
2.1.1. Egg White Isolation and Heat Treatment

Fresh eggs (large white eggs (omega-3)) were purchased from a local grocery store
in Montreal (QC, Canada). The external surfaces of the eggs were disinfected with 70%
ethanol. The egg is gently cracked and a perforation with approximately 1 cm diameter is
created. The egg white component was poured into a 50 mL conical centrifuge tube using
forceps; all other contents (egg shell, chalaza, yolk, and watery content) were discarded.
The tubes were then placed in an incubator at 58 ◦C for 1 h to sterilize (pasteurize).

2.1.2. Alginate Preparation

Sodium alginate, low molecular weight solutions (398.31 g/mol) (Protanal LF 5/60,
FMC BioPolymer, Philadelphia, PA, USA) were prepared by slowly dissolving a small
amount of sodium alginate powder into a 50 mL conical tube containing a solution of
1:3 Hank’s Balanced Salt Solution (Gibco 14025076 ON, Canada)/Epi Max (Wisent Bio
Products, 002-010-CL, QC, Canada). Between each addition of powder, the solution was
vigorously mixed by manually shaking for a 5 s and pulse-vortexing 5–10 times. Once
the desired alginate solution concentration was achieved (1%, 2%, and 3% by weight), the
tubes were then placed on a Speci-Mix Aliquot Mixer (Thermolyne, M71015) in a 37 ◦C
incubator for 30 min to further mix and dissolve the alginate and to eliminate any clumps
that were formed.

2.1.3. Egg White-Alginate Hydrogel Preparation

EWA hydrogels were created by combining 2 parts egg white and 1 part sodium
alginate into a 50 mL conical tube. The mixture was pipetted vigorously to mechanically
break the egg white until the mixture was homogenous. The homogenized mixture was
then centrifuged at 300 G for 90 s at 4 ◦C to separate bubbles from the mixture; the foam
layer was isolated and discarded. A trimmed micropipette tip was then used to plate
approximately 1 mL, 300 µL, and 100 µL of EWA into each well of a 6-well plate, 24-well
plate, and 96-well plate, respectively. Wells containing EWA were crosslinked with a
1% calcium chloride (CaCl2) in double distilled water crosslinking solution by slowly
suspending 3 parts crosslinking solution for each part EWA. The plates are then placed into
a 37 ◦C and 5% CO2 incubator overnight; the CaCl2 solution was aspirated and discarded
the following day. The EWA hydrogel scaffold was covered with culture medium and
stored in the incubator when not in use.

2.1.4. Matrigel® Preparation

Matrigel® (Corning, C356234) was thawed overnight in an ice bath within a 4 ◦C
refrigerator. Frozen pipette tips were placed in a −20 ◦C refrigerator overnight as well.
Matrigel® was transferred into a 15 mL conical centrifuge in an ice bath using cold tips and
then diluted with 5 parts ice-cold cell culture media. The solution was homogenized by
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repeated pipetting and pulse-vortexing. Then, 1 mL, 300 µL, and 100 µL Matrigel® solution
were distributed into wells of a 6-well plate, 24-well plate, and 96-well plate respectively.
The plates containing Matrigel® were placed into a 37 ◦C and 5% CO2 incubator to stiffen
for 1 h. Throughout the manipulation, all plates were rested on ice packs, cold tips were
used, and Matrigel® and conical tubes rested in an ice bath.

2.2. Physical Property Tests
2.2.1. Determining Optimal Alginate Percentage

Either 1%, 2%, or 3% EWA scaffolds were created and individually crosslinked in
separate wells of a 6-well plate. Each well was then seeded with 50,000 NS-SV-AC cells
on top of the scaffold and was then submerged in Epi Max growth media and stored in an
incubator at 37 ◦C and 5% CO2 for 5 days. Random bright-field images were taken via light
microscopy (Leica, DM IL) on day 5 at 50× and 200× magnifications, in triplicates. The
diameter of the 5 largest spheroids in each image were recorded and averaged to obtain the
average spheroid diameter size from each treatment.

2.2.2. Determining Degradation Rate

Two percent EWA scaffolds were created and individually crosslinked in each well
of a 24-well plate. Each well was then seeded with 70,000 NS-SV-AC cells on top of the
scaffold and was then submerged in Epi Max growth media which was refreshed every
3 days. The degradation rate of the scaffold was determined by weighing the solid mass of
the scaffold over 30 days.

2.3. Biological Tests
2.3.1. Cell Viability

Sixty-two percent EWA scaffolds were created and individually crosslinked in each
well of a 6-well plate. Either 150,000 NS-SV-AC or SMG-hu-1 cells were seeded on top of the
hydrogel for each well and then submerged in Epi Max growth media which was refreshed
every 3 days; cells were grown for 15 days in an incubator at 37◦C and 5% CO2. Live–Dead
staining was performed on day 5 and 10 using a Live and Dead Cell Assay kit (Abcam,
ab115347). The 4 mM calcein acetoxymethyl (CalAM) and 2mM ethidium homodimer III
(EthD-III) stock solutions were diluted with 1X PBS to create a working solution of 2 µM for
each stain. Cells were stained with both CalAM and EthD-III simultaneously, covered with
tin foil, and incubated at room temperature for 1 h. Bright-light and fluorescent images
were taken using the Leica DM IL microscope in the dark at 50x magnification.

2.3.2. Spheroid Formation

Two percent EWA and Matrigel® were plated in each well on separate 6-well plates.
Either 150,000 NS-SV-AC or SMG-hu-1 cells were seeded on top of the hydrogel for each
well and then submerged in Epi Max growth media which was refreshed every 3 days;
cells were grown for 20 days in an incubator at 37 ◦C and 5% CO2. Bright-field images
were taken at random using the Leica DM IL microscope on day 1, 2, 5, 10, 15, and 20 at
50×, 100×, and 200× magnifications. Once taken, the diameter of the 5 largest spheroids
in each image were recorded and averaged to obtain the average spheroid diameter size
from each treatment.

2.4. Statistical Analysis

Statistical analysis was conducted using the GraphPad Prism 6 package (GraphPad
Software Inc., CA, USA). All test samples were performed in triplicate. A repeated measure
(RM) one-way ANOVA, multiple comparison test with the Greenhouse–Geisser correction
was used to analyze values between groups; a RM two-way ANOVA with Sidak’s multiple
comparisons test was used to compare values between groups over time. A p-value < 0.05
was considered statistical significance.
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3. Results
3.1. Scaffold Development

Following the EWA scaffold development protocol, the EWA hydrogel had a flexible
aloe-like texture and appearance. The scaffolds also had craters where the crosslinking so-
lution was suspended, and small air bubbles dispersed throughout the hydrogel (Figure 1).
It is important to note that during the mixing phase, air bubbles are inevitably incorpo-
rated into the hydrogel due to vigorous shaking and mixing. However, ensuring adequate
homogenization between the egg white and alginate components took precedence over
the formation of air bubbles. While these bubbles can interfere with microscopic photos
if left not removed prior to cross-linking, light centrifugation (300G × 90 s) can minimize
interference by separating the air bubbles from the solution (Figure 1c).
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Figure 1. Reference images for EWA protocol: (a) Image of alginate (2%) dissolved in Epi Max
medium. (b) Image of extracted EW. (c) Image of egg white and alginate mixed together post-
centrifugation forming froth layer on top. (d) Image of EWA from top view, illustrating the air
bubbles and craters created post-crosslinkage. (e) Close image of EWA to illustrate the topography,
texture, and thickness of the scaffold post-crosslinkage.

3.2. Physical Tests
3.2.1. Optimal Alginate Percentage

After establishing the protocol for creating EWA, cells were then seeded on top of
the EWA scaffold and submerged with cell media. Various tests were then conducted
to optimize and characterize the novel biomaterial. First, the cell culturing capability of
the hydrogel was examined based on the alginate composition percentage. EWA was
produced using a 1%, 2%, or 3% alginate solution to observe changes in cellular behavior;
on day 5, images of NS-SV-AC cells were taken at 50× and 200× magnification (Figure 2).
Regardless of alginate percentage, it is evident that EWA can support NS-SV-AC cells after
5 days. However, a visual comparison in spheroid formation across the varying alginate
percentages suggested that more cells were present and formed larger spheroids in the 2%
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alginate EWA group compared to the 1% and 3% groups. When comparing spheroid sizes
across the groups, cells plated on the 2% alginate EWA scaffold formed significantly larger
spheroids compared to those cultured on the 1% (p < 0.0001) or 3% (p < 0.001) alginate EWA
group (Figure 3). It was also found that the absolute largest spheroid sizes (in diameter)
were present in the 2% group compared to the 1% and 3% alginate group. However, it is
unclear if the cell density and spheroid formation size was a result of cell migration and
aggregation or was due to cellular proliferation. This test provided evidence that a 2%
alginate EWA hydrogel would be best for culturing NS-SV-AC in 3D.
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Figure 2. Images of NS-SV-AC grown on EWA at 1%, 2%, and 3% alginate on day 5:
Images (a,b) represent NS-SV-AC grown on 1% alginate EWA, taken at 50× and 200× respectively.
Likewise, images (c,d) represent NS-SV-AC grown on 2% alginate EWA at 50× and 200×, and images
(e,f) represent NS-SV-AC grown on 3% alginate EWA at 50× and 200×.

3.2.2. Degradation Rate

The degradation rate of the 2% alginate EWA scaffold was examined over 30 days.
The degradation rate was determined by examining the change in scaffold mass over time.
It was calculated to be approximately −0.002603 g/day (Figure 4).
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Figure 3. Comparison of spheroid sizes on different alginate concentrations for EWA hydrogel. The
value of each bar shown was reported as a mean where n = 15 for each group. Sample images were
taken at random, where the five largest spheroids within each image were identified and had its
diameter measured. The average spheroid diameter size from each treatment was then reported.
Statistical significance was analyzed using a RM one-way ANOVA, multiple comparison test with
the Greenhouse–Geisser correction, where *** represents p < 0.001%, and **** represents p < 0.0001%.
The error bars shown represent the SE of each group.
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Figure 4. Change in mass of 2% alginate EWA plated with NS-SV-AC over time. Table 0. x + 0.1828.
The data is presented as a mean, where the error bars shown represent the SE. n = 3 at each time point.

3.3. Biological Tests
3.3.1. Cell Viability

NS-SV-AC and SMG-hu-1 cells were stained with CalAM (live) and EthD-III (dead),
and then observed under fluorescent light to determine the feasibility of the EWA as a
scaffold for culturing salivary gland cells over 10 days. The persistent fluorescent green
stain evident across day 5 to day 10 in both salivary cell lines suggests that at minimum,
cells are capable of surviving on the EWA scaffold. With regards to the fluorescent red-
stained cells, which represent dead cells, there are visually fewer dead cells than there are
live green cells. Additionally, there is a visually comparable number of florescent dead
cells between day 5 and day 10 in both salivary cell line. It is also evident that cells are
forming 3D spheroids over time; however, it is unclear whether these spheroids are being
formed through cell proliferation, cell aggregation, or a combination of both. Together,
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these images suggest that EWA can serve as a feasible scaffold in supporting salivary cell
life for at least 10 days. It is also noteworthy that NS-SV-AC cells tend to form these linear
structures that branch out from the spheroids as evident in Figure 5a,b. However, these
branching structures are absent in the SMG-hu-1 cell line (Figure 5c,d).
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scaffold types. Images shown in Figure 6a–d present cells grown on top of either EWA or 

Figure 5. (a–d). Bright-light and Fluorescent Live–Dead images of salivary gland cells grown on
EWA. Each figure (a–d) contains as set of images capturing either NS-SV-AC cells or SMG-hu-1 cells
on day 5 or day 10, under bright-field light, fluorescent light with CalAM Live stain, fluorescent
light with EthD Dead stain, and a combined superimposed image of the Live–Dead stained cells.
(a) displays NS-SV-AC cells on day 5. (b) displays NS-SV-AC cells on day 10. (c) displays SMG-hu-1
cells on day 5. (d) displays SMG-hu-1 cells on day 5. Images were taken at 50× magnification; the
scalebar on the bottom left corner represents 180 µm.

3.3.2. Spheroid Formation

Both NS-SV-AC and SMG-hu-1 cell lines were grown on EWA and Matrigel® scaffolds
to analyze growth and phenotypic differences in these salivary cells across the two scaffold
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types. Images shown in Figure 6a–d present cells grown on top of either EWA or Matrigel®;
though over time, these cells can be found on top of the gel and as well as suspended
throughout the thickness of both hydrogels. When comparing NS-SV-AC grown on EWA
and Matrigel®, it is evident that both scaffolds led to spheroid formation over 20 days
(Figure 6), though it is uncertain as to whether the formation of spheroids are due to cellular
proliferation or due to cell migration and aggregation. However, it is more likely that the
formation of spheroids resulted from the migration and aggregation of the single cells as
the number of single cells decreased while the average spheroid size (in diameter) increased
throughout the duration of the experiment. A statistical analysis reveals significant evidence
(p < 0.0001) for spheroid formation over 20 days in all groups. When comparing cells grown
on EWA (Figure 6a,c) versus cells grown on Matrigel® (Figure 6b,d), the average spheroid
sizes were found to be larger in the EWA group on day 20 for NS-SV-AC (Figure 7a) and
day 10 for SMG-hu-1 (Figure 7b). Additionally, spheroids in the EWA group exhibited
dark cores on day 10, 15, and 20, which was not as prominent in the Matrigel® group. It
could be possible that these dark central features are local high-density clusters of cells.
It is unclear as to why these features are present in the EWA group but not the Matrigel®

group. Another notable difference between the NS-SV-AC grown on EWA and Matrigel® is
that those grown on the former had visually distinct features throughout the scaffold. For
example, the image captured on day 5 and 20 shows the NS-SV-AC growing out laterally
rather than clustering together to form spheroids as seen on day 5 and 15. While not shown,
these different features were not time dependent as both features can be found across all
time points. It was also noted that the SMG-hu-1 cell line has lower potential to grow in
3D than the NS-SV-AC cell line. While plated in equal density across all four groups, it
was evident that the total number of spheroids and single cells remaining in the culture
were lower in the SMG-hu-1 groups compared to the NS-SV-AC group, regardless of the
scaffold. Additionally, there was a visual difference between the average spheroid sizes
of SMG-hu-1 and NS-SV-AC with the former being smaller. Images of scaffolds without
cells were taken to visualize physical changes in the scaffold, and its possible influences,
interference, and distortion on cell imaging (Figure 6e).
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Figure 6. (a–e). Comparison of progression in cell growth and spheroid formation of cells grown on 
EWA and Matrigel®: (a) NS-SV-AC cells grown on EWA. (b) NS-SV-AC grown on Matrigel®; (c) 
SMG-hu-1 cells grown on EWA; (d) SMG-hu-1 cells grown on Matrigel®; (e) EWA and Matrigel® 
grown without any cells. Each group (a–d) contains a chronological series of photos taken on day 0, 

Figure 6. (a–e). Comparison of progression in cell growth and spheroid formation of cells grown
on EWA and Matrigel®: (a) NS-SV-AC cells grown on EWA. (b) NS-SV-AC grown on Matrigel®;
(c) SMG-hu-1 cells grown on EWA; (d) SMG-hu-1 cells grown on Matrigel®; (e) EWA and Matrigel®

grown without any cells. Each group (a–d) contains a chronological series of photos taken on day 0,
1, 5, 10, 15, and 20. All images were taken with a bright-light microscope at 100× magnification and
at random. The black scalebar on the bottom left corner of every image in Figure 6a–d represents
90 µm; the scale bar on the bottom left corner of images in Figure 6e represents 180 µm.
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Figure 7. Comparison of average spheroid sizes (in diameter) of cells grown on EWA or Matrigel®:
(a) compares NS-SV-AC across EWA and Matrigel® scaffolds. (b) compares SMG-hu-1 across EWA
and Matrigel® scaffolds. The value of each bar shown was reported as a mean where n = 15 for each
group. Statistical analyses were performed using a RM two-way ANOVA with Sidak’s multiple
comparisons test; * p < 0.05. Data are presented as mean ± standard error (SE). The error bars
represent the SE of each measurement.

Overall, this experiment provided a visual comparison between cells grown on EWA
and Matrigel®. This study showed evidence for maintaining cell growth and spheroid
formation. Additionally, this study confirmed that there are morphological differences in
cells grown on different scaffolds, and even within scaffolds, depending on its physical
properties. While this experiment showed evidence of spheroid formation of salivary
cells over 20 days—highlighting the potential use of EWA as an alternative scaffold for
salivary cell culture—further biological studies are needed to provide further information
and evidence for the use of EWA as scaffold, particularly regarding the impact of cer-
tain EWA scaffold characteristics on cell morphology, differentiation, function, migration,
survivability, and growth.

4. Discussion

Throughout this study, we were able to display various advantages and traits of using
egg white alginate as an alternative to Matrigel. The slower degradation rate of EWA
provides researchers with the advantage of performing longer-term studies. Additionally,
its more robust characteristics enable researchers to follow specific population of cells on
the scaffold throughout the duration of the experiment, with minimized risk of losing
track of specific cell groups. The results in our study also suggest that EWA is a feasible
scaffold for salivary cell culture. Relative to Matrigel, our study showed that EWA is
both capable of culturing larger spheroids and for longer due to a slower degradation rate.
However, because this is a pilot study exploring novelties of EWA as a scaffold, there remain
unknowns that require future studies to confirm and reinforce our findings. For example,
while our results show that EWA is capable of culturing larger spheroids, the effects of EWA
on cellular gene and protein expression and regulation, cell interaction and organization,
and morphological and functional changes are not known. Future studies could aim to
monitor specific key protein expression such as AQP-5 throughout the duration of the
study to determine changes in function.

In the spheroid formation experiment, morphological differences in NS-SV-AC are
observed throughout the duration. These differences in NS-SV-AC behavior could be
attributed to inconsistencies in scaffold roughness and stiffness. The technique used to
create the hydrogel involves manual pipetting and pulse-vortexing egg white with an
alginate solution, which may not adequately homogenize the EWA hydrogel. Perhaps a
more homogenous blend between the egg white and alginate component could lead to more
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consistent cell aggregation behavior throughout the entire scaffold and across samples. In a
study by Zhang et al., they found that cells grown in 0.8% alginate scaffolds tend to have
a 3D interconnected cellular network similar to that exhibited in Figure 6a Day 10, while
cells grown in 1.8% and 2.3% alginate scaffolds exhibited spheroid-like structures similar
to that exhibited in Figure 6a Day 5 and 15 [26]. Another factor that could be affecting the
varied cell morphology is whether cells are on top of the hydrogel or suspended within the
hydrogel. Due to the difference in stiffness between egg white and alginate, cells suspended
in areas that are potentially more abundant in alginate may result in cells sinking further
into the hydrogel, despite being initially plated on top of the hydrogel.

The main limitation to our study and use of EWA as a scaffold is that further research
needs to be conducted to confirm biological mechanisms such as the interactions between
egg white proteins and salivary cell receptors. As previously mentioned, it is also im-
perative for future studies to determine changes in protein expression, morphology, cell
interaction, and function. Lastly, future studies should also aim to further characterize the
scaffold, e.g., elastic modulus and surface roughness, which would ultimately allow us to
understand the nature of the gel and its impact on cellular activity. Further understanding
of these various aspects will enable further optimization of the novel hydrogel. However,
because EWA is a novel hydrogel, there is a lack of pre-established protocols for isolating
cells to perform certain studies and tests such as immunofluorescent staining, DNA iso-
lation, and measuring elastic modulus. Thus, the first hurdle to overcome is to establish
effective protocols for manipulating the scaffold in the presence and absence of cells.

While this study reports the first development, use, and experimental results of EWA,
our team has previously published a follow-up study by Zhang et al. (2020) addressing an
optimized protocol for producing a smoother EWA using frozen CaCl2 disks to crosslink
the EWA hydrogel [27]. It is important to address the discrepancy in our results between the
two studies; while this study reports that 2% alginate EWA had significantly larger average
spheroid sizes (Figure 3) when compared to 1% and 3% alginate EWA, our 2020 study
reported having the largest spheroid sizes in the 3% alginate EWA group. This discrepancy
could be contributed to difference in EWA creation protocol. In this study, EWA was
crosslinked using drops of liquid CaCl2 which caused large crater-like features on contact
(Figure 1e). This was a limitation of our initial protocol as the crater features could not be
controlled and standardized across sample sizes and studies. These craters could result
in an uneven distribution of cells across the scaffold due to gravity and random chance.
In our 2020 study, by using frozen CaCl2 disks, we were able to minimize the impact of
the CaCl2 solution droplets, forming a smoother and more uniform surface; thus, cells
could be plated and distributed on the scaffold more uniformly [27]. Consequently, the
results from that study likely reflect a more accurate representation of the impact of various
alginate concentrations in EWA on cell viability and spheroid formation. However, more
consistently with this study’s data, our 2020 study determined that 3% alginate EWA
had lower cell proliferation and viability relative to other samples, with 1.5% alginate
EWA having the highest viability. While we did not test 1.5% alginate EWA in this study,
our study does suggest that an alginate concentration of 2% visually revealed higher cell
viability (Figure 2). This poses a challenge as there seems to be a delicate balance between
scaffold stiffness, cell viability, and spheroid formation. Future studies should aim to
closely monitor scaffold physical properties and its biological effect on salivary cell activity.

5. Conclusions

In this study, we established an initial protocol for developing and plating EWA, which
was optimized at 2% alginate concentration. At this concentration, there was a significant
difference in cell growth and survival, relative to cells grown on EWA composed of 1%
or 3% alginate concentrations. We demonstrated that EWA is capable of maintaining two
different salivary cell lines for 20 days. We also demonstrated that salivary cells grown
on EWA led to spheroid formation, similar to that of Matrigel. The future direction of
our study is to establish effective protocols for manipulating the scaffold and isolating
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cells from the scaffold, further characterize the physical and biological properties of the
hydrogel, closely examine cellular changes in cells grown on the hydrogel, and attempt to
culture human primary salivary cells on EWA (rather than immortalized cell lines). These
are the next goals and steps to further proving the use of EWA as an alternative to Matrigel
for the use of salivary cell culturing. These salivary cells should ideally resemble primary
human salivary cells, thus bringing EWA one step closer to being a feasible and biologically
relevant scaffold with clinical applications such as in drug-screening and disease modeling.
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