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Abstract: An innovative electrochemical biosensor based on graphene quantum dots (GQDs) is
developed for a simple, rapid, and highly sensitive primary diagnosis of the breast cancer biomarker
cluster of differentiation-44 (CD44) antigen. Herein, electrochemical exfoliation of waste dry batteries
provides facile, eco-friendly, and cost-effective synthesis of GQDs. Transmission electron microscopy
(TEM) analysis reveals that GQDs exhibit spherical shapes with an average diameter of 4.75 nm.
Further, electrochemical analysis through cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS) reveals that the electrochemical properties of GQDs are suitable for biosensing
applications. Subsequently, GQDs have a large electroactive surface area that has been utilized for the
immobilization of CD44 antibodies to fabricate the electrochemical biosensor. The electroanalytical
performance of GQDs for CD44 biosensing capabilities is studied by differential pulse voltammetry
(DPV). The developed electrochemical biosensor has high sensitivity with the lowest detection limit
(LOD) of 2.11 fg/mL in the linear range of 0.1 pg/mL to 100.0 ng/mL in phosphate buffer saline
(PBS). Further, the linear response of the electrochemical biosensor for CD44 antigen concentration is
in the range of 1.0 pg/mL to 100.0 ng/mL with a LOD of 2.71 fg/mL in spiked serum samples. The
outcomes suggest that the synthesized GQDs demonstrate promising attributes to be utilized as a
viable nanomaterial in biosensing applications.

Keywords: graphene quantum dots (GQDs); waste dry batteries; electrochemical exfoliation; biosensor;
CD44; breast cancer

1. Introduction

Cancer is a disease in which cells divide erratically or grow uncontrollably, leading
to the emergence of malignancies. Additionally, cell expansion can also move to other
organs through veins, causing diseases to affect other organ areas [1]. Breast cancer is the
most prevalent cancer in women worldwide, accounting for 0.6 million (6.9%) of all cancer-
related deaths. Recent research by Sung et al. indicates that in 2020, 2.3 million (11.7%)
cases made it the second biggest cause of cancer deaths worldwide [2]. This malignancy is
treatable at the preliminary stage in 70–80% of patients, with an endurance pace of 80%
prominent in developed nations [3]. The survival rate in the least developed countries is
much lower, below 40%, which is majorly ascribed to the lack of diagnostic techniques at
the primary stage of the disease [4].

The detection of breast cancer is majorly dependent on significantly associated biomark-
ers that resemble the primary growth of cancerous cells. Most commonly known breast
cancer biomarkers include cancer antigens (CA); CA 15-3, CA 27-29, protein-6 (CA-6),
Human epidermal growth factor receptor 2 (HER2), estrogen receptors (ER), proges-
terone receptors (PR), circulating tumor cells (CTC), cluster of differentiation-44, 47 (CD44,
CD47), mesenchymal-epithelial transition factor receptor (MET), breast cancer genes-1/-2
(BRCA1/2), carcinoembryonic antigen (CEA) [5], and tumor Protein 53 [6]. The CD44
antigen is a potent cancer biomarker that is a multifunctional transmembrane glycoprotein
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having malignant cellular features such as cell adhesion, activation, migration, and differ-
entiation. CD44 is majorly associated with tumor incursion, evolution, and metastasis [7].
Due to the metastatic cancerous nature of CD44, it is a key biomarker for early diagnosis of
breast cancer [8]. However, the biologically relevant detectable range of soluble CD44 in
clinical samples is reported to be in the range of ~ 400.0 to 500.0 ng/mL [9].

Traditionally, numerous techniques are utilized for the detection of CD44 antigens,
such as the cancer cell, including imaging [10], electrochemiluminescence [11], quartz
crystal microbalance [12], gas chromatography (GC) [13], atomic force microscopy [14],
high-performance liquid chromatography (HPLC) [15,16], flow cytometry [17,18], spec-
trophotometry [19,20], thin-layer chromatography (TLC) [21], chemiluminescence [22,23],
computed tomography (CT), and magnetic resonance imaging (MRI) [24]. However, these
conventional techniques have some disadvantages, such as their expensive, complex,
and time-consuming procedures. Hence it is vital to develop a fast, cost-effective, and
user-friendly method for the detection of CD44 antigen [25].

Recently, the development of electrochemical biosensors has gained the interest of
researchers to detect CD44 antigen effectively due to their numerous advantages, such
as a rapid response, cost-effectiveness, simplicity, portability, good accuracy, and high
sensitivity as compared to conventional detection tools [26]. Previously, biosensor-based
detection of CD44 antigen has been reported in several studies (Table 1). For instance,
Zhou et al. developed a hyaluronic acid (HA) with bovine serum albumin (BSA) modi-
fied gold nanoparticles (GNPs) (HA-BSA-GNPs) nanocomposite-based electrochemical
platform for the determination of CD44 antigen. The developed platform was highly
sensitive and specific, with a low detection limit of 128 cells/mL in a linear range from
2.0 × 102 cells/mL to 3.0 × 105 cells/mL [17]. In another study, Ranjan et al. reported
an ionic liquid hybrid nanocomposite based-electrochemical immunosensor for highly
sensitive detection of CD44 breast cancer biomarkers in clinical samples [27]. Zhao and the
research group developed a self-assembled supramolecular nanocomposite-based amplified
electrochemical platform for the detection of CD44. The reported platform demonstrated
high sensitivity and specificity in a broad linear range from 0.01 ng/mL to 100.0 ng/mL
with a low detection limit of 2.17 pg/mL [28]. In another work, they also reported aptamer
based-electrochemical impedance sensor for CD44 detection with a LOD of 0.087 ng/mL in
a wide linearity range between 0.10 ng/mL to 1000.0 ng/mL [29]. Fan et al. developed a
hyaluronic acid (HA) and poly(ethylene glycol) (PEG) hybrid coating on TiO2 substrate for
sensitive detection of CD44 using the photoelectrochemical (PEC) technique. The reported
sensitive detection in a linear range from 0.005 ng/mL to 500.0 ng/mL with an LOD of
0.44 pg/mL [30]. Huang et al. reported a bio-imaging detection of CD44 antigen using
fluorescence resonance energy transfer (FRET) from PFEP to fluoresceinamine-hyaluronan
(FA-HA) as the fluorescent probe in cancerous cells. The obtained detection limit was
35.0 ng/mL in a linear range from 0.0 ng/mL to 100.0 ng/mL [31]. Qiu and coworkers
synthesized an electrochemiluminescence (ECL) probe based on zinc-coadsorbed carbon
quantum dots (ZnCQDs) nanocomposites to detect and evaluate CD44 levels in cell lines.
The proposed sensor exhibited excellent analytical performance for single MDA-MB-231
cells and MCF-7 cells with a linear range from 1.0 to 18.0 cells and 1.0 to 12.0 cells, respec-
tively. Moreover, the single-cell analysis platform was used for investigating the level of
CD44 expression in these two cell lines where MDA-MB-231 cells exhibited 2.8 to 5.2 fold
higher CD44 than MCF-7 cells. [32].
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Table 1. Reported biosensors for CD44 breast cancer biomarker detection.

S.
No. Sensing Probe Medium Technique Linearity LOD Citation

1. HA-BSA-GNPs/GCEs PBS EIS 2.0 × 102 cells/mL to
3.0 × 105 cells/mL

128 cells/mL [17]

2. FF-AuNPs Serum LSV 0.01 ng/mL to 100.0 ng/mL 2.17 pg/mL [28]

3. Au-Aptamer Serum EIS 0.10 ng/mL to 1000.0 ng/mL 0.087 ng/mL [29]

4. ITO/TiO2/
PDA−HA−PEG Serum PEC 0.005 ng/mL to 500.0 ng/mL 0.44 pg/mL [30]

5. PFEP/FA-HA Serum Fluorescence 0.0 ng/mL to 100.0 ng/mL 35.0 ng/mL [31]

6. ZnCQDs MDA-MB-231
cells ECL 1 cell to 18 cells - [32]

7. Exfoliated GQDs PBS,
Serum DPV 0.1 pg/mL to 100.0 ng/mL

1.0 pg/mL to 100.0 ng/mL
2.11 fg/mL,
2.71 fg/mL

This
work

Over the years, nanomaterials have been incorporated to increase the effective surface
area of the working electrodes and to improve the conductivity of the electrode surface.
Further, they also enhance the stability, selectivity, and sensitivity of the electrochemical
biosensors. Subsequently, graphene quantum dots (GQDs) have been used in the fabrica-
tion of electrochemical biosensors for the detection of various breast cancer biomarkers.
GQDs possess a zero-dimensional structure with graphene-like features such as high elec-
trical conductivity and a large surface-to-volume ratio. In addition, GQDs have carboxylic
functional groups at the edges, which are vital for the immobilization of bioanalytes [33].
Numerous studies have been reported on GQDs-based electrochemical biosensors for the
detection of various breast cancer biomarkers. For instance, Tran et al. developed an
ultrasensitive electrochemical biosensor for MCF-7 breast cancer cells by using N-doped
GQDs. The developed N-GQDs-based electrochemical platform showed excellent sensitiv-
ity and selectivity with a LOD of 1 cell/mL [34]. A thiolated GQDs-based electrochemical
immunosensor was reported in another work for the sensitive detection of specific carbohy-
drate (CA 15-3) breast cancer biomarker and MCF-7 breast cancer cells [35]. To the best of
our knowledge, there is no study reported on the electrochemically exfoliated GQDs-based
electrochemical biosensing strategy to detect CD44 breast cancer biomarkers.

In this work, we have developed an electrochemically exfoliated GQDs-based highly
sensitive electrochemical biosensor to detect the CD44 breast cancer biomarker for the first
time. The use of exfoliated GQDs provides numerous benefits that help in the enhancement
of sensor performance. The synthesized GQDs support further advancements in the field
of electrochemical biosensors with their significant physio-chemical attributes [36]. The
remarkable behavior of GQDs enhances their superior electrochemical properties and their
utilization in the development of electrochemical biosensors. The prepared GQDs have
an average diameter of 4.75 nm with uniform size. As synthesized GQDs have plenty of
carboxylic functionalities and a larger surface that favor the high loading of CD44 anti-
bodies. The fabricated electrochemical biosensor exhibits high sensitivity with the lowest
detection limit of 2.11 fg/mL in phosphate buffer saline (PBS) in a wide linearity range
between 0.1 pg/mL to 100.0 ng/mL. The proposed platform is also validated in spiked
serum samples and provides satisfactory results with a LOD of 2.71 fg/mL in the linear
range of 1.0 pg/mL to 100.0 ng/mL. Hence, the developed GQDs-based electrochemical
platform would pave the way to detect CD44 and other breast cancer biomarkers in real-life
conditions. The fabrication process of GQDs and the sensing mechanism of the fabricated
electrochemical biosensor is shown in Scheme 1.
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Scheme 1. Schematic diagram of the (a) synthesis procedure of GQDs and (b) sensing mechanism of
the fabricated electrochemical biosensor.

2. Materials and Methods
2.1. Chemicals

Graphite rods (GRs) from a waste dry battery, sodium hydroxide (NaOH), citric acid
(C6H8O7), sulphuric acid (H2SO4), calcium chloride (CaCl2·2H2O), dialysis membrane
(pore size 2.4 nm), and DC power supply (Powertron) were used to synthesize GQDs. Potas-
sium ferricyanide(III) (K3[Fe(CN6)]), potassium ferrocyanide(IV) (K4[Fe(CN6)]), sodium
dihydrogen phosphate dihydrate (NaH2PO4.2H2O, 98.0%), disodium hydrogen phosphate
(Na2HPO4), and potassium chloride (KCl), were purchased from SRL Pvt. Ltd., India. CD44
antigen (Product No.-APREST83079), a monoclonal anti-CD44 antibody produced in mouse
(Product No.-C7923), bovine serum albumin (BSA), N-(3-Dimethylaminopropyl)-N’-ethyl
carbodiimide hydrochloride (EDC), and N-hydroxysulfosuccinimide sodium (NHS) were
purchased from Sigma Aldrich, USA. Serum samples were collected from Shivira Pathol-
ogy, Saket Nagar, Bhopal. All chemicals were used without any refining. All chemical
solutions were prepared in ultrapure water (>18 MΩ·cm) from a Millipore Milli-Q water
purging framework.

2.2. Graphene Quantum Dots (GQDs) Synthesis

The GQDs were synthesized from our earlier work [37]. Briefly, in this approach, the
electrodes from two dry batteries were removed. The electrolyte was prepared by mixing
0.1 M citric acid with 1 M NaOH in 40.0 mL Milli-Q water. The electrolyte changed from
being a colorless solution to yellow to brown within an hour by gradually applying lower
to a higher voltage (2–10 V). The color of the electrolyte solution became deep brown
from colorless, indicating the exfoliation of GRs. The solution was further centrifuged and
filtered to obtain GQDs.

2.3. Modification of the Electrochemical Biosensor
2.3.1. Pre-Treatment of the Working Electrode

Before usage, the glassy carbon electrode (GCE) surface was thoroughly cleaned by
following the standard procedure. The electrode was sequentially sonicated and washed



Biosensors 2022, 12, 966 5 of 14

for three minutes in 0.1 M H2SO4 and 95% ethanol. To achieve a shiny mirror surface,
all GCEs were polished with first a 0.3 µm α-Al2O3 slurry and then a 0.05 µm α-Al2O3
slurry. At last, electrodes were ultrasonicated in distilled water for 5 min and dried before
further use.

2.3.2. Fabrication of the Electrochemical Biosensor

At first 5 µL, GQDs solution was drop cast on the GCE surface and kept for drying
at ambient temperature for 24 h. Then, 5 µL of freshly made 4: 1:: EDC: NHS (in 10 mM
PBS, pH-7.0) were dropped over GQDs modified electrodes to activate the functional
groups and then rinsed with Milli-Q water after one hour. After drying at ambient tem-
perature, 5 µL of 20 µg/mL CD44 antibodies (in 10 mM PBS, pH-7.0) were immobilized
for 12 h at 4 ◦C to allow the antibodies to bind with the activated electrode surface. Then,
10 mM PBS, pH-7.0, was used to rinse the CD44 antibody-modified electrode (CD44 an-
tibody/GQDs/GCE). Then after, to prevent non-specific adsorption of analytes onto the
CD44 antibody/GQDs/GCE, 1% BSA (in 10 mM PBS, pH-7.0) was used for 40 min. Before
experimental tests, the modified electrode (BSA/CD44 antibody/GQDs/GCE) was thor-
oughly washed with 10 mM PBS, pH-7.0, dried, and kept at 4 ◦C. The final surface-modified
GCE, i.e., BSA/CD44 antibody/GQDs/GCE, was used as the electrochemical probe to
detect the CD44 antigen.

3. Results and Discussions
3.1. Characterization of Graphene Quantum Dots

The synthesized GQDs were characterized for their optical, structural, vibrational, and
morphological properties before their utilization in electrochemical biosensing applications.
Optical characteristics were observed using a UV-visible spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). UV-vis spectrum was recorded in wavelengths of 180 nm to
500 nm. As shown in Figure 1a, the reformation of the π-electron system is compatible with
the GQDs having an absorption band at 249 nm, which is attributed to the π-π* transition
of ring-structured C = C bonds in the sp2 region [38–40].
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Further, to understand the crystalline nature of the synthesized GQDs, the X-ray
diffraction (XRD) pattern was recorded by the MiiFlexII Desktop X-ray Diffractometer
(Rigaku Smart Lab Diffractometer). The XRD spectrum, as shown in Figure 1b, was used
to identify the crystal phases. A prominent peak observed at 2θ = 24.70

◦
corresponds

to the (002) plane of crystalline graphitic structure present in GQDs. The inter-planar
spacing (d-spacing) was calculated to be 0.36 nm by the formula nλ = 2d sin θ, where n = 1,
λ = 1.54 Å, θ = 12.35

◦
at the highest intense peak [41]. The XRD results presented in

Figure 1b are in correlation with JCPDS No. 41–1487, which confirms the formation of
GQDs [42,43].

The FTIR spectroscopy with ATR Accessory (Model FTIR 4700, JASCO, Tokyo) was
used to obtain the FTIR spectra from 4000 cm−1 to 600 cm−1, as shown in Figure 1c. The
FTIR spectrum was used to identify the functional groups present in the GQDs. The bands
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visible at 3358 cm−1 and 1153 cm−1 demonstrate intermolecular hydrogen bond (O-H
stretching) in GQDs [44]. The graphene sheets (C-H) stretching caused peaks at 2830 cm−1

and 2900 cm−1. The peak at 1640 cm−1 confirms that an sp2 carbon structure was recovered
in the graphene sheets throughout the reduction process and was predicted to be generated
by the (C = C) vibration of the graphene sheets [44,45]. Carboxyl group (C-O) stretching
caused the band at around 1330 cm−1, while C-C stretching caused another peak at about
835 cm−1 [45,46].

A high-resolution transmission electron microscope (HR-TEM) was used to conduct
the morphological analysis. The size, shape, and high-resolution images of GQDs were
observed using an HR-TEM (Make: JEOL, Model: JEM-F200). The sample (GQDs) was
prepared over a carbon-coated copper grid (400 mesh) (Ted-Pella Inc., Redding, CA, USA).
TEM analysis was performed for GQDs, as shown in Figure 2. The homogenous distri-
bution of the GQDs is visible in the TEM images at the scale of 10 nm (Figure 2a). The
Gaussian fitted size distribution (inset of Figure 2a) of the synthesized GQDs was obtained
between 3 nm to 7 nm. The average particle size of GQDs was determined to be 4.75 nm [43].
The different resolutions of the TEM image of the prepared GQDs are shown in Figure 2a,b.
The TEM images indicate the synthesized GQDs are spherical and monodisperse. Such par-
ticles increase the surface area, which enhances the electrocatalytic properties of prepared
GQDs [40]. The HR-TEM image clearly shows the particle size of 4.75 ± 1 nm (inset of
Figure 2b) and a d-spacing of 0.36 nm (Figure 2c), which was correlated to the (002) phase
of the crystalline graphitic structure. The obtained TEM results were consistent with the
calculated XRD data. The semi-crystalline structure of synthesized GQDs was indicated
by the presence of a diffuse diffraction ring and spot patterns of the selected area electron
diffraction (SAED) image displayed in Figure 2d [37].
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3.2. Reproducibility of Graphene Quantum Dots

Before using the synthesized GQDs for biosensing, their electrochemical conductivity
and stability studies were carried out via electrochemical techniques. To assess the electro-
chemical conductivity, the obtained response is compared with bare GCE, and it has been
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seen that the GQDs have high signal response than bare GCE, as shown in Figure 3a. The
electrochemical stability of the GQDs has been evaluated by performing eight consecutive
CV scans on the single modified electrode in the potential of 0.3 to 0.8 at the scan rate
of 20 mV/s (Figure 3b) and the corresponding change in signal response was evaluated
and observed the highly reproducible response up to 90% (Figure 3c) which indicated the
potential usability of electrochemically exfoliated GQDs in the fabrication of biosensing
platform to detect CD44 efficiently.
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3.3. Electrochemical Optimization of Electrochemical Biosensor

Electrochemical analysis of surface-modified working electrodes, i.e., GQDs/GCE,
CD44 antibody/GQDs/GCE, and BSA/CD44 antibody/GQDs/GCE, have been carried
out via different electroanalytical techniques such as Cyclic voltammetry (CV) and electro-
chemical impedance spectroscopy (EIS). All the electrochemical studies were carried out in
10 mM PBS with KCl (0.1 M) and [Fe(CN6)]3−/4− (2 mM) (pH-7.4) as the electrolyte.

3.3.1. Cyclic Voltammetry

CV is widely used to study how chemical species are reduced and oxidized. The
study of chemical reactions involving electron transfer, such as catalysis, is significantly
aided by CV [47]. The electrochemical biosensor was developed by step-by-step surface
modifications of the GCE (i.e., GQDs/GCE, CD44 antibody/GQDs/GCE, and BSA/CD44
antibody/GQDs/GCE) electrode, which were characterized by CV in the potential window
of −0.3 V to 0.8 V with a scan rate of 20 mV/s, in the presence of PBS. As shown in 4a, the
formation of CD44 antibody/GQDs/GCE after the immobilization of the CD44 antibodies
onto the GQDs/GCE had a low current response, indicating that the CD44 antibody was
successfully immobilized on the GQDs/GCE electrode surface. The formation of the
biolayer after the immobilization of CD44 antibodies at the GQD/GCE hindered electron
transfer due to the insulating behavior of bio-species [27]. Additionally, the immobilization
of BSA as a blockage agent to produce BSA/CD44 antibody/GQDs/GCE reduced the
current, confirming the blocking of non-specific sites on the electrode surface. After each
modification step, the peak current value of the working electrodes GCE, GQDs/GCE, CD44
antibody/GQDs/GCE, and BSA/CD44 antibody/GQDs/GCE was 13.21 µA, 14.75 µA,
10.92 µA, and 10.11 µA, respectively. The highest peak current observed for GQDs/GCE
was attributed to the highly conducting nature of GQDs.

Using the Brown–Anson method and the equation Ip = n2F2 I*AV/4RT, where I* is the
surface concentration of the GCE (mol/cm2), A is the surface area of the electrode (0.07 cm2),
V is the scan rate (20 × 10−3 V/s), R is the gas constant (8.314 J/mol K), and T is the absolute
temperature (298 K), where n is the number of electrons transferred (n = 1), and F is the
Faraday constant (F = 96,485.33 C/mol), the surface concentration of the GCE, GQDs/GCE,
CD44 antibody/GQDs/GCE, and BSA/CD44 antibody/GQDs/GCE electrodes have been
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determined [48]. The surface concentration of the GQDs/GCE (112.21 × 10−10 mol/cm2)
was higher than that of the GCE (100.47 × 10−10 mol/cm2), CD44 antibody/GQDs/GCE
(83.05 × 10−10 mol/cm2), and BSA/CD44 antibody/GQDs/GCE (76.94 × 10−10 mol/cm2).
The significant surface concentration of GQDs/GCE enabled more binding sites for en-
hanced electrochemical biosensor performance.

3.3.2. Redox Behavior Study

The influence of the scan rate (υ) has been investigated to better understand the
reactions on the electrode corresponding to anodic and cathodic peak currents. The scan
rate controls the redox and diffusion control electron transfer mechanism of the modified
electrodes. A linear plot of CV was obtained (Figure 4b) to compare the CV for GQDs/GCE
and BSA/CD44 antibody/GQDs/GCE at the potential windows of −0.3 V to +0.8 V in the
variable scan rate range from 10 mV/s to 100 mV/s with the interval of 10 mV/s. Results
showed that as the scan rate was increased, the anodic peak current (Ipa) increased while
the cathodic peak current (Ipc) decreased linearly, indicating an excellent redox nature. The
increasing scan rate reduced the diffusion layer of the electrode resulting in higher current
responses [47].
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Figure 4. Comparison of the modified electrodes in 10 mM PBS with KCl (0.1 M) and [Fe(CN6)]3−/4−

(2 mM) (pH 7.4) via (a) CV, (b) scan rate study, (i, ii) Ipa and Ipc of GQDs, (iii, iv) Ipa and Ipc of the
BSA/CD44 antibody/GQDs/GCE, and (c) EIS graph for the (I) GCE, (II) GQDs/GCE, (III) CD44
antibody/GQDs/GCE, (IV) BSA/CD44 antibody/GQDs/GCE.

A linear relation of the Ipa and Ipc vs. υ1/2 and Epa and Epc vs. υ1/2 of the GQDs/GCE
and BSA/CD44 antibody/GQDs/GCE is given below and shown in Figure 4b:

Ipa (GQDs/GCE): 0.2717 × υ1/2 + 0.3330, R2 = 0.9998
Ipc (GQDs/GCE): −0.2978× υ1/2 − 0.3657, R2 = 0.9991
Ipa (BSA/CD44 antibody/GQDs/GCE): 0.1847 × υ1/2 + 0.2124, R2 = 0.9989
Ipc (BSA/CD44 antibody/GQDs/GCE): −0.2002 × υ1/2 − 0.3366, R2 = 0.9957

The values of the regression coefficient (R2) from the linear plot support the depen-
dence of the scan rate on the redox nature of the modified electrodes.

3.3.3. Electrochemical Impedance Spectroscopy

EIS studies were conducted on the sequentially assembled electrodes for fabrication
of the electrochemical biosensor from the viewpoint of resistance change at the modi-
fied electrode surface. In the Nyquist plots, as shown in Figure 4c, the charge-transfer
resistance (RCT) is equivalent to the diameter of the semicircle. Further, the surface-
modified GCE was studied to validate the efficient capture of CD44 antibodies onto the
GQDs/GCE. The RCT values for the GCE, GQDs/GCE CD44 antibody/GQDs/GCE, and
BSA/CD44 antibody/GQDs/GCE had been obtained as 110.84. × 102 Ω, 55.32 × 102 Ω,
162.19 × 102 Ω, and 189.61 × 102 Ω, respectively. The low RCT value of GQDs/GCE sug-
gested that it had the highest electroconductivity. The corresponding RCT values of CD44
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antibody/GQDs/GCE and BSA/CD44 antibody/GQDs/GCE indicated an increment in
impedance when compared to GQDs/GCE. The corresponding increment in impedance
was due to the successful immobilization of CD44 antibodies and blocking by BSA on the
electrode surface, respectively. The successful fabrication of the electrochemical biosensor
has been verified through electrochemical techniques.

3.4. Performance of Electrochemical Biosensor

The CD44 antigen was detected by a sensitive analytical technique: differential pulse
voltammetry (DPV), using the BSA/CD44 antibody/GQDs/GCE electrochemical probe.

3.4.1. Detection of CD 44 Antigen in PBS

DPV is an ultrasensitive analytical approach that can measure only faradaic current
with negligible capacitive current, which indicates the improvement of the sensitivity.
The linear proportionality of signal response in a DPV curve with the concentration of
analyte enables direct quantitative detection of target analytes [49]. Here, the sensing of
the CD44 antigen was performed in PBS in a wide dynamic concentration range from
1.0 fg/mL to 1000.0 ng/mL (1.0 fg/mL, 0.01 pg/mL, 0.1 pg/mL, 1.0 pg/mL, 0.01 ng/mL,
0.1 ng/mL, 1.0 ng/mL, 10.0 ng/mL, 100.0 ng/mL, 500.0 ng/mL, and 1000.0 ng/mL).
However, the biosensor performed linearly in the concentration range from 0.1 pg/mL to
100.0 ng/mL (0.1 pg/mL, 1.0 pg/mL, 0.01 ng/mL, 0.1 ng/mL, 1.0 ng/mL, 10.0 ng/mL,
and 100.0 ng/mL). The respective peak currents were taken to analyze the relationship
between the current response and the concentration of the target analyte. Results showed a
gradual decrease in the peak current with the increase in concentrations of CD44 antigen.
The binding of CD44 antigen with CD44 antibody is responsible for restricting the flow of
electrons in the electrolyte, which results in reduced peak current. The limit of detection
(LOD) and limit of quantification (LOQ) of the fabricated electrochemical biosensor were
calculated using the formulae LOD = 3.3σ/S and LOQ = 10σ/S, where σ is the standard
deviation and S is the slope of the calibration graph [47]. The LOD and LOQ in PBS
were calculated to be 2.11 fg/mL and 6.40 fg/mL, respectively, with high sensitivity of
2.12 µA cm−2/(fg/mL). Figure 5a,b displayed a DPV response curve for the detection of
CD44 antigen from 1.0 fg/mL to 1000.0 ng/mL and the corresponding calibration graph,
respectively. The inset of Figure 5b shows the linear regression curve of the biosensor in
PBS used for the calculation of LOD in the linear range from 0.1 pg/mL to 100.0 ng/mL.
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3.4.2. Detection of CD 44 Antigen in Spiked Serum Samples

To validate the performance of the fabricated electrochemical biosensor, the analytical
detection of the CD44 antigen was carried out in spiked serum samples. Similar to the PBS
electrolyte, the serum samples were diluted in a 1:10 ratio, and then various concentra-
tions of CD44 antigen were spiked in the diluted serum samples for quantitative detection
through DPV. As shown in Figure 6a, the increase in the concentration of CD44 antigen
showed a dependent decrease in the current response in the linear range from 1.0 pg/mL to
100.0 ng/mL. The current response was dependent on the concentration of CD44 antigen,
suggesting satisfactory binding of the target analyte onto the surface of the electrochemical
probe. The consistency of results in diluted serum samples similar to that in PBS evidenced
the effective working of the fabricated electrochemical biosensor in real samples as well.
The respective peak current for different concentrations was obtained from the DPV curve
(Figure 6a), and a corresponding calibration curve was plotted for analytical and statis-
tical studies, as shown in Figure 6b. The inset of Figure 6b shows the linear regression
curve of the biosensor in serum used for the calculation of LOD in the linear range from
1.0 pg/mL to 100.0 ng/mL. The LOD and LOQ values of the electrochemical biosensor
for spiked serum samples were 2.71 fg/mL and 8.21 fg/mL, respectively. Moreover, the
sensitivity of the electrochemical biosensor in spiked serum samples was calculated to be
3.52 µA cm−2/(fg/mL).
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3.5. Reproducibility and Selectivity and Studies

The electrochemical stability of the biosensor was evaluated by performing five consec-
utive DPV scans, and its corresponding bar graph is shown in Figure 7a. The signal response
revealed a very low relative standard deviation (RSD = 5.55%) for the Ip of the PBS. The
obtained results are attributed to the high electrochemical stability of fabricated biosensors.
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The selectivity of the fabricated biosensor was examined by investigating different
interfering analytes, including prostate-specific antigen (PSA), CEA, squamous cell carci-
noma (SCC-9) cells, immunoglobulin G (IgG), malondialdehyde (MDA), human embryonic
kidney 293 (HEK-293-T) cells, and dopamine having a concentration of 50.0 pg/mL through
DPV. The corresponding bar diagram is illustrated in Figure 7b. The results showed that no
significant response had been observed for the interfering analyte, while a significant signal
response had been observed for the CD44 (50.0 pg/mL) detection. Hence the biosensor
is highly selective for the detection of CD44. The studies suggest the potential usage of
exfoliated GQDs in next-generation point-of-care diagnostics.

4. Conclusions

To summarize, the GQDs were synthesized through a simple, cost-effective, and
eco-friendly electrochemical exfoliation method. The electrochemically exfoliated GQDs
possessed uniform and small sizes with an average diameter of 4.75 nm, high conductivity,
and several oxygen functionalities. In addition, they exhibit good water dispersibility, pH
stability (pH = 7.4), and excellent biocompatibility with high electrochemical stability. The
synthesized GQDs having peculiar properties support their utilization in the fabrication of
electrochemical biosensing platforms.

Further, the GCE has been modified with synthesized GQDs via physisorption, and
eight consecutive CV scans were performed to evaluate the electrochemical stability. The
results revealed that the GQDs were highly stable, with 90% reproducible response values.
The obtained characterization results of GQDs suggest a stable and electroactive nanomate-
rial exhibiting promising sensing capabilities. Moreover, the high surface concentration
of GQDs provides abundant binding sites for biorecognition elements. The GQDs modi-
fied electrode served as the anti-CD44 immobilization matrix, at which CD44 could bind
effectively and permit the label-free quantification in PBS as well as in diluted human
serum over a broad dynamic range between 1.0 fg/mL to 1000.0 ng/mL. Subsequently, the
GQDs are used for the fabrication of an electrochemical biosensor as the sensing probe for
detecting the CD44 antigen with high sensitivity of 2.12 µA cm−2/(fg/mL). The ultra-low
detection limit of 2.11 fg/mL and linearity of 0.1 pg/mL to 100.0 ng/mL in PBS approve its
applicability in clinical samples.
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In addition, the results obtained in spiked serum samples validate the performance
of the fabricated electrochemical biosensor for sensitive detection of CD44 antigen. The
biosensor could detect CD44 without any significant interference from different interfering
analytes such as PSA, SSC-9, HEK-293-T, IgG, dopamine, and CEA. The results obtained
from the electrochemical studies suggest a successful development of an efficient electro-
chemical biosensor for the selective, sensitive, and rapid detection of CD44 breast cancer
biomarkers. Moreover, the fabricated electrochemical biosensor has the potential to be
translated into point-of-care testing platforms for practical clinical tests.
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