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Abstract: Continuous inspections and observations are required to preserve the safety and condition
of buildings. Although the number of deteriorated buildings has increased over the years, traditional
inspection methods are still used. However, this approach is time-consuming, costly, and carries
the risk of poor inspection owing to the subjective intervention of the inspector. To overcome
these limitations, many recent studies have developed advanced inspection methods by integrating
unmanned aerial vehicles (UAVs) and artificial intelligence (AI) methods during the visual inspection
stage. However, the inspection approach using UAV and AI can vary in operation and data acquisition
methods depending on the building structures. Notably, in the case of residential buildings, it is
necessary to consider how to operate UAVs and how to apply AI due to privacy issues of residents
and various exterior contour shapes. Thus, an empirical case study was adopted in this study to
explore the integration of UAVs and artificial intelligence (AI) technology to inspect the condition
of structures, focusing on residential buildings. As a result, this study proposed the field-adopted
UAV operation method and AI-based defect detection model for adopting the residential buildings.
Moreover, the lessons learned from holistic and descriptive analyses, which include drone application
limitations, points of improvement of data collection, and items to be considered when AI and UAV
based inspection for residential buildings, are summarized in this paper. The discussed problems
and results derived from this study can contribute to future AI- and UAV-based building inspections.

Keywords: empirical case study; residential building; visual inspection; unmanned aerial vehicle;
artificial intelligence

1. Introduction

Over the past few decades, buildings and infrastructure have been deteriorating [1–3].
Concerning the safety requirements of building structures, periodic structural health moni-
toring and increased interest in condition inspection are critical because of the degradation
of serviceability [3,4]. Therefore, the problem of aging structures must be solved through the
early identification of defects with systematic and continuous management to reduce the de-
terioration risk of buildings and extend their serviceability in the building life cycle [1,5,6].
Periodic safety inspections are conducted to ensure sustainable building maintenance.
Traditionally, field inspections, including visual inspection of the surfaces of structures,
are primarily performed by a group of experts. However, recently, owing to a lack of
experts, the manpower-oriented inspection method can result in poor safety inspection and
subjective judgment in most field inspections and is time-consuming and costly owing to
the dramatic aging of facilities.
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To overcome these limitations, many studies have been conducted to reduce inspection
costs and improve the objectivity of safety assessments by developing new approaches
to visual inspection methods [5–8]. Recent studies have adopted both unmanned aerial
vehicles (UAVs) and artificial intelligence (AI) applications in the fields of structural safety
inspection and diagnosis [5]. The use of UAVs to inspect and monitor structures can
enhance the quality and efficiency of traditional visual inspection processes [6–8]. Addition-
ally, the convergence of an AI-based automatic inspection and decision-making support
system can provide an alternative to or can support the existing expert-centered on-site
inspection methods. However, most studies on UAV-based structure condition inspec-
tions focused on bridge structures, and few studies have been conducted on residential
buildings [7,8]. Unlike bridge facilities, in residential facilities, the privacy of residents
should be considered. Thus, specific factors must be considered for drone operations and
data collection. Meanwhile, the defect information, used in previous studies [5–8], consists
of the patch image generated from part of a structure. Moreover, the case studies applying
the developed model to actual fields, such as residential building structures, are rare. Thus,
an uncertainty remains about implementing AI-based building inspection in the real world.
Moreover, it could be various in operation and data acquisition methods depending on the
building structures.

To address this uncertainty about the applicability of the UAV-AI-based inspection
process in residential buildings, this paper introduces how UAVs should be operated, what
data must be collected for building condition assessment and AI analysis, and which data
conditions are required for 3D modeling visualization focusing on the residential building
structure. Specially, the building safety inspection cases performed through UAV-based
inspection are analyzed in detail.

This study is organized as follows. Section 2 describes the literatures review related
to the UAV-AI-based inspection method. In Section 3, the methodology, including a case
study and the UAV-AI building inspection process for residential buildings are described.
A holistic and descriptive analysis was applied to understand the obstacles and challenges
to performing the safety inspection process step-by-step. In Section 4, we explain the
execution method, from site selection to AI-based defect analysis and 3D modeling methods.
Section 5 describes the results of AI-based defect detection and presents a plan for managing
defect information using 3D models and coordinate information. Additionally, notable
considerations for each stage are summarized in Section 6.

2. Literature Reviews

To preserve facilities and maintain their performance, it is important to accurately
assess the condition of buildings [9–12]. Visual inspection is an important task performed
in the building safety inspection stage because the building condition information collected
through visual inspection is used as a basis for evaluating a building’s condition. Never-
theless, frequent cases of building performance degradation and accidents occur owing
to poor safety inspections [10,11]. Such poor inspection can be avoided by collecting and
evaluating accurate information. However, the increasing proportion of aging buildings
and infrastructure makes it difficult to precisely inspect all facilities during the operation
and maintenance phases. Therefore, efficient facility inspection methods are required.

Recently, the number of inspection facilities adopting UAVs and AI has increased [13–19].
For example, Peng [13] and Li et al. [14] proposed a UAV-based machine vision system
for recognizing bridge cracks and quantifying width [13,14]. Li et al. [15] proposed the
Faster-RCNN to improve the efficiency and accuracy of bridge crack detection with UAVs.
However, they only focused on detecting crack damage. Indeed, the defects exposed in
buildings or infrastructures appear in various forms. Thus, some studies have focused on
methods that obtain multi-label defect information using image analysis for the automatic
recognition and evaluation of building defects. For instance, Perry et al. [16] proposed
a streamlined bridge inspection system for detecting and measuring cracks and spalling
defects. Shin et al. [17] proposed an automatic concrete damage recognition model for
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classifying multiple defect classes using a CNN model. Detection models that detect the
type and location of complex damage in an image have been studied [18,19]. Previous
studies [13–19] have shown that UAVs address the constraints of conventional visual
inspection, enabling automatic defect analysis using large amounts of image data with
more accurate and detailed defect assessments.

Nevertheless, some obstacles remain to be overcome in inspecting building exteriors
using UAV and AI technology from the perspective of data collection and defect information
representation for the inspectors [20,21]. Many previous studies [22–24] concentrated defect
detection on local image parts; this partial defect information makes it challenging to
inspect large-scale structures efficiently. The localization of defects in single image data
is obtainable, but it demands huge computing resources and time to identify the local
information of the defect region from the perspective of the whole building structure. To
overcome this limitation, Xu et al. [22] proposed to improve the efficiency of crack detection
based on large-scene images using UAV. The large-scene image is divided into a segmented
grid. Afterward, part of the concrete bridge member is used as a detection model for input
values. It is possible to determine the relative position within a large image. Meanwhile,
Kang [23] proposed the convolution neural network (CNN) algorithm for damage detection
and a geo-tagging method using an ultrasonic beacon system (UBS) for tracking the location
of the UAV. The experiments were implemented in indoor environments and areas where
GPS is denied or unreliable. However, for monitoring the location of the UAV, it is required
to have the UBS, which is limited to operating distance. The location information of UAVs
and defects in UAV-based inspection processes is trackable by flight planning of UAVs.
Li et al. [24] explored the application of an autonomous UAV inspection system for high-
voltage power transmission lines. They proposed the autonomous planning of inspection
paths, adopting high-voltage power transmission lines and detecting obstacles and damage
using deep learning object detection models. However, few cases have been conducted in
which the entire exterior condition of a residential building is inspected considering the
UAV operation plan and data collection for defect information extraction.

Recently, three-dimensional (3D) models reconstructed using textured mesh methods
have been used to visualize the damage state of real structures [25–27]. Three-dimensional
models help record building condition information based on actual buildings. In particular,
some studies were conducted to recognize damage information using AI and 3D mappings
to accurately determine the condition of buildings damaged by earthquakes [25,26]. Es-
pecially, in the studies of Pantoja-Rosero et al. [9,27], they reconstructed a 3D geometrical
model to map the crack damage detected by the deep leaning model. It is an advanced
digital shadowing approach for visualizing building current conditions. However, they
do not detect other damages, such as delamination and leakages by the deep learning
model. For applying the generalized AI model to detect defect information, the pre-trained
multi-label detection model is necessary. Additionally, the UAV operation plan in the
inspection process is very different according to the building design, as it varies in building
scale and exterior contour lines. Therefore, it is required to explore the applicability of
the UAV-AI combined inspection process and 3D reconstruction method in several other
cases. In this regard, this study conducted a case study, selecting deteriorating residential
buildings, which have been used for more than 30 years and are not under systematic
government management, as a testbed.

Consequently, we proposed the field-adopted UAV operation method and AI-based
defect detection model to adopt the residential buildings throughout the holistic and
descriptive case analyses. Moreover, the lessons learned, which include drone application
limitations, points of improvement of data collection, and items to be considered for AI-
and UAV-based inspection for residential buildings, are summarized in this paper.
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3. Methodology
3.1. Case Study Analysis

A case study analysis, as one of the qualitative research methods, aims to understand
specific phenomena, explanations, and interpretations based on previous practical knowl-
edge [28]. Indeed, a case study can be descriptive, explanatory, and exploratory [29]. In this
study, the explanatory case analysis method was adopted to gain a deeper understanding
of the automatic building inspection process using UAV and AI technologies. To begin
with, we focused on explaining how the UAV-AI-based practices are implemented in build-
ing condition inspection in real words. Then, we investigated which data are needed to
generate 3D models for visualizing the inspected buildings along with defect information.
In this regard, the explanatory analysis is appropriate, as it provides a descriptive approach
for applying UAVs and AI in building inspection. Moreover, it also provides insights into
how UAVs can be adopted for inspection and integrated into AI technologies.

3.2. UAV-AI Based Inspection Process for Residential Buildings

This study presented a UAV-AI building inspection process to illustrate how applying
AI and UAV to residential building inspection operates from a practical perspective. To
begin with, Figure 1 shows the UAV-based building inspection process, including four
steps: (1) preliminary, (2) data acquisition, (3) AI-defect detection, and (4) 3D reconstruction
and defect extraction. The following subsection describes how each component is operated
in the process.
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Figure 1. UAV-based inspection process for residential buildings.

3.2.1. Preliminary

For the UAV operation to collect data from the residential building, it is necessary
to check barrier factors that can be problematic during the flight due to various external
environments. First, it is necessary to conduct on-site aviation regulations and preliminary
surveys of the surrounding area. The pre-investigation is for confirming the areas where
national flight is not allowed (state confidential facilities, confidentiality of private com-
panies). The flight availability is different according to the national aviation regulations
of the destination country. Second, after confirming flight availability, documents to be
submitted following each country/local organization’s permit form must be prepared to
request official approval. Once approval is granted, an official document is sent to the
building manager/owner organization to coordinate the date and obtain permission to
photograph. The site investigation is conducted after approval and permission. The flight
maintenance interval is determined according to the shape of the exterior wall and the
scale of the building, and the UAV operation plan is precisely established considering
the natural factors of the environment (wood, electric wires, solar panels, antennas, etc.).
This proactive approach is essential to setting up the UAV operations plan, and a properly
determined plan can avoid potential problems in the data collection stages.
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3.2.2. Data Acquisition

In this study, the UAV flight plan was proposed for a precise UAV-AI-based building
inspection. The comprehensive flight plan is provided as outlined in Figure 2, which
enabled the exterior condition data to be acquired through two distinct approaches. The
automatic flight path-planning method (Figure 2a) is a comprehensive approach to data
acquisition. This flight method, which is only used as a horizontal path plan, can acquire
not only the exterior of the building but also the location and environmental data of the
surroundings. Moreover, the manual flight method (Figure 2b) yields pivotal data for
establishing reference points for the subsequent 3D modeling of the building using manual
methods. Employing manual flights as benchmarks for overlapping and aligning flight
paths based on visual distances ensures a refined and sophisticated data collection process
that encompasses building structural and environmental factors.
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(1) Image Capturing Method for 3D Reconstruction of Inspected Buildings

To capture the external facade of the designated area, we implemented an interval
capturing process involving altitude reduction after transitioning from the highest point
of the building at +20 m to the intended capturing region. The camera’s orientation
ranged from 45◦ to 60◦ during this procedure. Photographs were captured at a tilt angle
of 0◦, effectively representing the front view, which is essential for 3D data collection.
For 3D model filming, a strategy was employed to minimize the distortion caused by
camera curvature. After a region was filmed, subsequent shots were positioned to ensure
an 80% to 90% overlap with the previous area. This strategy contributed to reduced
distortion and enhanced continuity in the captured data. The overlapping approach was
not limited to frontal angles; it extended to oblique angles, enabling the incorporation of
three-dimensional information about the external walls. Figure 3 shows the blind spots
that occurred when capturing the orthophotos. This problem can be solved via flight
operations by adjusting camera angles. This inclusive approach aimed to gather data
regarding architectural features such as eaves, windows, and corner details. The tilt angle
of the camera was adjusted between 45◦ and 60◦ to areas in which matching and clarity
problems could occur.
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Figure 3. Flight operation approach to avoid the blind spot.

Aerial photography was employed at an elevation of +20 m above the tallest point of
the building for data collection suitable in an automatic mapping function, which was run
using context capture software (11.0 Version). This configuration provided 80–90% overlap
coverage over the designated capture area. To configure the automatic flight shooting
method, we captured an initial orthogonal shot by tilting the UAV camera at a 90◦ angle,
creating an encompassing view of the apartment’s overall structure. Subsequently, a second
shot was captured at 70◦ to capture oblique views of the outer walls, enhancing the data
collection process for areas that proved challenging during modeling.

(2) Data Collection Approaches to Extract Defect Positional Information

Figure 4 shows the flight planning and indexing methods for a representative plate-
type structure (Figure 4 top) and tower-type structure (Figure 4 bottom). The capture
procedure planned a flight path along the building outline (Figure 4a) and captured se-
quence and area (Figure 4b) according to the building elevation. Subsequently, an index
was assigned for the objectives to record the location of the defect, which was extracted by
the AI-defect detection method and shooting information, and location information was
provided (Figure 4c). The index functioned as a reference to facilitate precise modeling
based on location data and smooth data collection. Additionally, it served as a marker
for landing times, initial UAV positions during battery replacement, and systematic data
acquisition. The capture sequence of these images closely adhered to a predetermined
parameter set to obtain high-definition data. This adherence ensured a consistent separation
of 5 m while maintaining safety throughout the process. This separation distance served
as a safeguard against collisions with protruding building elements and simultaneously
upheld data quality standards.

3.2.3. Artificial Intelligence for Defect Detection

This stage described the AI engine-based defect detection method. The AI engine
plays a key role in extracting information by automatically analyzing defects to the exterior
of buildings during the safety inspection process [30–32].

(1) Data preparation

The efficient identification of defect types and their precise locations is essential for
successfully implementing AI-based automatic object detection within image data. The
fundamental requirement lies in acquiring suitable data that facilitate the training of
annotated images for deep learning systems. These images encompass vital data on the
defect types and their corresponding spatial coordinates. UAVs were employed to capture
images of deteriorated concrete buildings. Subsequently, from this extensive dataset, images
explicitly revealing instances of defects were systematically selected and meticulously
annotated. The annotation process involved the creation of bounding boxes around the
areas of interest, which effectively delineated the specific regions containing defects.
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This compilation of images and annotations was pivotal in training the AI-based defect
detection model. The data in this study were established in two different datasets; one
(Dataset_P) is for developing a defect detection model. Data_P was collected from several
concrete surface walls in university buildings and annotated with bounding boxes and
three types of defects (i.e., crack, delamination, and leakages. The other one (Dataset_F),
which consists of a dataset collected from five different buildings, is for validating the
application of the pre-trained detection model. A summary of the datasets is presented in
Table 1.

Table 1. Summary of the datasets used in this study.

Dataset
Total Training Validation

Image Annotation Image Annotation Image Annotation

* Dataset_P 219 1803 155 1324 64 479

** Dataset_F 200 2395 150 1807 50 588

Building A 40 498 30 385 10 113
Building B 40 480 30 340 10 140
Building C 40 592 30 471 10 121
Building D 40 493 30 362 10 131
Building E 40 332 30 249 10 83

* Dataset_P: Dataset for pretraining defect detection model. ** Dataset_F: Dataset for fine-tuning defect detec-
tion model.

Thus, two separate datasets were not used interchangeably. Dataset_P was only
used for pretraining the defect detection model. Thus, the model training and validation
were based on 219 images and 1803 annotations (i.e., 155 images and 1324 annotation for
training, 64 images and 479 annotations for validation). An illustrative example of label
creation is presented in Figure 5, which visually encapsulates the practical application of
the methodology. In this study, a bounding box was used to delineate the location of defects
on the exterior of a building for precise identification.
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(2) Development of AI-based defect detection model.

In this study, we adopted the faster region convolutional neural network (Faster-
RCNN) model [33] to detect building surface defects. Faster-RCNN is the convolutional
neural network (CNN)-based defect detection model that discerns both the characteristics
of defects and their precise locations within images. Moreover, CNN-based models for
region classification have shown remarkable efficacy in the domain of object detection. The
faster RCNN model has distinct advantages, notably offering heightened sensitivity in
defect detection while concurrently alleviating the computational strain associated with
the region proposal stages. Region proposal is for extracting the process of potential defect
regions on the image using a region proposal network (RPN). RPNs facilitate seamless
end-to-end fine-tuning of a pretrained model. Indeed, the core role of an RPN is dedi-
cated to producing object proposals that include localization information [34]. The images
extracted through the region proposal process were adjusted to a fixed size, which is a
prerequisite for integration as input values within a convolution-based network. Addi-
tionally, a classification mechanism was established by routing each region using a CNN
algorithm. The sliding window method was employed to delineate the regions of interest
(RoIs). This technique calculated the potential existence probabilities of defects by utilizing
region boundary box coordinates facilitated by spatial window filters and anchor boxes,
defined as parameters [33]. The subsequent step involved the application of regional
proposals to the RoI pooling. These pooled proposals were then directed to the second
module, that is, the detection network. Here, the primary focus was on refining the object
localization proposals, enhancing the precision of defect detection, and achieving precise
spatial localization.

3.2.4. 3D Reconstruction and Defect Extraction

In this case study, the images collected according to the flight plan, which is an
automatic and manual flight path plan, were used for reconstructing 3D modeling of
the residential buildings. For efficient image mapping, unnecessary elements for the 3D
reconstruction were removed. This is effective work to prevent a lengthy model synthesis
time in the excessive data processing process of the surrounding environment, which
was not the target of the building of automatic mapping. Then, a three-dimensional
configuration was performed, generating the basic shape of the 3D model using a vector
that specifies an arbitrary position and scale in the initial stage of the GPS satellite signal-
based image. When constructing the shape of the exterior image of the building, the process
of manually positioning detailed images with unstable GPS signals can help improve the
quality of the model. From the 3D model that completed the matching process, the defects,
extracted by the AI model, are presented on the elevation map for each building.



Buildings 2023, 13, 2754 9 of 16

4. Case Analysis of AI-UAV-Based Building Inspection
4.1. Case Study Selection

This study analyzed five cases that were selected through pre-investigation. These
buildings have been deteriorating residential buildings in use for over 30 years and not
under systematic government maintenance and management. The AI-adopted UAV in-
spection method was conducted using field tests to verify the efficiency of the proposed
approach in various building conditions, such as ashlar lines, heights, and period of use,
as shown in Table 2. In this study, five cases were selected, and buildings with diverse
numbers of floors, ranging from five to fifteen floors, were considered. Buildings that have
been in use for more than 30 years were investigated.

Table 2. Overview of deteriorated residential buildings for the case studies.

Building Name Eunma Apartment
(Building A)

Seogwang Mansion
(Building B)

Tower Mansion
(Building C)

Daehan Mansion
(Building D)

Ilwoo Apartment
(Building E)

CCD * Apr. 1979 Jan. 1991 Aug. 1979 Jun. 1985 Sep. 1991

Year of use 44 32 44 38 32

Household 36 136 199 100 105

Floors 5 14 15 13 5

Structure RC RC RC RC RC

Floor shape Tower type Tower type Tower type Flat type Flat type

Modeling
image
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In these case studies, the Phantom 4 RTK aircraft was used, considering the character-
istics of the inspection site environment and the collected data. For residential building
inspections, a low-noise aircraft is required in consideration of residents’ complaints. Small
drones can easily reduce the noise for residents and the discomfort associated with drone
operations. Additionally, the image resolution was considered in collecting image data
on the outer wall because the drone was small and was required to maintain a distance
from the building exterior of more than 5 m. Because the flight time required for the
inspection plan and path was more than 20 min, battery capacity was considered when
selecting UAVs.

4.2. Performance of the Automatic Defect Detection Method

Figure 6 shows the results of automatic defect detection from the surface images of
building structures. The bounding box on images was extracted based on intersection over
union (IoU). The IoU is the ratio of the union and intersection between the true region and
the predicted region of the bounding box. In this study, the bounding boxes were displayed
as positive values when the IoU value was greater than 50%. The metric is as follows:

IoU =
Area of Overlap
Area of Union

(1)
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Figure 6. Ground truth defect annotations and predicted defects using the automatic defect detec-
tion model.

The precision-recall curve (PRC) was used to examine the detection performance, and
the mean average precision (mAP) was calculated [35]. Generally, the PRC is used as a
metric of AI model performance, presenting the relationship between precision and recall.
Precision asks how many real true values are in all true values predicted by the model,
whereas recall presents the ratio of the true values predicted by the model in all the true
values. Each metric is shown as follows:

Precision =
True Positive

True Positive + False Positive
(2)

Recall =
True Positive

True Posiive + False Negative
(3)

Here, true positive, false positive, and false negative are variables that can be change-
able depending on the threshold; thus, the precision and recall values can vary depending
on the threshold value. In other words, the PRC curve graphically represents the correlation
between precision and recall that varies depending on the change in threshold value. The
AP summarizes the shape of the PRC, which is defined as the mean precision of a set of
recall levels as follows in Equation (4). Meanwhile, mAP is a metric used in a classifier to
predict multi-class and represents the average value of each class’s average precision (AP),
as shown in Equation (5).

AP =
1
n∑k=n−1

k=0 [Recalls(k)− Recalls(k + 1)] ∗ Precisions(k), n = number of thresholds (4)

mAP =
1
n∑k=n

k=1 APk, APk = the AP o f clas k, n = the number of classes (5)

This experimental contribution demonstrated that the application of the proposed
model is feasible for the visual inspection of concrete defects in practical environments with
an mAP of 42.93. Figure 7 shows the performance of the automatic defect detection results
according to defect types, such as cracks, delamination, and leakages, of the application
using the Faster RCNN model. For crack defects, the accuracy indicated a 40.5% average
precision (AP), and the delamination and leakage types of defects presented results of
49.77% and 38.53%, respectively.
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4.3. Application of AI-Based Building Surface Defect Inspection

In this study, the applicability of a pretrained automatic defect detection model was
confirmed by applying the model to inspected buildings. This model was adopted for five
cases. In each case, the model was tested by annotating approximately 40 images. However,
according to the experimental results, the pretrained model exhibited low performance
because it could not sufficiently train the data collected from the cases. Therefore, in this
study, some images collected in each case were fine-tuned and reapplied to the pretrained
model. Every 40 images in case buildings included in Dataset_F were divided into training
data (30 images) and test data (10 images) for the fine-tuned pretrained model, which was
trained by Dataset_P. Figure 8 shows the results before and after fine-tuning the automatic
defect detection model. We identified that the detecting objects using a pretrained model
can detect defects even with no fine-tuning, but the performance of the result is very low.
In contrast, with a fine-tuning model with very minimal data that do not overlap with test
data, a higher defect detection rate could be achieved.

4.4. 3D Model-Based Defect-Location Extraction

The state of a building can be visually expressed through the 3D modeling of image
information. In this study, context capture software was used to generate 3D information.
To provide practical information on the defects on the surfaces of the building structures,
we used the regional local defect information based on whole building images. The defect
information could be extracted in two steps; the first step was to detect localization and
type of defect from the AI networks. Then, the indexing method, which was established in
the flight path plan, was used for tracking the image position containing defect information
on the building exteriors. The predefined index method enables the determination of the
entire defect location and tracking of the location information of the defects. Inspectors can
use this information to observe the location and shape of a defect and intuitively deliver
information on the exterior conditions of a building. The location information of the image
can be used to determine the location of the defect by matching it to the index masked in
the 3D model. Figure 9 shows the defect information through 3D modeling and the index
method. The types of defects and localization were extracted from the AI-based defect
detection model.
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5. Lesson Learned and Limitations

From the case analysis, several factors were identified for the successful application
of UAVs and AI technologies in building inspection planning and monitoring processes.
Based on a holistic and descriptive analysis, we summarize the findings and problems.
First, site investigations must be conducted to plan a proper flight path. Additionally, any
flying altitude restrictions in the region and whether obstacles exist near the inspected
buildings must be determined in advance. Flight planning, including flight path, must
consider the building shape to collect defects within the timeframe of a UAV’s battery life.
As the UAV’s battery could be restricted from collecting all the information of the building
structure because of the building scale, the battery supply plan, such as battery charging
plan or spare batteries, also should be considered. In this regard, inspection zoning must be
set according to the target part and position, and the inspection order can be determined.

In the UAV operation and data collection phase, owing to residents’ privacy and
UAV collision risk with the building, flight close to the building surface was restricted;
thus, the UAV flight was operated at least 5 m from the exterior of the building. However,
the image collection from such a long distance caused a loss of information (resolution
reduction of collected images) of the defects on the exterior walls of the building and
eventually caused a problem in that the precision of the quantitative measurement is lower.
Therefore, the collected data were required to be processed at a high resolution. In this case
study, Phantom 4 RTK was used with a 20-megapixel high-resolution camera to identify
and analyze small and large defect-related features in the collected data. This equipment
facilitated proper flying near the building, which means low noise and high-quality image
data collection. Through the case analysis, we identified several constraints, such as denied
flight areas, flight interruption due to resident complaints, privacy issues, distance from
adjacent buildings, and battery life issues, primarily occurring in residential buildings.
Therefore, the restrictions on drone operations must be removed by obtaining sufficient
consultation and consent before the implementation of inspections.

From a 3D modeling perspective, the quality of the data collected in the UAV signifi-
cantly affects the generation of the 3D reconstruction model. The building shapes of the
case analyzed in this study can be broadly divided into two types: flat and tower. How-
ever, for the tower type, blind spots occurred during the collection of image data, which
limited the ability to collect high-quality images. Consequently, it affected the quality of
the 3D modeling shape. This implies that when photographing buildings, the photography
method must be reviewed to achieve not only the objective of acquiring defect information
but also appropriately conveying visual information about the building’s shape. Thus,
for appropriate 3D modeling, we propose a field-adaptive model-capturing method that
removes blind spots by automatically shooting above the building and adjusting the tilt
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angle. Consequently, a photography method manual should be established according to
the shape of the building to prepare a photography method suitable for its characteristics.

For detecting AI-based defects, an object detection model capable of multiclass classifi-
cation is required. Therefore, in this study, a defect-recognition model was utilized to detect
cracks, delamination, and leakages. However, we confirmed that the performance of the
pretrained model must be improved to collect sufficient building defect information. The
existing model was trained using 1300 annotations, but we observed that the performance
of data collected in a new environment was slightly reduced given that it did not train
sufficiently diverse patterns. Thus, in this study, we fine-tuned the existing model by
training it with some of the data collected for each case. For fine-tuning the model, we
used the untaught data for each case. Hence, the performance improved when compared
to the non-fine-tuned model. Owing to the characteristics of the deep learning method,
training data from big data and data collected in various environments must be utilized
to automatically detect defects on the exterior of buildings. However, limitations are still
present in securing a dataset with annotations when defects on the exteriors of buildings
still exist. Based on this case study, we suggest that a recurring fine-tuning learning method
is required to adopt a deep-learning-based inspection approach. The recurring fine-tuning
method involves applying a non-fine-tuned model to the building being inspected and us-
ing the recognized defect information as fine-tuning learning data. This has the advantage
of reducing the effort required for initial data processing to apply AI models and ensure
sustainability in AI utilization.

6. Conclusions

This study discussed the application of UAVs to inspect and monitor defects in res-
idential buildings and structures. The case study methods demonstrated an effective
UAV-based visual inspection process integrated with AI technologies. UAVs serve as
excellent aids in safety checks, offering safety managers an additional perspective on onsite
inspections to streamline monitoring processes. Particularly in high-rise buildings and
large infrastructures, where safety managers are limited, UAVs can play a crucial role in
regularly inspecting inaccessible, difficult-to-reach, or hazardous areas, thereby improving
the overall safety awareness of structural conditions.

Hence, a UAV- and AI-integrated building inspection process is proposed in this study.
Subsequently, a case study was conducted using a holistic and descriptive case analysis
method, in which five cases were selected for an in-depth understanding of the adoption
of the UAV and AI integration process for safety inspection. Furthermore, insights were
derived from a comprehensive case study analysis. The limitations of the current inspection
and monitoring processes in residential buildings were identified. In this regard, some
important factors (e.g., UAV operation plan, data collection method, and AI application)
were extracted to determine how this AI-integrated UAV inspection method can be ef-
fectively applied to field inspection tasks. Additionally, the defect detection model was
also assessed to better understand the usefulness of AI technology in recognizing each
defect type from visual data collected by the UAV during the inspection process. This case
study provided detailed considerations of the application of UAVs and AI in each phase of
building inspection. Future work will include enhancing the performance of an AI-based
multi-defect detection model using the state-of-the-art network for general applications of
autonomous inspection models and the AI-based building condition assessment framework
with accurate quantity measurement and approaches. Moreover, the automatic digital
shadowing method of the digital twin model will be addressed for the digital transforma-
tion of building information. The problems discussed and results derived from this study
can contribute to future AI-UAV-based building inspections and future works.
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