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Abstract: In modern trends, wireless sensor networks (WSNs) are interesting, and distributed in the
environment to evaluate received data. The sensor nodes have a higher capacity to sense and transmit
the information. A WSN contains low-cost, low-power, multi-function sensor nodes, with limited
computational capabilities, used for observing environmental constraints. In previous research, many
energy-efficient routing methods were suggested to improve the time of the network by minimizing
energy consumption; sometimes, the sensor nodes run out of power quickly. The majority of recent
articles present various methods aimed at reducing energy usage in sensor networks. In this paper, an
energy-efficient clustering/routing technique, called the energy and distance based multi-objective
red fox optimization algorithm (ED-MORFO), was proposed to reduce energy consumption. In each
communication round of transmission, this technique selects the cluster head (CH) with the most
residual energy, and finds the optimal routing to the base station. The simulation clearly shows
that the proposed ED-MORFO achieves better performance in terms of energy consumption (0.46 J),
packet delivery ratio (99.4%), packet loss rate (0.6%), end-to-end delay (11 s), routing overhead (0.11),
throughput (0.99 Mbps), and network lifetime (3719 s), when compared with existing MCH-EOR and
RDSAOA-EECP methods.

Keywords: cluster head; wireless sensor networks; multi-objective red fox optimization; energy
consumption; network lifetime

1. Introduction

Generally, a WSN is made with a massive amount of sensor nodes that are randomly
placed in a coverage region [1]. These nodes take local physical data, process them, and
transfer them to a sink or base station (BS) [2]. The BS is connected to the internet in order
to raise public awareness of the phenomena. Another key feature of a WSN is the capacity
of the nodes to collaborate [3]. Instead of sending raw data to the data fusion node, sensor
nodes use their processing capabilities to perform computations and fusion operations
locally, transmitting just the data that are needed [4,5]. Wireless sensors with these features
are employed in a variety of applications, including surveillance and monitoring [6]. WSNs
are used in several applications such as weather forecasting, the defense domain, and
various commercial and industrial applications. WSN technology, when compared to
existing environmental monitoring techniques, is a green energy-based technology that is
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more favorable for future applications in effectively detecting environmental fluctuation [7].
WSNs used for environmental monitoring are made up of excess battery-operated nodes
that are closely distributed in inaccessible or remote locations [8]. The fundamental problem
in WSNs, however, is the sensor nodes’ limited power resources. As, in many cases, the
nodes are deployed in hostile environments, it is not possible to recharge or replace their
batteries after they have completely depleted their energy [9,10].

As a result, while traditional networks strive for excellent quality of service (QoS),
sensor network protocols must prioritize energy conservation, in order to extend the
network’s lifetime [11,12]. This topic developed a number of research concerns. The most
promising challenge among them is the development of energy-efficient clustering and
routing algorithms [13]. Clustering in WSNs entails efficiently grouping sensor nodes into
different clusters, with each cluster commanded by a cluster head (CH) [14]. The CHs gather
data from all of their corresponding members, combine them, and send them to the BS. Each
sensor node belongs to a single cluster and only connects with that cluster’s CH [15]. As a
result, effective CH selection is required to balance the CHs’ energy consumption; otherwise,
they expire quickly, because of supplementary data aggregation and transmission [16].
Most cluster-based routing algorithms choose CHs at random, or based on prospects,
before forming clusters [17]. However, in such instances, all CHs may be concentrated in
a small area, a fact that leads to the isolation of certain conventional nodes, potentially
causing network failure [18,19]. Moreover, the energy efficiency and quality of service
are deliberated as a multi-objective optimization issue, in order to maintain the tradeoffs
between network coverage, energy efficiency, and network lifetime; these are analyzed
in previous research works. This research work proposes an energy and distance based
multi-objective red fox optimization algorithm (ED-MORFO) for overcoming the problems
caused by network failure. The research modeled a global search by simulating a red
fox searching for prey over land. The local search simulates disguising the prey when
hunting for the maxima or minima test functions, which is efficient for overcoming the
optimization problems. The algorithm locates the individuals in the direct surroundings of
the optimum after a short interval of time, and provides a good advantage for improving
the final precision results. The fitness values, such as residual energy, network coverage,
distance, and degree of nodes, are considered as the fitness functions for finding the optimal
solutions for the selection of nodes. The study’s major contributions are as follows:

• The ED-MORFO-based clustering & routing process was exploited to achieve an
energy-efficient procedure, with a variety of node counts for improving the lifetime of
the network by minimizing the energy consumption.

• To improve the data transfer dependability, ED-MORFO was employed to reduce
energy consumption and improve link superiority across the various sensor nodes.

The structure of this research paper is as follows: Section 2 offers a survey of contem-
porary strategies in WSN clustering and routing that are energy efficient. Section 3 contains
the research’s problem statement. Section 4 explains the preliminaries and the system
model. Section 5 contains a block diagram and a description of the suggested approach.
Section 6 declares the simulation findings, as well as a comparative study of the proposed
method. Finally, in Section 7, the conclusion is expressed.

2. Related Work

There are many existing techniques connected to energy-efficient clustering and rout-
ing in WSNs that were developed for various applications. A brief evaluation of some
contributions to the existing literatures is given as follows:

Seedha Devi et al. [20] propose a cluster-based data aggregation scheme (CDAS) for
packet loss and latency reduction in a WSN. The proposed structure has two stages: the
aggregation tree structure and the slot planning procedure. In the first step, each CH uses
compressive accumulation to collect data from the participants. Previously, the spanning
tree process was used to generate the accumulating tree through the sink. In the second
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stage, latency and packet loss are reserved for analysis, while the acquired data are used to
highlight and assign intervals to nodes.

Pattnaik and Sahu [21] present a fuzzy-based clustering approach, as well as an
elephant herding optimization (EHO)-greedy method for routing. To save energy, EHO-
greedy considers both the permanent and portable sinks. A stable node is randomly
positioned diagonally throughout the arrangement, while a portable node shifts into
various spots for data collection. A good group of CHs drastically reduce energy use, while
also extending lifespan. On the other hand, in some other applications, the addition of
more energy-efficient techniques leads to larger WSN zones.

Mahdi et al. [22] demonstrate a packet computation that uses the gray wolf optimizer
to select CHs (GWO). The configurations are evaluated based on the expected energy
use and the current lingering energy of each hub when choosing CHs. The suggested
methodology employs similar clustering in different sequential rounds to improve energy
efficiency. In cases where the present cluster process is appropriate, the set-up procedure
anticipates loss due to excessive execution of the cluster organization step. The set-up
protocol does not take into account the QoS metric when it is separated from the lifetime.
There is a variation in an internal component in some of the applications, which causes
routing protocol issues.

Zhang and Yan [23] propose the centralized energy-efficient clustering routing protocol
for versatile hubs protocol (CEECR), which is designed to reduce energy consumption. It is
also used to create optimal clusters by combining node portability and energy efficiency.
The CEECR protocol employs a focal control calculation, which is used to create a superior
cluster heads (CHs) arrangement with more energy, rather than portability. Furthermore,
the best CH for a withdrawn hub is decided based on the aggregated loads. As a result,
the CEECR is more energy efficient than its competitors. Higher detached nodes (DNs)
emerge as a result of the increased number of mobile nodes (MNs), which results in more
data packet loss, and high energy consumption.. Deepak Mehta and Sharad Saxena [24]
demonstrate multi-objective, CH-based, energy-aware optimized routing (MCH-EOR) in
a WSN, in order to extend its lifetime. The cluster head is chosen based on a variety of
criteria, with the primary goal of reducing the number of dead sensor nodes, while lowering
energy usage. Following the selection of cluster heads, the sailfish optimizer algorithm is
used to choose the best path for transmitting data to BS, increasing the energy efficiency
of wireless sensor networks. However, data loss is high and transmission coverage and
connectivity factors are not taken into account. G. Rajeswarappa and S. Vasundra [25]
developed the red deer and simulation annealing optimization algorithm-based energy-
efficient clustering protocol (RDSAOA-EECP) for enhancing the network’s stability and
lifetime. This methodology is designed utilizing SA to avoid the battling and roaring stages
of RD throughout the escalation development. Furthermore, this integrated optimization
receives the possibilities of the suggested features to produce the ideal CH, as well as the
ideal BS position, in order to improve energy efficiency. However, there is still opportunity
for advancement in terms of exploratory and exploitative skills to extend the lifetime of
a network.

3. Problem Statement

• In energy-efficient routing, the key problem is losing connectivity during data trans-
mission while utilizing energy control mechanisms [21].

• Data loss occurs as a result of a defective network. As a result, conflicts arise in
effective data transmission from the clustering nodes [24].

• Due to insufficient power being given to the nodes, the advancing of numerous
subjects and node energy consumption are important concerns in WSNs, as they show
higher redundancy and energy consumption [23].
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Solution

A metaheuristic or classical technique is extremely desirable for obtaining a more effi-
cient solution to the clustering and routing problem with the above-mentioned difficulties.
As a result, this research develops ED-MORFO-based clustering and routing algorithms for
WSNs that reduces the sensor nodes’ energy consumption, in order to extend the network’s
life time.

4. Preliminaries

The existing methods stated in the related works are not capable of offering an im-
proved solution because of the deficiency in the consideration of essential parameters
during fitness function derivation. The proposed ED-MORFO employed suitable consid-
eration of crucial constraints such as residual energy, distance, network coverage, node
degree, queue length, and link quality. Due to the various fitness function parameters,
the energy-efficient results are accomplished in proposed ED-MORFO when compared to
existing methods. The major goal of this study was to develop an energy-efficient routing
system for sending the data packets. This section explains the network model, energy
model, and an overview of RFO used in this cluster-based routing.

4.1. Network Model

The cluster-based WSN [26] was organized, as shown in Figure 1. The following
assumptions were utilized to develop the network model:

• In terms of processing time and energy, WSN sensors are identical to one another;
• The Euclidean distance principle is deliberated to calculate the distance between

the sensors;
• Once the distance is calculated, the sensors are located in the network region;
• BS assumed the residual energy and distance of the nodes to pick the CHs, using

an appropriate CH selection technique. Furthermore, a routing procedure is used to
determine the communication route from the CH to the BS.
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For the WSN setup, all of the above qualities and constraints were taken into account.
By comparing the received signal strength, the distance between the BS and other nodes
was calculated. As a result, with location services such as GPS, no additional system was
required. Similarly, a node joined the cluster whose CH it was closest to.



Sensors 2022, 22, 3761 5 of 19

4.2. Energy Model

The energy consumption of the transmitter and receiver node were measured based
on the first order radio model. Equations (1) and (2) are used for measuring the energy
required for transmitting and receiving of l bits packet at the distance of d.

ETX(l, d) =
{

l × Eelec + l × ε f s × d2 i f d ≤ d0
l × Eelec + l × εmp × d4 i f d > d0

(1)

ERX(l, d) = l × Eelec (2)

where Eelec specifies the energy utilized for transmission/reception, and d0 specifies the
threshold distance, which is expressed by Equation (3).

d0 =

√
ε f s

εmp
(3)

where the εmp and ε f s are the amplification energy for multipath model and free space,
respectively. The model of transmitter amplifier defines ε f s and εmp.

4.3. Overview of Red Fox Optimization (RFO)

The red fox is an effective hunter of small creatures, including both wild and domestic
animals. There are two types of red foxes: those who leave well-defined territories and
those who live nomadic lives. Each herd shears a specific territory under the alpha couple’s
system. If the chances of acquiring control of another territory are favorable when the
young reach adulthood, they may elect to leave the herd and start their own herd. They
stay in the family, or else ultimately receive their blood relation fox hunting land [27,28].

4.3.1. Fundamental Principle

Each population is characterized by an n-coordinate point x = (x0, x1 . . . . . . xn−1).

In the symbolization
(

xi
j

)t
, i is fox count in the population and j is the coordinate

to identify each fox xi in iteration t. Let f ∈ Rn be the standard character; (x)(i) =[
(x0)

(i), (x1)
(i), . . . (xn−1)

(i)
]

denotes the solution space dimensions. Each space is stated

as (a, b)n, a, b ∈ R. If the value of function f(
(

x)(i)
)

is a global value on (x)(i), this is the
ideal solution (a, b).

4.3.2. Global Exploration Stage

In a herd, each fox has a vital role to perform in the survival of the entire family. Mem-
bers of the herd move to remote locations when there is no food in the local environment,
or to explore new areas. As a result, the population is sorted first by fitness condition, and

then the square of the Euclidean distance to each person in the population as
(

xbest
)t

is
calculated using Equation (4).

dis
((

xi
)t

,
(

xbest
)t
)
=

√(
xi
)t
−
(

xbest
)t

(4)

The transfer of individuals of the population in the optimal direction is represented as
Equation (5). (

xi
)t

=
(

xi
)t

+ αsign
((

xbest
)t
−
(

xi
)t
)

(5)

For all individuals in the population, α ∈ dis
((

xi
)t

,
(

xbest
)t
)

is a indiscriminately

designated, ascending hyper-parameter, which is set after the iterative count.
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4.3.3. Traversing through the Local Habitat–Local Search Phase

The arbitrary value µ ∈ (0, 1) was formerly set to mimic the chance of a fox being
observed while moving closer to the prey, which defines the fox’s action as Equation (6){

Move closer if µ > 0.75
Stay and disguise if µ ≤ 0.75

(6)

While utilizing an improved Cochleoid equation to depict the individual effort, µ
displays constraint in transferring the population in this iteration [29]. For this drive,
a ∈ (0, 0.2) signifies the scaling constraint chosen in repetition for all members of a
population to arbitrarily represent varying locations, from the target through to fox arrival,
and ϕ0 ∈ (0, 2π) is chosen for all animals at the start of the method to simulate the fox
viewing angle. It helps determine the foraging fox’s eyesight radius, which is expressed as
Equation (7).

R =

(
a sin ϕ0

ϕ0
i f ϕ0 6= 0

θ i f ϕ0 6= 0

)
(7)

where θ is a random value between 0 and 1. Exemplary activities of the system spatial
coordinates are mentioned in Equation (8):

xnew
0 = ar· cos(ϕ1) + xactual

0
xnew

1 = ar· sin(ϕ1) + ar· cos(ϕ2) + xactual
1

xnew
2 = ar· sin(ϕ1) + ar· sin(ϕ2) + ar· cos(ϕ3) + xactual

2
. . . . . .

xnew
n−2 = ar·

n−2
∑

k=1
sin(ϕk) + ar· cos(ϕn−1) + xactual

n−2

xnew
n−1 = ar· sin(ϕ1) + ar· sin(ϕ2) + . . . + ar· sin(ϕn−1) + xactual

n−1

(8)

Every angular assessment is randomized, conferring to ϕ1, ϕ1, . . . .ϕn−1 ∈ (0, 2π).

4.3.4. Reproduction Stage

In order to keep the population size constant, the two strongest characters
(

x(1)
)t

and(
x(2)

)t
are chosen, to signify the alpha link, Equation (9) calculates the habitat center:

habitat(center)t
=

(
x(1)

)t
+
(

x(2)
)t

2
(9)

The square habitat of the distance amongst the defined parameters is expressed as
Equation (10):

habitat(diameter)t
=

√∥∥∥∥(x(1)
)t
−
(

x(2)
)t
∥∥∥∥ (10)

Equation (10), shown above, shows the distances between the defined parameters.
All classifications of points are reverted through the optimization process, and limited by
random values, which is the optimal solution in a specified iteration. In every iteration,
function is expressed in the sense of distance among the alpha function. For every iterative
count, a random constraint is considered as k ∈ (0, 1), which expresses substitutions with
respect to Equation (11):{

New nomadic individual if k ≥ 0.45
Reproductiom of the alpha couple if < 0.45

(11)
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If reproducing an optimal solution for two individuals,
(

x(1)
)t

and
(

x(2)
)t

join in a

fresh individual
(

xreproduced
)t

, as shown in Equation (12):

(
xreproduced

)t
= k

(
x(1)

)t
+
(

x(2)
)t

2
(12)

The time complexity of RFO is analyzed here. The population size is n, problem di-
mension is D, and the number of iterations is T. In every iteration, all entities are organized,
and produce an O (n× D)2 function. The time complexity of RFO is minimized through a
quick sorting process, particularly for high dimensional tasks. Neglecting the terms that
exist in low-order, the computational time is demarcated as O

(
3× T × n2 × D2) functions.

5. Proposed Method

ED-MORFO was used to establish clustering and routing in this study. The algorithm’s
searching capabilities were combined with the fitness function values. Four different
fitness function parameters (residual energy, distance, network coverage, and the degree
of nodes) were taken into account throughout the clustering process [30]. By considering
two alternative distance functions, the network’s energy usage was considerably reduced.
Furthermore, node failure was avoided in the transmission path, by taking into account
the nodes’ remaining energy. By preventing node failure, packet loss when data are
transmitted was minimized. The major goal of this study was to reduce energy depletion,
in order to extend the network’s lifespan. Figure 2 depicts a general flowchart of clustering
and routing.

The steps for the flowchart are as follows:

• A clustering technique is designed to distribute the system into groups;
• The nodes are arbitrarily placed in the concerned zone at first, then mobile nodes are

indicated as a dynamic that is entirely reliant on the position of the node. ED-MORFO
is used to cluster networks in this case. At that moment, the CH is determined, based
on the distance between neighbors, residual energy, and the distance to the base station
location, among other factors;

• Routing methods generated using the suggested ED-MORFO are used to create the
ideal path between the CH and BS;

• Starting with the routing process, an ideal node is identified to provide the definite
route from the CH to BS;

• Once the path from the source to the destination is established, the source node
sends the data in the destination route. This ED-MORFO calculates the best route by
taking into account numerous objective functions such as residual energy, the distance
between the CH and BS, and hop count;

• BS is frequently used to observe the residual energy of nodes. To avoid network packet
loss, re-clustering/rerouting is performed frequently.

5.1. ED-MORFO-Based CH Selection

In this research, an efficient technique called ED-MORFO was developed, for the
clustering and routing process. In the cluster and routing procedure, non-CH nodes join a
CH, using fitness function parameters. In a conventional process, non-CH nodes simply
attach to the CH by deliberating distance factor, which could produce an imbalanced load
of the CHs, and lead to higher energy consumption of the network. Here, the proposed
ED-MORFO is employed for the clustering and routing process with various fitness func-
tion parameters to produce a lower computational complexity, high stability, speed of
optimization, and low time complexity.

The fundamental purpose of an ED-MORFO-based clustering procedure is to select
the best number of nodes in the neighborhood, such as CHs. The goal is to achieve proper
fitness by calculating residual energy, distance, network coverage, and node degree.
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Fitness Function Derivation

a. Residual energy (RE)

RE [31] is characterized in Equation (13):

RE =
m

∑
i=1

1
ECHi

(13)

b. Inter and intra cluster distance (D)

This section explains the distance between each CH and BS. As previously stated,
while considering energy usage, the sensor node is fully controlled by the transmission
distance. When the base station is further away from the mobile node, it requires more
energy to complete the procedure [31]. As a result, in the network, the cluster head with
the shortest Euclidean distance starting from the BS is most favored. So, the inter cluster
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and intra cluster objectives are mentioned as D1 and D2, which can be minimized and
expressed in Equations (14) and (15).

D1 =
m

∑
i=1

(
dis1

(
CHj, BS

))
(14)

D2 =
q

∑
j=1

(cmj

∑
i=1

dis2
(
si, CHj

)
/cmj

)
(15)

where the cmj represents the amount of nodes present in the cluster and dis2
(
si, CHj

)
represents the distance between the sensor i and jth CH.

a. Network coverage

The network coverage [31] is defined by this Equation (16):

Ncov = r(Ni) (16)

where r(Ni) represents the radius covered by node. The objective is represented as

Ncov =
1

NT

N

∑
i=1

Ncov(Ni)

b. Degree of nodes

It is demarcated as the amount of non-CH applicants [31] who go to the specific
portable node. DN is expressed in Equation (17).

DN =
m

∑
i=1

Ii (17)

Accordingly, the normalization process (F(x)) is exploited to every objective α1, α2,α3,
α4, α5, which is shown in Equation (18).

F(x) =
fi − fmin

fmax − fmin
(18)

where function value is signified as fi, and fi and fmax are specified as the minimum and
maximum fitness values, respectively. Fitness function is established in a way that means
a trade-off is maintained inside the specified objectives. Finally, the distinct objectives
are converted as a single objective function through the addition of multiplied values. A
multi-objective fitness function is now established by means of ED-MORFO, which is given
in Equations (19) and (20).

f itness = α1RE + α2D1 + α3D2 + α4Ncov + α5DN (19)

where
5

∑
i=1

αi = 1; and αi ∈ (0, 1) (20)

αi is stated as weighted parameter, and each dimension of a weighted parameter is
initialized through a random number amongst 0 and 1, which is assigned to each fitness
function [31] as (α1 = 0.4, α2 = 0.3, α3 = 0.2, α4 = 0.05, α5 = 0.05). The transmission
distance across the WSN is minimized by taking into account both the distance and the
residual energy when choosing the node with the highest remaining energy. As a result,
these fitness functions are used to determine the best data transmission route. After
selecting the CH, the clusters form according to distance and energy. While in the process
of routing, existing routing algorithms have fitness functions and minimization processes
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based on the distances to the CH only. However, in this proposed ED-MORFO, along with
the distances, additional fitness function parameters such as queue length and link quality
are included, to minimize the energy consumption and extend the network lifetime. When
the routing is recognized by means of ED-MORFO, the transmission of the data packet is
more efficient. To generate/transmit data over the network, the queue length utilized in
routing is employed. The link quality is then utilized to determine the route’s value, based
on the transmitted and received packets.

5.2. Routing Using ED-MORFO

The primary goal of this study was to find a neighboring optimum path from each
cluster head to the appropriate BS. Source CH collects the message from the nearby nodes
once the routing path is created. The data transmission is initiated through the network
after the routing path is generated. The fitness function procedures are described in detail.

5.2.1. Initialization

Each ED-MORFO in routing represents the data sending route between every CH and
BS. The proposed transmission path between the source and BS modifies every time in the
routing process. The quantity of CHs in the associated transmission route is equal to the
measurement of each fox.

5.2.2. Fitness Function

The parameters used in the routing optimization are mentioned as follows:

a. Queue length

It deliberates the congestion limit of every node present in WSN. The QL indicated in
Equation (21) is regarded as a primary fitness value during routing. This QL is utilized to
increase data delivery performance, because the created ED-MORFO requires sending alert
messages over the WSN.

QL =
RPk

Total bu f f er
(21)

where the received packets at k-th node is represented as RPk.

b. Link quality

Link quality is exploited to determine effective data transmission among the nodes l
and k. The Equation (22) is utilized to determine link quality.

Link quality =
1

f × r
(22)

where f and r define the forward and reverse data transmission among the nodes, respectively.
The details about the distance (D1 and D2) and residual energy (RE) are already

defined in the section. Consequently, all the different objective fitness values are in con-
flict, and they are transformed into a single objective function, which is illustrated in
Equation (23):

Routing f itness = δ1 ×QL + δ2 × Link quality + δ3 × D1 + δ4 × D2
+δ5 × RE

(23)

where δ1, δ2, δ3, δ4, and δ5 are the weighted parameters associated with each objective,
which is equal to 0.3, 0.2, 0.15, 0.15, and 0.2, respectively [31].

6. Results and Discussion

This segment clearly describes the outcomes of proposed ED-MORFO approach.
MATLAB simulation is used to implement the ED-MORFO, which runs on a 4 GB RAM
machine, with an Intel Core PC. The goal of this investigation is to wisely control the energy
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depletion suggested via the routing method. Four performances, specifically distance,
overhead, latency, and packet size, contribute to the proposed calculation to conduct
advancement. Table 1 shows the simulation specification for the proposed system.

Table 1. Simulation specification.

Parameter Value

Transmission power 0.660 W
Receiving power 0.4 W

Packet size 512 bytes
Number of nodes 200

Initial energy 14.0 J
Antenna model Omni antenna

Data transfer rate 250 (Kb/s)
Network size 1000 × 1000 m

Simulation time 100 s
Traffic type CBR

Transmission rate 50 to 250 Kb/s

6.1. Performance of Energy Consumption

The comparison of the suggested ED-MORFO and correlated devices, such as the ex-
isting MCH-EOR [24] and existing RDSAOA-EECP [25], in the case of energy consumption,
is shown in Figure 3. Figure 3 shows that when compared to the following conventional
approaches, the suggested ED-MORFO consumes less energy. In the ED-MORFO tech-
nique, a smaller number of nodes are twisted in packet progression. Furthermore, more
energy is saved, as nodes with the highest optimality factor continue to be important
in progressing data packets; in contrast, the traditional methods require an extra node
when dispatching the same data packet; as a result, sophisticated energy is consumed in
the existing MCH-EOR [24] and existing RDSAOA-EECP [25] methods. The analysis of
energy consumption performance is shown in Table 2. It shows that the performance of the
proposed ED-MORFO varies from 0.06 to 0.46, while the existing MCH-EOR [24] achieves
0.09 to 0.58, and RDSAOA-EECP [25] achieves 0.11 to 0.62.
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Table 2. Performance of energy consumption.

Number
of Nodes

Energy Consumption (J)

Existing MCH-EOR [24] Existing
RDSAOA-EECP [25] Proposed ED-MORFO

100 0.09 0.11 0.06
200 0.23 0.25 0.14
300 0.38 0.43 0.31
400 0.51 0.49 0.42
500 0.58 0.62 0.46

6.2. Performance of PDR

Figure 4 shows the results of PDR for both planned and existing technologies. When
the number of nodes increases, the size of the routing path results in an increase in delay.
The performance comparison for the PDR is shown in Table 3. Table 3 clearly illustrates
that the suggested ED-MORFO achieves a higher PDR of 99.4%, whereas the PDR of the
existing MCH-EOR [24] attains 98.7%, and RDSAOA-EECP [25] achieves a PDR of 97.4%.
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Table 3. Performances of PDR.

Number of
Nodes

PDR (%)

Existing MCH-EOR [24] Existing
RDSAOA-EECP [25] Proposed ED-MORFO

100 98.7 97.4 99.4
200 98.1 96.5 98.9
300 97.8 94.8 98.5
400 96.2 92.6 97.8
500 95.5 90.8 97.3

6.3. Performance of Throughput

The outcomes of the throughout achievement for both recommended and present
techniques are shown in Figure 5. The suggested ED-MORFO obtains superior outcomes
in terms of throughput, compared to the existing MCH-EOR [24] and existing RDSAOA-
EECP [25]. As ED-MORFO has a long network lifespan, the base station receives more
data packets. Table 4 shows the performance analysis for throughput. Table 4 shows that
the proposed ED-MORFO achieves a maximum throughput of 0.99 Mbps, whereas the
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existing MCH-EOR [24] only manages 0.97 Mbps, and RDSAOA-EECP [25] only manages
0.94 Mbps.
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Table 4. Performances of throughput.

Number of
Nodes

Throughput (Mbps)

Existing MCH-EOR [24] Existing
RDSAOA-EECP [25] Proposed ED-MORFO

100 0.97 0.94 0.99
200 0.92 0.90 0.97
300 0.89 0.84 0.96
400 0.85 0.81 0.93
500 0.79 0.75 0.91

When compared to the existing approaches, the total simulation results show that the
suggested ED-MORFO achieves better results in all node counts (100–500).

6.4. Performance of Network Lifetime

ED-MORFO and existing methodologies were used to compare the performance of
the lifetime of a network. Figure 6 depicts the existing MCH-EOR [24] and RDSAOA-
EECP [25] assessments. Figure 6 illustrates that, when compared to existing approaches,
ED-MORFO produces better outcomes. In contrast to the existing MCH-EOR [24] and
RDSAOA-EECP [25], there is an increase in the longevity of ED-MORFO. As the network’s
node count grows, additional sensor nodes begin steering packets indiscriminately, and
there is a significant chance that nodes perish at some point. Only the optimal node is
assigned to transfer packets in the ED-MORFO approach, resulting in increased battery
life and network longevity. Table 5 summarizes the results of the lifetime performance
analysis. When compared to existing methodologies, the suggested ED-MORFO improves
the network lifetime at a specific node, as shown in the table. The suggested ED-MORFO
achieves a network lifetime of 3719 s, compared to 3500 s for the MCH-EOR [24], and 3000 s
for the RDSAOA-EECP [25].
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Table 5. Performances of network lifetime.

Number of
Nodes

Network Lifetime (s)

Existing MCH-EOR [24] Existing
RDSAOA-EECP [25] Proposed ED-MORFO

100 1514 1503 1629
200 1936 1812 2192
300 2489 2382 2729
400 2986 2640 3108
500 3500 3000 3719

6.5. Performance of End-to-End Delay

ED-MORFO and existing methodologies were used to compare the performance of
the lifetime of a network. Figure 7 depicts the existing MCH-EOR [24] and RDSAOA-
EECP [25] assessments. Figure 7 illustrates that, when compared to existing approaches,
ED-MORFO produces better outcomes. In contrast to the existing MCH-EOR [24] and
RDSAOA-EECP [25], there is a decrease in the end-to-end delay of ED-MORFO. Figure 7
clearly illustrates that ED-MORFO achieves the least delay, and continues to try to transmit
the data packet to the best intermediary node, satisfying the optimality feature. On the
contrary, the traditional MCH-EOR [24] and RDSAOA-EECP [25] methods take a long time
to determine the end point node. Furthermore, it initiates the prolonged return after the
end point node. As a result, the related system’s typical end-to-end delay is longer than
the ED-MORFO approach. Table 6 tabulates the comparative analysis of end-to-end delay
performance. Table 6 shows that the proposed ED-MORFO achieves a time delay of 11 s
when compared with the existing techniques of MCH-EOR and RDSAOA-EECP, which
attain 15 s and 14 s, respectively.

6.6. Performance of Routing Overhead

ED-MORFO and existing methodologies were used to compare the performance of
routing overhead. Figure 8 depicts the existing MCH-EOR [24] and RDSAOA-EECP [25]
assessments. Figure 8 illustrates that, when compared to existing approaches, ED-MORFO
produces better outcomes. In contrast to the existing MCH-EOR [24] and RDSAOA-
EECP [25], there is a decrease in the routing overhead of ED-MORFO. Table 7 tabulates the
comparative analysis of routing overhead performance. Table 7 shows that the proposed
ED-MORFO achieves a lower routing overhead of 0.11 at 100 nodes, which is better when
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compared with the existing techniques of MCH-EOR and RDSAOA-EECP, which attain
0.52 and 0.33, respectively.
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Table 7. Performances of routing overhead.

Number of
Nodes

Routing Overhead

Existing MCH-EOR [24] Existing
RDSAOA-EECP [25] Proposed ED-MORFO

100 0.52 0.33 0.11
200 0.64 0.41 0.17
300 0.69 0.49 0.22
400 0.75 0.58 0.26
500 0.82 0.67 0.31

6.7. Performance of Packet Loss Rate

ED-MORFO and existing methodologies were used to compare the performance of
packet loss rate (PLR). Figure 9 depicts the existing MCH-EOR [24] and RDSAOA-EECP [25]
assessments. Figure 9 illustrates that, when compared to existing approaches, ED-MORFO
produces better outcomes. In contrast to the existing MCH-EOR [24] and RDSAOA-
EECP [25], there is a decrease in the packet loss rate of ED-MORFO. Table 8 tabulates the
comparative analysis of packet loss rate performance. Table 8 shows that the proposed
ED-MORFO achieves a better PLR of 0.6% when compared with the existing techniques of
MCH-EOR and RDSAOA-EECP, which attain rates of 1.3% and 2.6%, respectively.
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6.8. Performance of Computational Complexity

The computational complexity analysis for the existing MCH-EOR [24], RDSAOA-
EECP [25], and the proposed ED-MORFO are calculated here. The complexity range is
high when the number of nodes is high. Table 9 shows the performance of computational
complexity. Table 9 clearly shows that the proposed ED-MORFO has less computational
time when compared to the existing MCH-EOR [24] and RDSAOA-EECP [25]. Figure 10
shows the graphical analysis of computational complexity.

Table 9. Performances of computational complexity.

Number of
Nodes

Computational Complexity

Existing MCH-EOR [24] Existing
RDSAOA-EECP [25] Proposed ED-MORFO

100 215 250 180
200 320 340 235
300 590 559 350
400 780 700 500
500 900 860 670
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Based on the results of the comparison, it is demonstrated that the ED-MORFO
technique outperforms the existing techniques of MCH-EOR [24] and RDSAOA-EECP [25].
Due to an incorrect fitness function consideration during CH selection, existing CDASs
achieve a worse performance. In ED-MORFO clustering, different fitness variables are
used to discover an appropriate CH between the sensors. Following that, an appropriate
route creation, using the ED-MORFO, is applied to reduce the node’s energy depletion.
As a result, when compared to existing methods, the proposed ED-MORFO gain a longer
network lifetime. The increased lifetime of the ED-MORFO is due to the greater volume of
data packets sent to the BS. Similarly, the mean time complexity of the existing RDSAOA-
EECP [25] is lower in the computational burden of 0.1912 s, but the energy consumptions
protocol with different densities of sensor nodes that require improvement is minimized.
The proposed ED-MORFO shows a lower computational burden of 0.10 s, as the algorithm
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locates the individuals in the direct surroundings of the optimum, once the short interval
of time is provided.

7. Conclusions

In this research, the ED-MORFO algorithm is proposed, analyzed, and well-organized
to recognize the energy-efficient clustering and routing in a WSN. Here, the ED-MORFO is
recommended to reach the base station with minimum energy consumption. Initially, the
CH selection is based on a variety of criteria; the primary goal of improving the network
lifetime is achieved while lowering energy consumption. After choosing the CH, the
proposed EDMORFO algorithm is used to choose the best route for transmitting data to
the BS; thus, the energy-efficiency of the WSN is improved. The proposed ED-MORFO
combination is tested for a system size, with node counts ranging from 100 to 500, and the
energy efficiency is investigated through network analysis using PDR, energy consumption,
throughput, and network lifetime. In contrast to traditional and cluster-dependent routing
systems, such as MCH-EOR and RDSAOA-EECP, the simulated outcomes of ED-MORFO
are superior. According to the simulation results, the proposed ED-MORFO outperforms
existing protocol systems in all characteristics, by reducing energy consumption by up
to 0.46 J. It also achieves a PDR of 99.4%, a PLR of 0.6%, an end-to-end delay of 11 s, a
routing overhead of 0.11, a maximum throughput of 0.99 Mbps, and a network lifetime of
up to 3719 s. In the future, the proposed approach can be tested with various specification
parameters and a variable number of node counts; in addition, a hybrid optimization-based
routing procedure can be implemented to achieve better energy consumption results.

Author Contributions: The paper investigation, resources, data curation, writing—original draft
preparation, writing—review and editing, and visualization were conducted by R.N. and G.M. The
paper conceptualization, and software were conducted by M.R.H. The validation, formal analysis,
methodology, supervision, project administration, and funding acquisition of the version to be
published were conducted by A.M. and P.B.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, T.; Zhang, G.; Yang, X.; Vajdi, A. Genetic algorithm for energy-efficient clustering and routing in wireless sensor networks.

J. Syst. Softw. 2018, 146, 196–214. [CrossRef]
2. Asha, G.R. Energy efficient clustering and routing in a wireless sensor networks. Procedia Comput. Sci. 2018, 134, 178–185.
3. Dubey, P.; Veenadhar, S.; Gupta, S. Survey on energy efficient clustering and routing protocols of wireless sensor network. Int. J.

Sci. Res. Eng. Trends 2019, 5, 212–218.
4. Masaracchia, A.; Nguyen, L.D.; Duong, T.Q.; Nguyen, M. An energy-efficient clustering and routing framework for disaster relief

network. IEEE Access 2019, 7, 56520–56532. [CrossRef]
5. Bharany, S.; Sharma, S.; Badotra, S.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Alassery, F. Energy-efficient clustering scheme for

flying ad-hoc networks using an optimized LEACH protocol. Energies 2021, 14, 6016. [CrossRef]
6. Dwivedi, A.K.; Sharma, A.K. I-FBECS: Improved fuzzy based energy efficient clustering using biogeography based optimization

in wireless sensor network. Trans. Emerg. Telecommun. Technol. 2021, 32, e4205. [CrossRef]
7. Nguyen, N.T.; Le, T.T.; Nguyen, H.H.; Voznak, M. Energy-efficient clustering multi-hop routing protocol in a UWSN. Sensors

2021, 21, 627. [CrossRef]
8. Hamidouche, R.; Aliouat, Z.; Gueroui, A. Low energy-efficient clustering and routing based on genetic algorithm in WSNs. In

Proceedings of the International Conference on Mobile, Secure, and Programmable Networking, Paris, France, 18–20 June 2018;
pp. 143–156.

http://doi.org/10.1016/j.jss.2018.09.067
http://doi.org/10.1109/ACCESS.2019.2913909
http://doi.org/10.3390/en14196016
http://doi.org/10.1002/ett.4205
http://doi.org/10.3390/s21020627


Sensors 2022, 22, 3761 19 of 19

9. Ogundile, O.O.; Balogun, M.B.; Ijiga, O.E.; Falayi, E.O. Energy-balanced and energy-efficient clustering routing protocol for
wireless sensor networks. IET Commun. 2019, 13, 1449–1457. [CrossRef]

10. Khediri, S.E.; Nasri, N.; Khan, R.U.; Kachouri, A. An improved energy efficient clustering protocol for increasing the life time of
wireless sensor networks. Wirel. Pers. Commun. 2021, 116, 539–558. [CrossRef]

11. Bozorgi, S.M.; Massoud Bidgoli, A. HEEC: A hybrid unequal energy efficient clustering for wireless sensor networks. Wirel. Netw.
2019, 25, 4751–4772. [CrossRef]

12. Sharma, R.; Vashisht, V.; Singh, U. EEFCM-DE: Energy-efficient clustering based on fuzzy C means and differential evolution
algorithm in WSNs. IET Commun. 2019, 13, 996–1007. [CrossRef]

13. Mittal, N.; Singh, U.; Salgotra, R.; Singh Sohi, B. A boolean spider monkey optimization based energy efficient clustering approach
for WSNs. Wirel. Netw. 2018, 24, 2093–2109. [CrossRef]

14. Saranya, V.; Shankar, S.; Kanagachidambaresan, G.R. Energy efficient clustering scheme (EECS) for wireless sensor network with
mobile sink. Wirel. Pers. Commun. 2018, 100, 1553–1567. [CrossRef]

15. Jorio, A.; El Fkihi, S.; Elbhiri, B.; Aboutajdine, D. An energy-efficient clustering routing algorithm based on ED-MORFOgraphic
position and residual energy for wireless sensor network. J. Comput. Netw. Commun. 2015, 29, 1882–1888.

16. Purkar, S.V.; Deshpande, R.S. Energy efficient clustering protocol to enhance performance of heterogeneous wireless sensor
network: EECPEP-HWSN. J. Comput. Netw. Commun. 2018, 2018, 2078627. [CrossRef]

17. Xu, K.; Zhao, Z.; Luo, Y.; Hui, G.; Hu, L. An energy-efficient clustering routing protocol based on a high-QoS node deployment
with an inter-cluster routing mechanism in WSNs. Sensors 2019, 19, 2752. [CrossRef]

18. Goswami, P.; Yan, Z.; Mukherjee, A.; Yang, L.; Routray, S.; Palai, G. An energy efficient clustering using firefly and HML for
optical wireless sensor network. Optik 2019, 182, 181–185. [CrossRef]

19. Jafarali Jassbi, S.; Moridi, E. Fault tolerance and energy efficient clustering algorithm in wireless sensor networks: FTEC. Wirel.
Pers. Commun. 2019, 107, 373–391. [CrossRef]

20. Devi, V.S.; Ravi, T.; Baghavathi Priya, S. Cluster based data aggregation scheme for latency and packet loss reduction in WSN.
Comput. Commun. 2020, 149, 36–43. [CrossRef]

21. Pattnaik, S.; Sahu, P.K. Assimilation of fuzzy clustering approach and EHO-Greedy algorithm for efficient routing in WSN. Int. J.
Commun. Syst. 2020, 33, e4354. [CrossRef]

22. Daneshvar, S.M.; Mahdi, H.; Ahari Mohajer, P.A.; Mazinani, S.M. Energy-efficient routing in WSN: A centralized cluster-based
approach via grey wolf optimizer. IEEE Access 2019, 7, 170019–170031. [CrossRef]

23. Zhang, J.; Yan, R. Centralized energy-efficient clustering routing protocol for mobile nodes in wireless sensor networks. IEEE
Commun. Lett. 2019, 23, 1215–1218. [CrossRef]

24. Mehta, D.; Saxena, S. MCH-EOR: Multi-objective cluster head based energy-aware optimized routing algorithm in wireless sensor
networks. Sustain. Comput. Inform. Syst. 2020, 28, 100406. [CrossRef]

25. Rajeswarappa, G.; Vasundra, S. Red Deer and Simulation Annealing Optimization Algorithm-Based Energy Efficient Clustering
Protocol for Improved Lifetime Expectancy in Wireless Sensor Networks. Wirel. Pers. Commun. 2021, 121, 2029–2056. [CrossRef]

26. Vinodhini, R.; Gomathy, C. MOMHR: A dynamic multi-hop routing protocol for WSN using heuristic based multi-objective
function. Wirel. Pers. Commun. 2020, 111, 883–907. [CrossRef]
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