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Abstract: In the research of heterogeneous wireless sensor networks, clustering is one of the most
commonly used energy-saving methods. However, existing clustering methods face challenges when
applied to heterogeneous wireless sensor networks, such as energy balance, node heterogeneity,
algorithm efficiency, and more. Among these challenges, a well-designed clustering approach can
lead to extended node lifetimes. Efficient selection of cluster heads is crucial for achieving optimal
clustering. In this paper, we propose an Enhanced Pelican Optimization Algorithm for Cluster
Head Selection (EPOA-CHS) to address these issues and enhance cluster head selection for optimal
clustering. This method combines the Levy flight process with the traditional POA algorithm, which
not only improves the optimization level of the algorithm, but also ensures the selection of the optimal
cluster head. The logistic-sine chaotic mapping method is used in the population initialization, and
the appropriate cluster head is selected through the new fitness function. Finally, we utilized MATLAB
to simulate 100 sensor nodes within a configured area of 100 × 100 m2. These nodes were categorized
into four heterogeneous scenarios: m = 0, α = 0, m = 0.1, α = 2, m = 0.2, α = 3, and m = 0.3, α = 1.5.
We conducted verification for four aspects: total residual energy, network survival time, number
of surviving nodes, and network throughput, across all protocols. Extensive experimental research
ultimately indicates that the EPOA-CHS method outperforms the SEP, DEEC, Z-SEP, and PSO-ECSM
protocols in these aspects.

Keywords: heterogeneous wireless sensor networks; pelican optimization algorithm; energy
efficient; cluster head selection

1. Introduction

Wireless Sensor Networks have become a popular field of exploration for researchers
and engineers [1] . WSNs find applications in various domains such as military, civilian,
healthcare, industrial, agriculture, animal tracking, and habitat monitoring [2,3] . These
networks consist of distributed, random, low-power, and miniature sensor nodes that
acquire data about the monitored environment through intermediate nodes. However,
energy scarcity remains a major obstacle due to slow growth in battery capacity. Moreover,
battery replacement is not a viable option due to the unattended nature and hazardous
sensing conditions of sensor nodes. Therefore, energy efficiency is a fundamental concern
in WSNs [4,5], and several researchers have conducted relevant studies in this field. WSN
routing techniques aim to enhance resource awareness and adaptability to prolong network
lifespan and overcome low battery capacity [6–8].

Clustering approaches are often used to group sensor nodes due to their scalability,
resource sharing, energy efficiency, low communication overhead, and efficient resource
allocation. However, selecting cluster heads poses a critical optimization problem, which
is considered NP-hard [9–11]. Furthermore, heterogeneous wireless sensor networks
(HWSNs) are increasingly being utilized in practical applications. Therefore, there is a
need to consider an optimization technique for cluster head selection in HWSNs [12,13].
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And swarm intelligence and metaheuristic methods offer several advantages in addressing
the cluster head selection problem within HWSNs. These methods exhibit global search
capabilities, adaptability, flexibility, scalability, parallel processing, and decentralization,
among other benefits. These advantages make them effective tools for tackling large-scale
and complex CH selection problems, ultimately enhancing the performance and energy
efficiency of heterogeneous wireless sensor networks.

Considering the aforementioned challenges, we propose the use of swarm intelli-
gence and metaheuristic methods to improve the cluster head selection process. In or-
der to prolong the lifespan of heterogeneous wireless sensor networks, we introduce
an exploration-enhanced version of the Pelican Optimization Algorithm (POA), called
Enhanced POA (EPOA).

In general, existing clustering methods may suffer from incomplete, uncertain, and in-
consistent information due to a lack of understanding of the measurement environment
and limitations in sensor accuracy. Therefore, in our current work, we propose a novel
algorithm that can address these challenges, aiming to enhance clustering performance and
improve energy utilization efficiency. Regarding traditional fitness functions, they often
come with certain limitations, such as local optima, problem dependency, convergence
speed, and overfitting. Local Optima: Inappropriate fitness functions might cause the
algorithm to become trapped in local optima, failing to find the global optimal solution.
Problem Dependency: Different problems may require distinct fitness functions. A fitness
function performing well on one problem might not be effective for another problem. Con-
vergence Speed: The design of the fitness function can impact the algorithm’s convergence
speed. An unfit fitness function can result in slow convergence. Overfitting: Excessively
complex fitness functions might perform well on the training set but exhibit poor general-
ization on unknown data. Hence, in our approach, we adopt a new fitness function to select
efficient energy-saving cluster head nodes, aiming to overcome these limitations associated
with traditional fitness functions.

The following are this paper’s key contributions:

• The logistic-sine chaotic mapping method is employed to improve the initialization
of random solutions, allowing for the generation of uniformly distributed and non-
repetitive initial solution sets.

• The levy flight algorithm is utilized to enhance global optimization capability and
enrich the population diversity of the EPOA algorithm.

• For the selection of the optimal cluster head set, the fitness function includes the
distance and energy use of the wireless sensor network.

In the upcoming Section 2, we will describe the relevant work conducted in this study.
In the following Section 3, the Pelican optimization algorithm and its basic concepts are
described. In Section 4, the proposed method and the wireless energy dissipation model for
heterogeneous networks are included. We discuss population initialization using Logistic-
sine chaotic mapping, update agent position using Levy function, add multiple sensor
parameters to fitness function, and illustrate the proposed algorithm in pseudo-code form.
In Section 5, the algorithm flow chart and simulation results are given. At the end of this
paper, we draw a conclusion for the overall study.

2. Related Works

Routing protocols used in homogeneous WSNs have been adapted to develop routing
methods for HWSNs, which are designed to extend network lifespan. Stable Election
Protocol (SEP) [14] is an example of a heterogeneous sensing protocol, which aims to extend
the interval time before the first node uses up its energy. SEP achieves this by weighting the
election probability of nodes based on the amount of initial energy they possess compared
to other nodes in the network. For applications that rely on precise feedback, it is critical
to extend the time interval before the first node runs out of power. Distributive Energy-
Efficient Clustering (DEEC) [15] is another protocol designed for heterogeneous wireless
sensor networks, which is a distributed arrangement while saving energy. The way it
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selects cluster heads is to determine a relationship by looking at how much energy is left at
each node and the average cost of energy to the network. The protocol determines whether
a node becomes a cluster head by looking at the energy state of the node, in which the
energy state of the node is the key consideration. Besides this, the consideration of time
after the node becomes the cluster head depends on its initial energy and what level of
remaining energy is. If the node has a lower energy, it is less likely to be the cluster head
than a node with a higher energy. Additionally, Faisal et al. developed a hybrid routing
system called Zone Stable Election Protocol (Z-SEP) [16] , specifically designed for HWSNs.
In this protocol, when the base station transmits data, some nodes directly participate in
the process, while others use a clustering algorithm similar to the Stable Election Protocol
(SEP) to participate in the process. This hybrid routing system is used to better meet the
needs of HWSNs, and its data transmission can be realized more efficiently in this way.
These protocols introduce new energy management and data transfer solutions, which are
effective for heterogeneous wireless sensor networks. Through effective clustering and
routing algorithms, these protocols can enhance energy efficiency and data transmission
performance, thereby prolonging network lifetime and providing reliable communication
services. However, further research and experimental validation are still needed to further
evaluate the performance and applicability of these protocols in practical applications.

In all these years of development, meta-heuristic algorithms and heuristic algorithms
have been used in the theoretical research of HWSNs, and many of these techniques have
been used to enhance the cluster head selection process in cluster routing protocols, thereby
extending the network lifetime. Al-Aboody et al. [17] created the Multi-Layer Hierarchical
Routing Protocol (MLHP), a three-level hybrid clustering method. The first level includes
the selection process, which is a unified method, in which the base station (BS) is more
important in the cluster head selection, playing a relatively large role. At Level 2, GWO
routing algorithms are used for efficient data transmission, enabling nodes to find the best
path to BS while saving energy. Finally, the third layer adds distributed clustering by using
cost functions. Bhushan et al. suggested a hybrid approach for clustered wireless sen-
sor networks that combines Biogeography-based Optimization (BBO) [18], a bio-inspired
metaheuristic optimization, with k-means clustering. BBO is driven by species move-
ment between habitats and has been utilized successfully to address global optimization
concerns.The authors introduce a new clustering method in their study [19], in which an
enhanced particle swarm optimization (EC-PSO) energy center search is used to eliminate
energy gaps and discover energy centers for cluster head selection. When the network
energy becomes heterogeneous, this strategy clusters using EC-PSO. Nodes near energy
centers are chosen as CHs by utilizing an upgraded particle swarm method to seek for them.
In order to prevent nodes with relatively low energy from operating as relays, a protection
mechanism is established, and a mobile data collector is provided for data acquisition.

Another study [20], based on particle swarm optimization (PSO), proposed a more effi-
cient clustering and aggregation migration (PSO-ECSM) technology strategy that combines
energy to address the challenges of cluster head selection and aggregation migration. The
PSO-ECSM algorithm evaluates a number of parameters when selecting CH, including the
node’s residual energy, average energy and energy consumption rate (ECR), distance, node
degree, etc. To arrive at the best solution, the algorithm optimizes the values of these pa-
rameters. PSO-ECSM also incorporates sink mobility to handle the routing traffic problem
in multi-hop networks. To address the challenges posed by HWSNs, an enhanced Hybrid
Grey Wolf Optimizer (HMGWO) routing protocol [21] has been proposed. This protocol
adopts an advanced approach to optimize the selection of initial clusters, where alternative
fitness functions are first constructed specifically for heterogeneous energy nodes. These
fitness functions take into account the degree of residual energy of the node, as well as
communication distance and other relevant characteristics. By introducing these alternative
fitness functions, the protocol aims to improve the accuracy and efficiency of CHs selection.
In the HMGWO protocol, the fitness values of sensor nodes are computed based on these
alternative fitness functions and applied as initial weights to the GWO algorithm. However,
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what sets the HMGWO protocol apart is the dynamic adjustment of these weights during
the optimization process. These weights are adaptively modified based on the distances
between the wolves (representing potential CHs) and the prey (representing the optimal
cluster configuration), as well as coefficient vectors associated with the GWO algorithm.
This dynamic adjustment mechanism enhances the optimization capability of GWO and
ensures the selection of appropriate CHs, enabling efficient resource management and
meeting the energy constraints of HWSNs.

3. Pelican Optimization Algorithm

We found a population-based optimization algorithm [22] inspired by pelicans, the
POA. The algorithm simulates evolutionary processes in an ecosystem by treating pelicans
as individuals in a population. Each individual represents a potential solution and provides
optimization suggestions, which are derived from setting the problem variable to the
location of each individual in the search space. In the process of population initialization,
in order to ensure the diversity of the population and the global search ability, each member
is randomly initialized within the specified upper and lower bounds of the problem,
as shown in Equation (1).

x(i,j) = lj + rand · (uj − lj ), i = 1, 2, . . . , N, j = 1, 2, . . . , m, (1)

In the given equation, the variable xi,j represents the value of the jth variable in
the i-th candidate solution. N is the total number of members. The number of problem
variables is denoted by m, indicating the quantity of features or parameters to be optimized.
It is important to note that the term “rand“ in this context represents a random number
generator that produces random numbers between 0 and 1, introducing randomness during
the algorithm’s execution. The variables lj and uj represent the lower and upper bounds of
the jth problem variable, respectively, and these bounds are significant for controlling the
range of the solution space.

To update potential solutions, the algorithm (POA) mimics the tactics and behaviors
that pelicans use when attacking and hunting prey.

This hunting technique consists of two parts:

(i) Approaching prey while in the exploring phase.

In the first stage, the method by which pelicans approach when they spot prey is
simulated and mathematically reproduced in Formula (2).

xP1
i,j =

xi,j+rand·(pj−I·xi,j)
, if Fp < Fi

xi,j+rand·(xi,j−pj)
, else

(2)

In the context of Equation (3), we can observe the importance of the variable xP1
i , which

represents an updated state of the pelican in dimension jth due to the result of stage 1,
which can be the ith pelican. To introduce further diversity and exploration, the value
of I is introduced as a random number that ranges between one and two. Furthermore,
the variable pj is employed to denote the position of the prey in the jth dimension, while
Fp represents the objective function value of the prey. By incorporating Equation (3), we
are able to effectively simulate and model this process.

Xi =

{
XP1

i , if FP1
i < Fi

Xi, else
(3)

In the given context, FP1
i refers to the objective function value obtained during phase 1,

while XP1
i represents the updated status of the ith pelican after phase 1.

(ii) Winging on the water surface (exploitation phase).
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In the later stages, when hunting begins, the pelican serves as a storage function for
fish after collection through a unique pouch on its neck. This action allows the pelicans
to efficiently capture the fish and store them for consumption. The equation models the
movement and interaction of the pelicans with the fish during this phase, taking into
account factors such as the position and velocity of the pelicans, the behavior of the fish,
and the surrounding environment. The mathematical representation provides a means to
simulate and analyze the hunting behavior of pelicans in a quantitative manner.

xP2
i,j = xi,j + R ·

(
1− t

T

)
· (2 · rand− 1) · xi,j (4)

In Equation (5), the variable XP2
i,j denotes the updated state of the ith pelican in the

jth dimension, which depends on phase 2. The constant R is set to 0.2, and R · (1− t/T)
represents the radius of the immediate neighborhood around xi,j. Here, the number of
iterations is measured using t, and the maximum number of iterations is represented by
T. During this stage, the concept of effective updating, as described by Equation (5), is
utilized to determine whether the new pelican position should be accepted or rejected.

Xi =

{
XP2

i , if FP2
i < Fi

Xi, else
(5)

In the given context, FP2
i represents the objective function value obtained during

phase 2, while XP2
i denotes the updated status of the ith pelican after phase 2.

4. Proposed Algorithm

This study presents EPOA-CHS, a novel method for energy-efficient WSNs. It intro-
duces a fitness function that takes into account multiple sensor properties for selecting
the CH.

4.1. Heterogeneous Network Energy Dissipation Model

In the next section, we discuss a two-level energy model for heterogeneous networks.
We first describe the initial total energy of each sensor node:

Etotal =
M

∑
i=1

E0(1 + α) +
N−M

∑
i=M

E0 (6)

where M represents the number of nodes and is equal to N times m. The symbol E0
represents the initial energy of the node. Specifically, a node in this study is initialized
with energy E0(1 + α), where α represents a scaling factor. This factor determines the
additional energy compared to the lower/initial bound E0. The parameter α can signify
either an advanced node or a super node. When considering the different levels of nodes,
we expect different levels of nodes, such as advanced nodes and super nodes, to have
higher battery power compared to normal nodes. Hence, the parameter α represents the
parameter associated with advanced and super nodes in the energy model. The energy
model utilized in this study focuses on estimating the energy consumption involved in the
transmission and reception of data by the sensor nodes. To illustrate the energy dissipation
process during communication, the radio energy dissipation model [23,24] is employed.
Figure 1 visually represents this model, providing an overview of how energy is dissipated
during the communication process.
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Figure 1. First-order radio energy model.

For transmitter ETx(l, d) and receiver ERx(l), when ETx(l, d) to ERx(l) sent l message,
the distance of d, launch amplifier ETx(l, d) needs to consume energy:

ETx(n, d) =
{

lEelec + lε f sd2, d ≤ d0,
lEelec + lεmpd4, d > d0,

(7)

The energy consumed by the receiver, denoted as ERx(l), when receiving an l-bit
packet, depends on several factors, including the transmission distance of both ends d.
The threshold transmission distance, d0, plays a crucial role in determining the energy
consumption. It is calculated as two amplifier parameters, namely ε f scorresponding to the
free space and εmp corresponding to the multipath model, calculated as the square root of
the ratio of the two. This threshold helps determine which model should be used based on
the distance between the transmitter and receiver. In energy calculation, the energy used
for a single bit in electronic device sending and receiving is expressed as Eelec. Additionally,
the energy consumption is affected by the distance. Short distances are represented by
d2, while long distances are represented by d4. To determine the appropriate model,
the distance d is compared to the threshold d0. If d is less than or equal to d0, the free
space model is employed. Conversely, if d exceeds d0, the multipath model is used. Taking
all these factors into account, the energy used by the receiver ERx(l) for receiving the
l-bit packet can be expressed through a comprehensive equation that incorporates various
parameters and models associated with the transmission distance and energy consumption:

ERx(n) = lEelec (8)

Cluster heads have a vital role in receiving signals from network nodes within a
cluster, and this operation requires energy consumption. Subsequently, the received signals
are aggregated and transmitted to the base station (BS), which is typically located at a
considerable distance from the nodes [3]. Therefore, in order to successfully transmit data
to the base station, it is essential that the cluster head has sufficient energy. To represent the
energy level of a cluster, various measures or formulas can be utilized.

ECH = l · n
k
· (Eelec + EDA) + l · εmp · d4

toBS (9)
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The cluster head has an energy of ECH . In a network of sensor nodes, n is the number
and Eelec is the energy consumed by the transmitter. When data is aggregated, the energy
required is represented by EDA. The symbol l represents a data packet. For long-distance
transmission to a base station, denoted by d4

toBS, the transmitter amplifier energy is denoted
as εmp. And the energy consumed by non-cluster heads is represented by En−CH :

En−CH = l · Eelec + l · ε f s · d2
toCH (10)

In a given context, the symbol l represents a packet of data, Eelec is the energy used by
the transmitter, and ε f s represents a transmitter amplifier in a free state at a short distance
from the cluster head d2

toCH .
The constant value 0.765, as derived in reference [25], is used in the following expres-

sion. M and n represent the area of the sensor and the total number of nodes, respectively,
d2

toCH signifies the short distance to the cluster head, and d4
toBS represents the long distance

to the base station.

4.2. Enhanced POA Algorithm

The initial positions of the population in the search space are uniformly distributed,
which contributes to improving the algorithm’s global search capability and search effi-
ciency. Unlike the standard POA algorithm that initializes the population randomly, which
can reduce population diversity, we utilize the logistic-sine chaotic map for population
initialization in this paper.

Logistic-sine chaotic mapping combines the characteristics of logistic mapping and
sine mapping. This mapping differs from sinusoidal and logical mappings because it
has a larger chaotic interval. We guarantee the unpredictability of individuals inside the
population by creating an initial population that is randomly distributed using the logistic
sine map. Equations (13) through (15) give the mathematical formulations for the logistic
map, the sine map, and the logistic-sine map, respectively.

Zi+1 = µ Zi(1− Zi) (11)

Zi+1 = sin (πZi) (12)

Zi+1 = (µ Zi(1− Zi) +
(4− µ) sin (πZi)

4
)(mod1) (13)

where µ is a multiplier of chaos and Z is a series of numbers created at random. Logistic
map and sine map are formally defined in Equations (13) and (14), respectively. The logistic-
sine map is given mathematical representation in Equation (15). The logistic-sine map is
given mathematical representation in Equation (15).

xi = lb + (ub − lb) ∗ Zi (14)

levy flight is a non-Gaussian stochastic process, also known as Levy motion, which per-
forms random walks obtained in Levy stabilization. The balance between exploration
and exploitation can be achieved according to the Levy flight based jumps, which allows
pelicans catch more fish in the hunting area. This distribution follows a power law formula
L(s) ∼ |s|−l−β, where 0 < β < 2 represents an index and s denotes the step length [26].

One may determine the step length by:

s =
u

|v|
1
β

(15)
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where normal distributions serve as the source for u and v. Which is

u N(0, σ2
u), v N(0, σ2

v ) (16)

where

σu =


Γ(1 + β)× sin

(
πβ
2

)
Γ
(

1+β
2

)
× β× 2

(
β−1

2

)


1
β

, σv = 1 (17)

In the EPOA algorithm, the Levy function is added while winging . The new pelican
position is evaluated in the following:

Xi =

{
XP2

i + α⊕ Levy, if FP2
i < Fi

Xi, else
(18)

where
α = 0.01× s× (XP2

i − Xbest) (19)

4.3. Mechanism of EPOA-CHS Algorithm

In this method, CHs are selected from a pool of standard sensor nodes, and energy
efficiency is given priority to extend the running time of the network. The residual energy
and various distance characteristics of sensor nodes are also considered to achieve the
optimal CH selection based on energy efficiency. These distance features include the
average distance between nodes within each cluster and their distance from the sink node.
By taking these factors into account, the algorithm aims to choose CHs that optimize both
energy consumption and communication distances, thereby improving overall energy
efficiency and prolonging the network’s lifespan.

Let f1 represent a function in which we consider two kinds of distances, the conver-
gence distance and the mean in-cluster distance of CHs. The main goal of CH selection is
to minimize the value of the function.

The representation of the objective function f1 is:

f1 =
∑K

i=1
1
M (∑M

j=1 D(sj, CHi) + D(CHi, BS))

∑K
i=1,j=1 D(CHi, CHj)

(20)

where D(sj, CHi) stands for the distance from a node to the cluster head i.
The distance between the cluster head CHi and the base station (BS) is denoted

as D(CHi, BS). Similarly, the distance between the two cluster heads CHi and CHj is
represented by D(CHi, CHj) in the equation. Additionally, there are two parameters
representing the total numbers: the symbol K for the nodes and the symbol M for the
cluster heads. If sjis a normal node, the protocol selects the initial cluster of the network
based on two parameters: the energy of the node and the distance within the cluster.
For advanced nodes, these two parameters are the energy of the node and its distance from
the base station (BS).

The representation of the objective function f2 is:

f2 =


α ·
(

Emax−Er(sj)

Emax−Emin

)
+ β ·

(Dmax−D(sj ,CHi)
Dmax−Dmin

)
, if Er(sj)

> 0, Normal Node

α ·
(

Emax−Er(sj)

Emax−Emin

)
+ β ·

(Dmax−D(sj ,BS)
Dmax−Dmin

)
, if Er(sj)

> 0, Advanced Node
(21)

where α and β are the weights, with the constraint α + β = 1. The node’s remaining energy
is denoted as Er(sj), where j represents the index. Emax and Emin are the maximum and
minimum values at the two ends of the cluster, respectively. Dmax and Dmin denote their
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respective maximum and minimum distances, with D(sj, BS) representing the distance
from node j to the base station.

Regarding the fitness function:

f = ω× f1 + (1−ω)× f2. (22)

w is the weight factor.

4.4. Epoa-Chs Pseudocode

In each iteration of the particle swarm, all particles evaluate their fitness based on
their current position (solution), compare it with their own best-known position (local
best) and the current best position in the swarm (global best). If the fitness is improved,
the individual and/or swarm best values are updated. After each iteration, the current
best swarm position is compared with the previous best swarm position. If the fitness
has improved, the swarm’s best position is updated. This process continues until the
fitness requirements are met or the iteration is completed, at which point the best candidate
solution is output.The pseudo-code of EPOA-CHS is shown in Algorithm 1.

Algorithm 1 EPOA pseudo-code

Require: Cluster heads of the HWSN
Ensure: Optimal cluster head

Step 1: Initialize the population of Pelican as a matrix X according Logistic-Sine Chaotic
map using Equations (11)–(14);
Step 2: Calculates the fitness values for each row in X using Equations (20) and (21);
Step 3:
while t < tmax do

Update the best condidate solution Xt
best and Get the fitness best value according

minimum of the fitness;
Update the location of the Xt

prey;
Calculate the fitness f(Xt

prey);
for i=1:N do

/*phase 1:Moving towards prey(exploration phase)*/
Update the location of the Xt

new using Equation (4);
Calculate the fitness f (Xt

new);
if f (Xt

new) <f(Xt
i ) then

Xt
i ← Xt

new;
f (Xt

i )← f (Xt
new);

end if
/*end phase 1*/
/*phase 2:Winging on the water surface (exploitation phase)*/
Update the location of the Xt

new using Equations (4), (5), and (15)–(19);
Calculate the fitness f (Xt

new);
if f(Xt

new) < f(Xt
i ) then

Xt
i ← Xt

new;
f (Xt

i )← f (Xt
new);

end if
/*end phase 2*/

end for
Save best condidate solution Xt

best and the fitness best value ;
t = t+1

end while
Step 4: Repeat Step 3 until it reaches the maximum number of iterations;
Return Xt

best /*Optimal cluster head*/
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5. Results and Discussion

To evaluate the performance of the EPOA-CHS algorithm, we performed simulations
using the MATLAB software. To ensure a fair comparison, we conducted the evaluation
under identical experimental conditions, including the SEP, DEEC, Z-SEP, and PSO-ECSM
algorithms. By comparing the results obtained from these various algorithms, we can assess
the efficacy and superiority of the EPOA-CHS algorithm in terms of energy efficiency and
other relevant performance metrics.

5.1. Simulation Settings

This technique uses a flat network model with nodes distributed at random across
a 100 × 100 m2 region. The suggested approaches are contrasted with the following
algorithms: SEP, DEEC, Z-SEP, and PSO-ECSM. All algorithms use the same set of input
setup settings for the network. In addition, the base station (BS) is positioned in the
network’s upper-center, guaranteeing that every sensor node has at least one neighbor.
Each sensor node has the ability to send data packets in a single hop to the BS. Furthermore,
the sensor nodes exhibit heterogeneity and possess the same communication range. Further
details regarding the system can be found in Table 1.

Table 1. Simulation correlation parameter.

Parameters Value

Network Field (100,100)
Number of nodes 100

E0 0.5 J
Packet Size 4000 Bits

Eelec 50 nJ/bit
E f s 10 nJ/bit/m2

Eamp 0.0013 pJ/bit/m4

EDA 5 nJ/bit/signal
d0 70 m

Popt 0.1
Fraction of the m = 0, m = 0.1,

advanced nodes m = 0.2, m = 0.3
Times more energy α = 0, α = 2,
than normal nodes α = 3, α = 1.5

5.2. Residual Energy

The technology’s advanced CH selection method leads to better performance and
effectively achieves higher average residual energy. This leads to minimized premature
node failures and an extended network lifetime. The EPOA-CHS algorithm demonstrates a
higher average residual energy, indicating enhanced network survivability. Additionally,
the smaller energy deviation observed in EPOA-CHS signifies its ability to effectively reduce
energy imbalances, preventing premature failures caused by excessive energy consumption.

As a result, the energy consumption among nodes using EPOA-CHS is more evenly
distributed, leading to a more balanced network operation. Combined with the additional
energy savings achieved by the algorithm, this results in an increased network lifetime
compared to the other four algorithms. Figure 2a–d illustrate the network’s total residual
energy. It is obvious that EPOA-CHS exhibits higher total residual energy, indicating an
extended network lifespan.
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(a) (b)

(c) (d)
Figure 2. (a) m = 0, α = 0, (b) m = 0.1, α = 2, (c) m = 0.2, α = 3, (d) m = 0.3, α = 1.5.

5.3. Network Lifetime

By considering various proportions of advanced nodes in the simulation, Figure 3
shows the advantages of the EPOA-CHS algorithm in terms of network lifetime. The EPOA-
CHS method significantly extends the network lifespan in Figure 3a where the energy
multiplier for advanced nodes is α = 0 and the proportion of advanced nodes is m = 0.
Specifically, it shows a relative increase of 246.4%, 214.2%, 389.0%, and 65.0% compared
to the SEP, DEEC, Z-SEP, and PSO-ECSM algorithms, respectively. Moving to Figure 3b,
with m = 0.1 and α = 2, the EPOA-CHS algorithm still outperforms the other protocols
with an increase of 100.1%, 116.8%, 91.2%, and 22.4% in network lifespan compared to
SEP, DEEC, Z-SEP, and PSO-ECSM, respectively. Similarly, in Figure 3c (m = 0.2 and α = 3)
and Figure 3d (m = 0.3 and α = 1.5), the EPOA-CHS algorithm maintains its superiority,
exhibiting improvements of 73.7%, 131.4%, 103.3%, and 21.5% in network lifespan over SEP,
DEEC, Z-SEP, and PSO-ECSM for m = 0.2, and 70.2%, 120.2%, 91.2%, and 21.2% for m = 0.3,
respectively. The results clearly demonstrate that the EPOA-CHS algorithm surpasses the
tested protocols in terms of efficacy and network lifespan extension.

Table 2 and Figure 4 show the simulation results for the network life cycle at various
percentages of advanced nodes for the first node to die (FND, First Node Death), 50% of
nodes to die (HND, Half Nodes Death), 70% of nodes to die (MND, Most Nodes Death),
and all nodes to die (LND, Last Node Death). And as can be seen from these two tables, we
perform better on the time of death for other protocols. And the table also clearly shows
that the EPOA-CHS algorithm, compared with other protocols, is also dominant in the
unstable time of the network. This is because EPA-CHS takes into account the heterogeneity
and global optimization ability, which makes the distribution of node energy use more
balanced and reduces the unstable period of the network.
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(a) (b)

(c) (d)
Figure 3. (a) m = 0 , α = 0, (b) m = 0.1, α = 2, (c) m = 0.2, α = 3, (d) m = 0.3, α = 1.5.

Table 2. Number of rounds and network life cycle.

No. of Rounds

Cases for Heterogeneity Protocol FND HND MND LND

m = 0, α = 0

SEP 840 1158 1232 1837
DEEC 926 1216 1321 1888
Z-SEP 595 1498 1724 2266
PSO-ECSM 1763 2139 2285 2384
EPOA-CHS 2910 2417 2442 2484
SEP 1116 1302 1372 5383
DEEC 1030 1259 1361 5341

m = 0.1, α = 2

Z-SEP 1168 1923 2086 6450
PSO-ECSM 1825 2212 2316 7055
EPOA-CHS 2233 2441 2452 7373
SEP 1291 1486 1676 3888
DEEC 969 1274 1699 4165

m = 0.2, α = 3

Z-SEP 1103 2055 2256 5638
PSO-ECSM 1846 2269 2402 5989
EPOA-CHS 2243 2445 2482 6198
SEP 1312 1491 1652 7480
DEEC 1014 1243 1448 8088

m = 0.3, α = 1.5
Z-SEP 1168 1951 2125 8677
PSO-ECSM 1842 2253 2340 9436
EPOA-CHS 2233 2443 2458 9856
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(a) (b)

(c) (d)
Figure 4. (a) m = 0 , α = 0, (b) m = 0.1, α = 2, (c) m = 0.2, α = 3, (d) m = 0.3, α = 1.5.

5.4. Alive Nodes Number

Figure 5a–d illustrate the number of active nodes in each cycle of a network compris-
ing 100 nodes. In this context, the term “active nodes” refers to the count of live nodes,
i.e., nodes that still have remaining energy. Conversely, the number of death nodes corre-
sponds to the count of nodes that have depleted their energy and are no longer operational.

The increased number of living nodes for the EPOA-CHS algorithm when compared
to the other four algorithms demonstrates its better energy consumption performance. This
suggests that the nodes’ energy consumption is distributed more evenly. The number of
surviving nodes is a crucial factor, but it is not the only one that determines the network’s
lifespan. Data transmission and network connectivity depend on the existence of a feasible
path linking the remaining nodes to the BS.

For the network to remain connected, it is crucial to have a sufficient number of
surviving nodes, but the effectiveness and balance of energy consumption are equally
important. The EPOA-CHS technique effectively maintains network connectivity and
achieves energy balance, contributing to the network’s extended lifetime.
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(a) (b)

(c) (d)
Figure 5. (a) m = 0 , α = 0, (b) m = 0.1, α = 2, (c) m = 0.2, α = 3, (d) m = 0.3, α = 1.5.

5.5. Packet Delivery

Figure 6a–d show how many data packets the BS has received, giving information on
network throughput. In Figure 6a, with m = 0 and α = 0, the EPOA-CHS algorithm demon-
strates improved network throughput compared to SEP, DEEC, Z-SEP, and PSO-ECSM.
The network throughput of EPOA-CHS specifically improved by 102.3%, 94.8%, 69.8%,
and 8.67% in comparison to SEP, DEEC, Z-SEP, and PSO-ECSM, respectively. In Figure 6b,
where m = 0.1 and α = 2, the EPOA-CHS algorithm continues to exhibit superior network
throughput, with an increase of 87.9%, 79.4%, 36.6%, and 6.86% compared to SEP, DEEC,
Z-SEP, and PSO-ECSM, respectively. Figure 6c represents the results for m = 0.2 and α = 3,
showing that the network throughput of EPOA-CHS improved by 56.8%, 53.2%, 25.4%,
and 5.61% relative to SEP, DEEC, Z-SEP, and PSO-ECSM. Finally, Figure 6d demonstrates
the performance for m = 0.3 and α = 1.5, with the EPOA-CHS algorithm achieving network
throughput increases of 87.6%, 78.5%, 33.7%, and 4.76% compared to SEP, DEEC, Z-SEP,
and PSO-ECSM, respectively. These results clearly highlight the enhanced network through-
put achieved by the EPOA-CHS algorithm across different scenarios and its superiority
over the evaluated protocols.
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(a) (b)

(c) (d)
Figure 6. (a) m = 0 , α = 0, (b) m = 0.1, α = 2, (c) m = 0.2, α = 3, (d) m = 0.3, α = 1.5.

6. Conclusions

In this research, we have presented a cutting-edge method for energy-constrained
wireless sensor networks (WSNs) dubbed EPOA-CHS. The EPOA-CHS technique incor-
porates the use of the logistic-sine chaotic map for population initialization, providing
enhanced randomness and diversity in the initial population. The aim of the EPOA-CHS
method is to select cluster heads (CHs) based on fitness functions that take into account
various sensor properties. Additionally, the EPOA-CHS technique integrates the traditional
EPOA algorithm with the Levy function during the winging phase, enabling improved
exploration and convergence capabilities. We assessed the EPOA-CHS technique’s perfor-
mance using a series of simulations and contrasted it with current methods.The outcomes
show how effective the EPOA-CHS method is in terms of energy use and overall network
performance. Moving forward, our future research aims to extend the application of the
EPOA-CHS technique to the multihop routing process in large-scale WSNs. We foresee
additional advancements in energy efficiency and scalability by resolving the difficulties
involved with routing in such networks.

Author Contributions: Conceptualization, Z.W.; Methodology, Z.W.; Software, Z.W.; Validation,
Z.W.; Formal analysis, Z.W.; Investigation, Z.W., H.X. and X.S.; Resources, Z.W. and X.S.; Data
curation, Z.W.; Writing—original draft, Z.W. and H.X.; Writing—review & editing, Z.W. and H.X.;
Supervision, J.D. and Y.Y.; Project administration, J.D. and Y.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Project of Industrial Technology Research and Development
in Jilin Province (2023C031-3), Science and Technology Development Program of Jilin Province
(20220508152RC).

Institutional Review Board Statement: Not applicable.



Sensors 2023, 23, 7711 16 of 17

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors have no conflict of interest to declare that are relevant to the content
of this article.

References
1. Arampatzis, T.; Lygeros, J.; Manesis, S. A Survey of Applications of Wireless Sensors and Wireless Sensor Networks. In

Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent
Control, Limassol, Cyprus, 27–29 June 2005; p. 719.

2. Zhang, S.; Zhang, H. A Review of Wireless Sensor Networks and Its Applications. In Proceedings of the IEEE International
Conference on Automation and Logistics, Zhengzhou, China, 15–17 August 2012.

3. Gulati, K.; Boddu, R.S.K.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A review paper on wireless sensor network
techniques in Internet of Things (IoT). Mater. Today Proc. 2021, 51, 161–165. [CrossRef]

4. Kandris, D.; Nakas, C.; Vomvas, D.; Koulouras, G. Applications of wireless sensor networks: An up-to-date survey.
Appl. Syst. Innov. 2020, 3, 14. [CrossRef]

5. Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.W. Applications of wireless sensor networks
and internet of things frameworks in the industry revolution 4.0: A systematic literature review. Sensors 2022, 22, 2087. [CrossRef]
[PubMed]

6. Elsmany, E.F.A.; Omar, M.A.; Wan, T.-C.; Altahir, A.A. EESRA: Energy Efficient Scalable Routing Algorithm for Wireless Sensor
Networks. IEEE Access 2019, 7, 96974–96983. [CrossRef]

7. Sambo, D.W.; Yenke, B.O.; Forster, A.; Dayang, P. Optimized clustering algorithms for large wireless sensor networks: A review.
Sensors 2019, 19, 322. [CrossRef] [PubMed]

8. Han, Y.; Li, G.; Xu, R.; Su, J.; Li, J.; Wen, G. Clustering the Wireless Sensor Networks: A MetaHeuristic Approach. IEEE Access
2020, 8, 214551–214564 . [CrossRef]

9. Boyinbode, O.; Le, H.; Mbogho, A.; Takizawa, M.; Poliah, R. A survey on clustering algorithms for wireless sensor networks.
In Proceedings of the 13th International Conference on Network-Based Information Systems (NBiS), Takayama, Japan, 14–16
September 2010; pp. 358–364.

10. Zivkovic, M.; Bacanin, N.; Zivkovic, T.; Strumberger, I.; Tuba, E.; Tuba, M. Enhanced grey wolf algorithm for energy efcient
wireless sensor networks. In Proceedings of the f2020 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi
Sad, Serbi, 26–27 May 2020 ; IEEE: Manhattan, NY, USA , 2020; pp. 87–92.

11. Karthick, P.T.; Palanisamy, C. Optimized cluster head selection using krill herd algorithm for wireless sensor network. Automatika
2019, 60, 340–348. [CrossRef]

12. Katiyar, V.; Ch, N.; Soni, S. A survey on clustering algorithms for heterogeneous wireless sensor networks. Int. J. Adv. Netw. 2011,
2, 745–754.

13. Chauhan, S.; Singh, M.; Aggarwal, A.K. Cluster Head Selection in Heterogeneous Wireless Sensor Network Using a New Evolutionary
Algorithm; Wireless Personal Communications; Springer: New York, NY, USA, 2021.

14. Smaragdakis, G.; Matta, I.; Bestavros, A. SEP: A Stable Election Protocol for clustered heterogeneous wireless sensor networks. In
Proceedings of the Second International Workshop on Sensor and Actor Network Protocols and Applications (SANPA 2004),
Boston, MA, USA, 22 August 2004 .

15. Qing, L.; Zhu, Q.; Wang, M. Design of a Distributed Energyefficient Clustering Algorithm for Heterogeneous Wireless Sensor Networks;
Computer Communications 29; Elsevier: Amsterdam, The Netherlands , 2006; pp. 2230–2237.

16. Faisal, S.; Javaid, N.; Javaid, A.; Khan, M.A.; Bouk, S.H.; Khan, Z.A. Z-SEP: Zonal-stable election protocol for wireless sensor
networks. arXiv 2013, arXiv:1303.5364.

17. Al-Aboody, N.A.; Al-Raweshidy, H.S. Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless
sensor networks. In Proceedings of the 2016 4th International Symposium on Computational and Business Intelligence (ISCBI),
Olten, Switzerland, 5–7 September 2016 ; IEEE: Manhattan, NY, USA, 2016; pp. 101–107.

18. Bhushan, S.; Antoshchuk, S. A hybrid approach to energy efficient clustering for heterogeneous wireless sensor network. J. Technol.
Des. Electron. Appar. 2018, 2, 15–20. . [CrossRef]

19. Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.-J. An Improved Routing Schema with Special Clustering Using PSO Algorithm
for Heterogeneous Wireless Sensor Network. Sensors 2019, 19, 671. [CrossRef] [PubMed]

20. Sahoo, B.M.; Amgoth, T.; Pandey, H.M. Particle swarm optimization based energy efficient clustering and sink mobility in
heterogeneous wireless sensor network. Ad. Hoc. Netw. 2020, 106, 102237. [CrossRef]

21. Zhao, X.; Ren, S.; Quan, H.; Gao, Q. Routing Protocol for Heterogeneous Wireless Sensor Networks Based on a Modified Grey
Wolf Optimizer. Sensors 2020, 20, 820. [CrossRef] [PubMed]

22. Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications.
Sensors 2022, 22, 855. [CrossRef] [PubMed]

http://doi.org/10.1016/j.matpr.2021.05.067
http://dx.doi.org/10.3390/asi3010014
http://dx.doi.org/10.3390/s22062087
http://www.ncbi.nlm.nih.gov/pubmed/35336261
http://dx.doi.org/10.1109/ACCESS.2019.2929578
http://dx.doi.org/10.3390/s19020322
http://www.ncbi.nlm.nih.gov/pubmed/30650551
http://dx.doi.org/10.1109/ACCESS.2020.3041118
http://dx.doi.org/10.1080/00051144.2019.1637174
http://dx.doi.org/10.15222/TKEA2018.2.15
http://dx.doi.org/10.3390/s19030671
http://www.ncbi.nlm.nih.gov/pubmed/30736392
http://dx.doi.org/10.1016/j.adhoc.2020.102237
http://dx.doi.org/10.3390/s20030820
http://www.ncbi.nlm.nih.gov/pubmed/32033014
http://dx.doi.org/10.3390/s22030855
http://www.ncbi.nlm.nih.gov/pubmed/35161600


Sensors 2023, 23, 7711 17 of 17

23. Mantri, D.; Prasad, N.R.; Prasad, R. Grouping of clusters for efficient data aggregation (GCEDA) in wireless sensor network. In
Proceedings of the 2013 3rd IEEE International Advance Computing Conference (IACC), Ghaziabad, India, 22–23 February 2013;
IEEE: Manhattan, NY, USA , 2013; pp. 132–137.

24. Sajwan, M.; Gosain, D.; Sharma, A.K. CAMP: Cluster aided multi-path routing protocol for wireless sensor networks. Wirel. Netw.
2019, 25, 2603–2620. [CrossRef]

25. Elbhiri, B.; Saadane, R.; Aboutajdine, D. Developed Distributed Energy-Efficient Clustering (DDEEC) for heterogeneous wireless
sensor networks. In Proceedings of the 2010 5th International Symposium On I/V Communications and Mobile Network, Rabat,
Morocco, 30 September–2 October 2010; pp. 1–4.

26. Dattatraya, K.N.; Rao, K.R. Maximising network lifetime and energy efficiency of wireless sensor network using group search
Ant Lion with Levy Flight. IET Commun. 2020, 14, 914–922.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11276-018-1689-0

	Introduction
	Related Works
	Pelican Optimization Algorithm
	Proposed Algorithm
	Heterogeneous Network Energy Dissipation Model
	 Enhanced POA Algorithm
	Mechanism of EPOA-CHS Algorithm
	 Epoa-Chs Pseudocode

	Results and Discussion
	Simulation Settings
	Residual Energy
	Network Lifetime
	Alive Nodes Number
	Packet Delivery

	Conclusions
	References

