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Abstract: Huntington’s Disease (HD) is a devastating neurodegenerative disorder characterized by
progressive motor dysfunction, cognitive impairment, and psychiatric symptoms. The early and
accurate diagnosis of HD is crucial for effective intervention and patient care. This comprehensive
review provides a comprehensive overview of the utilization of Artificial Intelligence (AI) powered
algorithms in the diagnosis of HD. This review systematically analyses the existing literature to iden-
tify key trends, methodologies, and challenges in this emerging field. It also highlights the potential
of ML and DL approaches in automating HD diagnosis through the analysis of clinical, genetic, and
neuroimaging data. This review also discusses the limitations and ethical considerations associated
with these models and suggests future research directions aimed at improving the early detection and
management of Huntington’s disease. It also serves as a valuable resource for researchers, clinicians,
and healthcare professionals interested in the intersection of machine learning and neurodegenerative
disease diagnosis.
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1. Introduction

Huntington’s disease is a profoundly impactful neurodegenerative disorder [1] that
not only affects individuals but also casts a long shadow over their families [2]. It represents
a complex clinical picture, marked by the inexorable progression of motor dysfunction,
cognitive decline, and psychiatric symptoms, ultimately culminating in profound disability
and a tragically shortened lifespan [3]. The gravity of HD has sparked growing concern
among the medical and research communities worldwide, triggering multifaceted efforts
to not only unravel its etiological and pathophysiological intricacies but also to pioneer
advancements in its early detection and management [4]. Research in other neurodegenera-
tive diseases such as Alzheimer’s [5–7] and Parkinson’s [8] has similarly aimed to decode
their intricate mechanisms, leading to strides in understanding their pathology and paving
the way for potential treatment breakthroughs.

Recent epidemiological studies have illuminated the prevalence and incidence of HD,
revealing the stark reality of this disease. The pooled incidence of HD, as reported across
various populations, has been estimated at 0.48 cases per 100,000 person-years (95% CI,
0.33–0.63). This statistic underscores the challenging nature of diagnosing HD, especially
in its nascent stages, given its relative rarity. Furthermore, a continent-based analysis of
these figures uncovers marked disparities in the incidence of HD, with Europe and North
America experiencing considerably higher rates compared to Asia. Beyond incidence,
comprehending the prevalence of HD is essential for effective healthcare planning and
resource allocation. The compiled prevalence of HD stands at 4.88 per 100,000 (95% CI,
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3.38–7.06) [9], shedding light on the overall burden of the disease within populations. These
prevalence figures not only serve as an alarming reminder of the global health concern
that HD represents but also emphasize the urgent need for concerted efforts to enhance its
diagnosis, treatment, and support systems for affected individuals and their families.

The pathological progression of Huntington’s disease (HD) remains elusive, drawing
attention from varied research domains. The work [10] explores motor speech patterns,
reflecting the motor involvement in HD. The ref. [11] delves into speech biomarkers across
HD stages, emphasizing the continuum from pre-symptomatic to early manifestation.
An another article [12] contributes insights on Huntington’s multifaceted role, spanning
neurodevelopment to neurodegeneration. Understanding synaptic loss, the ref. [13] and
another study in Nature Medicine [14] highlight the early involvement of microglia, com-
plement activation, and innate immune mechanisms in corticostriatal synapse decline. The
study [15] offers perspectives on the toxic effects of mutant Huntington. This multifaceted
exploration underscores the complexity of HD’s pathological cascade, spanning molecular,
synaptic, and clinical dimensions.

This comprehensive review embarks on an exploration of a highly promising avenue
for augmenting the early diagnosis of HD—the utilization of machine learning (ML) and
deep learning (DL) models [16,17]. The convergence of cutting-edge technology with the
realm of clinical medicine offers an exciting prospect: the ability to identify HD at its
incipient stages, potentially enabling more effective interventions. Through a methodical
examination of the existing literature on ML and DL models for HD diagnosis, it aspires
to provide invaluable insights into the potential of these techniques and the complex chal-
lenges they pose. One of the key aspects this review will explore is the wide range of data
sources that can be harnessed to train and validate ML and DL models for HD diagnosis.
From medical imaging data such as MRI and CT scans to genetic markers and clinical
records, the breadth of available information offers an opportunity to develop compre-
hensive diagnostic models. The integration of multi-modal data and the development
of hybrid models that combine different data types could be a significant focus of the
investigation. This review will address the challenges and ethical considerations associated
with the implementation of AI-powered models in clinical practice. Issues such as data
privacy, model interpretability, and the need for robust validation and regulatory approval
will be explored. Additionally, the review will consider the potential biases that can arise
in ML and DL approaches and strategies to mitigate them, ensuring that these technologies
are deployed in a fair and equitable manner. The importance of early diagnosis in HD
cannot be overstated, as it paves the way for timely interventions that can potentially slow
down the progression of this devastating neurodegenerative disorder. By synthesizing
existing knowledge and offering critical insights, it seeks to inspire further research and
innovation in this field, ultimately advancing our ability to diagnose and treat HD at its
earliest stages, potentially improving the quality of life for affected individuals and their
families. This review, therefore, stands as an indispensable resource for researchers, clini-
cians, and healthcare professionals alike, who are keen to harness the formidable power of
artificial intelligence to make meaningful strides in improving the lives of those affected by
Huntington’s disease.

This work explores the potential of artificial intelligence to improve the diagnosis of
Huntington’s disease. It offers an extensive examination of AI-powered techniques that
have been applied to this condition, and assesses their effectiveness. The motive behind
this paper is to bridge the gap between AI and HD by demonstrating the usefulness of
these technologies in this context. The paper aims to provide a resource for researchers
and practitioners interested in using AI to improve the diagnosis and treatment of HD. The
significant contributions of this study are summarized as follows:

• This paper represents the pioneering effort to comprehensively compare the effective-
ness of AI powered approaches for HD diagnosis, providing a critical synthesis of
their respective strengths and potential clinical applications.
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• This study presents a thorough examination of the various AI powered techniques that
have been applied to the diagnosis of Huntington’s disease. It includes an overview
of different ML and DL methodologies and how they have been used in this context.

• This review addresses current challenges and identifies future research opportunities
in the use of ML and DL for Huntington’s disease diagnosis. It aims to provide
information and inspiration for aspiring researchers and enthusiasts interested in
pursuing this topic.

Arrangement of This Review

Figure 1 comprehensively outlines the structure and organization of the paper. The
sections covered in the paper include the Introduction, Survey Methodology, Huntington’s
Disease Diagnosis, Diagnosis of Huntington’s disease via AI-powered models, Open
Challenges, Future Research Directions, and Conclusion.

Paper Structure

Introduction
Huntington's disease

diagnosis
Artificial Intelligence

models
Open Challenges Future Potentials Conclusion

Contribution of this
Survey

Classification of disease.

Gait abnormalities

Differential diagnosis

Speech Impairments

Biomarkers

Sleep disorder

Machine Learning
models

Deep Learning
models

Naive Bayes

Decision Tree

Support Vector Machine

Random Forest

K Nearest Neighbors

Auto Machine Learning

Ensemble model

Artificial Neural Networks

Deep Neural Networks

Deep Convolutional
Neural Network

Extreme Learning
machine

Deep Boltzmann Machine

Explainable Artificial
Intelligence

Generative Artificial
Intelligence

Internet of Everything

Big data

Cloud computing

Quantum computing

Robotics

Cyber-Physical systems

Augumented Reality

Discussion

Survey Methodology

Structure of this Review

Figure 1. Structure of this review.

2. Survey Methodology

The papers incorporated in this review were curated utilizing the “Preferred Reporting
Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-
ScR)” methodology [18]. Additionally, the selection process was guided by the designated
search string, as illustrated in Figure 2.

Figure 2. Search String for querying from the database.
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2.1. Search Strategy, Databases, and Screening Criteria

This study conducted a search for articles on developing metaheuristic algorithms for
Huntington’s disease diagnosis published between January 2005 and July 2023 on various
databases, including ACM Digital Library, IEEE Xplore, Springer, ScienceDirect, and
Google Scholar. The search for relevant articles for this study involved using keywords
including “Huntington’s disease”, “Huntington’s disease diagnosis”, “neurodegenera-
tive diseases”, “deep learning methods”, “neural networks”, “machine learning”, and
“artificial intelligence”. This search yielded over 253 articles. This study encompasses an
examination of articles concerning the application of machine learning and deep learning
approaches for diagnosing Huntington’s disease, specifically focusing on publications in
the English language from January 2005 to August 2023. Its aim is to offer a summary
of recent advancements in this domain while pinpointing potential directions for future
research. The goal is to contribute to the advancement of knowledge in this area and to
guide future studies on the use of AI for HD diagnosis. This survey only included articles
published in English and after January 2005. It excluded case studies, analyses, reports,
editorials, theses, doctoral dissertations, and analyses published in other languages or
prior to January 2005.

2.2. Quality Assessment

Four trained assessors (S.G., T.C., P.M.D.R.V., and K.S.) conducted the search. In the
case of disagreements or discrepancies, a consensus was reached among the assessors. Ad-
ditionally, two other assessors (N.R.K. and J.K.) were consulted during the disagreements
or discrepancies. The titles and abstracts of previously collected articles were meticulously
examined, excluding any studies deemed irrelevant. Relevant articles were thoroughly
reviewed, analyzing their complete texts, documenting the findings, and identifying any
similar studies that met the inclusion/exclusion criteria. The selected articles were evalu-
ated and approved by an anonymous clinical physician.

2.3. Results

Identification: During the identification phase, a comprehensive search across various
databases yielded 247 relevant articles, while an additional six articles were obtained
from other sources, resulting in a total of 253 articles identified for this comprehensive
review.
Screening: In the screening phase, a meticulous process that included the removal of
duplicates led to a selection of 178 unique articles. Subsequently, following title screening,
79 articles were excluded, and an additional 47 were eliminated after the abstract screening.
In total, 126 articles were removed during the screening process, leaving a focused set of
articles for further review and analysis.
Eligibility: During the eligibility phase, a rigorous assessment revealed that 19 articles
were unrelated to Huntington’s disease, and in 11 articles, no Machine Learning (ML) or
Deep Learning (DL) models were utilized. Consequently, a total of 30 papers were excluded
from the review, ensuring that the remaining articles are directly relevant to the exploration
of Huntington’s disease diagnosis via AI models.
Included: In the inclusion phase, after careful evaluation, a final selection of 22 articles met
the criteria for inclusion in the comprehensive review.

Figure 3 illustrates that adhering to the inclusion and exclusion criteria, a total of
22 papers were obtained as outcomes.
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Records identified through database searching :
Google Scholar : n = 116
Science Direct : n = 59
IEEE Xplore : n = 37

ACM Digital Library : n = 9
Springer : n =26

n = 247 articles

Records identified through additional sources :

n = 6 articles

Total records identified :

n = 253 articles

Records after removal of duplicates :

n = 178 articles

Records screened on title and abstract :

n = 178 articles

Full-text articles assessed for eligibility :

n = 52 articles

Final studies included :

n = 22 articles

Records excluded (n = 126):
79 removed on title screening

47 removed on abstract screening

Records excluded (n = 30):
19 specific to Huntington's disease

11 no machine learning or deep learning 
methods
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Figure 3. PRISMA-ScR flow chart for the inclusion process in this scoping review.

3. Background of Huntington’s Disease Diagnosis

Huntington’s disease is a devastating neurodegenerative disorder characterized by a
progressive deterioration of motor function, cognitive decline, and psychiatric disturbances.
This condition arises due to a mutation in the HTT gene that follows an autosomal dominant
inheritance pattern, resulting in the abnormal expansion of CAG (Cytosine, Adenine,
Guanine) repeats within the gene. The longer the CAG repeats, the earlier the onset and
the more severe the symptoms [19]. HD typically manifests in mid-adulthood, with a
wide range of age at onset, but it can also occur in childhood or late adulthood. Presently,
Huntington’s disease lacks a cure, underscoring the significance of timely and precise
diagnosis for patients and their families.

Diagnosing HD has historically relied on clinical assessments, including the observa-
tion of motor symptoms, psychiatric disturbances, and cognitive decline [20]. However,
as the disease progresses, these symptoms become more evident, making it challenging
to diagnose in the early stages. To address this challenge, advances in genetic testing
have allowed for the direct identification of the CAG repeat expansion in the HTT gene,
providing a definitive diagnosis. Genetic testing is highly accurate and has become the gold
standard for HD diagnosis, enabling individuals at risk to undergo predictive testing before
symptoms appear. Moreover, recent developments in neuroimaging, such as magnetic
resonance imaging (MRI), have enabled clinicians to identify alterations in structure in
the brain associated with HD, even before symptoms become apparent [21]. These imag-
ing techniques can also help monitor disease progression and assess the effectiveness of
potential treatments.

The field of HD diagnosis has witnessed substantial progress over the past few years
with the emergence of biomarker research. Biomarkers are measurable indicators of disease
processes and can include genetic, molecular, or neuroimaging markers [22]. Researchers
are actively exploring various biomarkers to improve the accuracy of HD diagnosis and
track disease progression. For instance, cerebrospinal fluid (CSF) analysis has revealed
potential biomarkers related to neuroinflammation and neuronal damage [23]. Additionally,
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blood-based biomarkers and assays that measure specific proteins or metabolic changes are
being investigated for their diagnostic potential [24]. Combining multiple biomarkers with
clinical assessments and genetic testing holds promise for enhancing early and accurate
HD diagnosis. Furthermore, ongoing research into disease-modifying therapies for HD
underscores the importance of precise diagnosis, as early intervention may offer the best
chance of slowing or halting disease progression.

3.1. Classification of Huntington’s Disease

HD can be classified into two main types depending on the age when symptoms first
appear and disease progression: adult-onset HD and juvenile-onset HD [25]. These classifi-
cations help to differentiate between the timing of symptom onset and the progression of
the disease, providing important insights into the clinical course of HD.

Adult-Onset Huntington’s Disease: Adult-onset HD is the more prevalent form of
the condition, typically making its debut in individuals in the age range spanning from 30
to 50 years [26]. The disease’s signature motor symptoms, including chorea (involuntary,
jerky movements), dystonia (sustained muscle contractions leading to abnormal postures),
and gait abnormalities, are the primary early indicators. Cognitive and emotional manifes-
tations, including memory deficits, mood fluctuations, and alterations in personality, tend
to emerge as the disease progresses. While the rate of disease progression can vary, adult-
onset HD generally advances more slowly than its juvenile-onset counterpart, although life
expectancy is typically reduced, with an average survival of approximately 15 to 20 years
following symptom onset.

Juvenile-Onset Huntington’s Disease: Juvenile-onset HD, although less common,
presents a more aggressive form of the disorder. Symptoms typically arise in childhood or
adolescence, often prior to reaching the age of twenty [27]. Juvenile-onset HD is marked
by a more severe and rapidly progressing clinical course, with prominent motor symp-
toms such as chorea and dystonia. Cognitive decline and behavioral disturbances are
also prevalent, frequently leading to significant impairments in school performance and
social functioning [28]. The disease course in juvenile-onset HD is marked by a swifter
deterioration in motor and cognitive functions, resulting in greater disability and a shorter
life expectancy. Some individuals may experience a rapid deterioration over just a few
years, while others may have a somewhat more protracted course.

3.2. Gait Abnormalities

Gait abnormalities in HD are a prominent and debilitating characteristic of the ailment,
significantly impacting the well-being and standard of living of affected individuals. These
disturbances in walking patterns are often among the earliest motor symptoms to manifest
and can provide valuable diagnostic insights in the clinical evaluation of HD patients. They
typically present as a combination of chorea and dystonia. Chorea refers to involuntary,
jerky, and rapid movements that affect various body parts, including the legs [29]. In the
context of gait, chorea can lead to irregular and uncoordinated movements of the limbs,
making it difficult for individuals to maintain a steady and balanced walking pattern.
Dystonia, on the other hand, involves sustained muscle contractions that result in abnormal
postures or twisting movements. In the context of gait abnormalities, dystonia can lead to
the twisting of the feet or legs, causing individuals to walk with an uneven and irregular
gait [30]. These involuntary movements and postural changes contribute to a distinctive,
unsteady, and often unpredictable gait pattern in HD patients.

As the disease progresses, gait abnormalities tend to worsen, and individuals with
HD may exhibit a wide-based gait, where their feet are placed far apart to maintain balance.
This wide-based gait is an adaptive response to the loss of coordination and balance, as
it provides a larger base of support [31]. However, it can also lead to instability and an
increased risk of falls. Additionally, individuals with HD may experience freezing of gait,
which refers to sudden and temporary episodes where they find it impossible to initiate or
continue walking as if their feet are glued to the ground [32]. Freezing of gait can be partic-
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ularly challenging and hazardous, as it can occur unexpectedly and increases the likelihood
of experiencing falls and sustaining injuries. Moreover, gait disturbances in HD often
coexist with other motor symptoms, such as bradykinesia (slowness of movement) and
muscle weakness, further complicating the ability to walk smoothly and efficiently [33,34].
In the advanced stages of the disease, individuals with HD may require mobility aids, such
as walkers or wheelchairs, to maintain their independence and safety.

3.3. Differential Diagnosis

The differential diagnosis of HD is a critical process in which other conditions that
may cause similar symptoms are ruled out. This is important because the symptoms of HD,
such as movement disorders, cognitive decline, and behavioural changes, can be caused
by a wide range of conditions, and accurate diagnosis is essential for determining the
appropriate treatment and management strategies for individual patients [35]. Some of the
conditions that may be considered in the process of distinguishing between the different
diagnoses of HD include:
Parkinson’s disease: This neurodegenerative disorder is characterised by tremors, rigidity,
and difficulty with movement. While HD also involves movement disorders, the signs of
Parkinson’s disease tend to be more symmetrical and respond well to medication, while
HD symptoms are often asymmetrical and do not respond well to medication [36]. Recent
advancements in gene prioritization strategies, as observed in the context of Parkinson’s
disease (PD) and preeclampsia, underscore the significance of consensus strategies in
unraveling the pathogenesis of neurodegenerative disorders. Studies such as [37,38] exem-
plify the potency of consensus strategies in prioritizing genes linked to disease etiology,
akin to the endeavors witnessed in Huntington’s disease (HD) research. The study [37]
proposed a consensus strategy for PD gene prioritization, merging multiple prioritization
approaches, akin to ensemble models, to enhance the identification of genes relevant to PD
pathogenesis. Similarly, the research [38] utilized a consensus strategy for preeclampsia,
employing various prioritization strategies and bioinformatics analyses to identify cru-
cial genes associated with the condition. These strategies, by amalgamating diverse data
sources and methodologies, facilitate the identification of biologically significant genes,
offering potential targets for understanding the pathogenesis of degenerative diseases such
as HD and developing targeted therapeutics. Importantly, the success of such consensus
strategies in identifying genes directly associated with the disease and those involved in
relevant biological processes echoes the potential applicability of similar methodologies in
HD research, augmenting efforts to comprehend the intricate mechanisms underlying the
disease’s progression and potentially uncovering novel targets for intervention and therapy.
Dementia: This term refers to a decline in cognitive abilities, including memory, language,
and problem-solving [39]. While HD also involves cognitive decline, dementia typically
affects multiple cognitive domains, while HD primarily affects executive functions and
problem-solving abilities [40].
Schizophrenia: This mental disorder is characterized by delusions, hallucinations, and
other psychotic symptoms. While HD may also involve changes in behavior and cognition,
schizophrenia typically involves more severe and persistent symptoms and does not involve
movement disorders [41].
Wilson’s disease: This rare genetic disorder results from a shortage of the enzyme copper-
transporting ATPase, this results in a buildup of copper in the body. Symptoms of Wilson’s
disease may include movement disorders, cognitive decline, and behavioral changes, but
typically also include liver dysfunction and other symptoms that are not seen in HD [42].
Multiple sclerosis: This autoimmune disorder is caused by harm inflicted upon the pro-
tective layer of myelin that encases nerve fibers within the central nervous system [43].
Symptoms of multiple sclerosis may include movement disorders, cognitive decline, and
behavioral changes, but typically also include sensory symptoms, such as numbness and
tingling, that are not seen in HD.
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The process of differential diagnosis for HD typically encompasses a comprehensive
assessment of the patient’s symptoms, their medical background, and the familial medical
history as well as diagnostic tests such as imaging studies and genetic testing. In some
cases, additional specialized testing may be necessary to confirm the diagnosis, such as a
brain biopsy or lumbar puncture. The accurate and timely diagnosis of HD is essential for
ensuring that patients receive the appropriate treatment and support. Early diagnosis can
allow patients to make informed decisions about their care and can provide an opportunity
for early intervention to slow the advancement of the illness and improve their standard
of living. In addition, accurate diagnosis is crucial for enabling individuals undergoing
treatment and their families to access support and resources, such as genetic counseling
and specialized care, that can help them manage the challenges of HD. Ultimately, the
goal of differential diagnosis for HD is to provide individuals undergoing treatment and
their families with the data and assistance they need to navigate the complexities of this
devastating disease.

3.4. Speech Impairments

Huntington’s disease is a condition characterized by the progressive degeneration
of the central nervous system and is characterized by a wide range of clinical symptoms,
including movement disorders, cognitive decline, and behavioral changes. Among the
many symptoms of HD, speech impairments are common and can greatly influence the
standard of living and the individual’s capacity to communicate with others [44]. The
speech impairments seen in HD are typically caused by a combination of factors, including
muscle weakness, difficulty with coordination and control, and cognitive decline. Some of
the common speech impairments seen in HD include:
Dysarthria: This refers to a difficulty in producing clear and intelligible speech and is
often caused by muscle weakness or difficulty with coordination and control [45]. Patients
with HD may have difficulty forming words, and may have a slurred or slushy quality to
their speech.
Aphasia: This refers to a difficulty with language and may include problems with under-
standing, producing, and comprehending speech. Patients with HD may have difficulty
with word-finding, naming objects, or understanding complex sentences [46].
Apraxia: This refers to a difficulty with the planning and execution of voluntary move-
ments, including speech movements [47]. Patients with HD may have difficulty with the
coordination and sequencing of speech sounds, and may have difficulty producing certain
sounds or words.

3.5. Biomarkers

Biomarkers are quantifiable markers of a particular biological process or condition,
and they can be used to diagnose and monitor diseases [48,49]. In the context of HD,
biomarkers can be used to provide additional information about the patient’s disease status,
prognosis, and response to treatment. Some of the potential biomarkers of HD include:

Neuropathological biomarkers: Neuropathological biomarkers in HD encompass
structural and molecular indicators of neurodegeneration. These include characteristic
brain atrophy patterns, particularly in the basal ganglia and cortex, observed through
neuroimaging techniques such as MRI [50]. Additionally, post-mortem examinations reveal
protein aggregates, such as mutant huntingtin, in affected brain regions. Changes in neuro-
transmitter levels and neuronal connectivity also serve as biomarkers. These pathological
features collectively offer a crucial understanding of the fundamental workings of HD,
aiding in diagnosis, prognosis, and the development of targeted therapeutic strategies [51].

Imaging biomarkers: Imaging biomarkers in HD refer to quantifiable features ob-
served through neuroimaging techniques such as MRI, PET, and CT scans [52]. These
include structural indicators such as regional brain atrophy, particularly in the basal gan-
glia, cortex, and white matter tracts. Functional biomarkers reveal alterations in brain
metabolism, connectivity, and neurotransmitter systems. Additionally, advanced imaging
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methods can detect microstructural changes in the brain’s white matter. These imaging
biomarkers provide crucial insights into the progression and severity of HD, aiding in
early diagnosis, tracking disease progression, and assessing the effectiveness of therapeutic
interventions [53].

Wet biomarkers: Wet biomarkers in HD pertain to biological substances such as blood,
cerebrospinal fluid (CSF), or tissue samples that are analyzed in a laboratory setting. These
biomarkers offer insights into the biochemical and molecular changes associated with the
disease [54]. In HD, wet biomarkers may include measurements of specific proteins or
genetic material indicative of disease progression. For instance, elevated levels of mutant
huntingtin protein fragments or alterations in certain neurotransmitters can serve as wet
biomarkers. Additionally, RNA or DNA analysis from biological samples can provide
genetic information relevant to HD diagnosis and progression. These wet biomarkers hold
promise for improving the early detection and monitoring of HD [53].

3.5.1. Brain Imaging

Brain imaging plays a crucial role in understanding and diagnosing HD. Several
imaging techniques offer valuable insights into the structural and functional alterations
that take place in the brains of individuals affected by this neurodegenerative disorder [55].
One of the primary imaging modalities used in HD is magnetic resonance imaging (MRI).
Structural MRI scans unveil important information about the brain’s anatomy, allowing
clinicians to detect specific abnormalities associated with HD [56]. Common findings on
MRI include atrophy of the striatum, a region deep within the brain that is significantly
affected by the disease. This atrophy is particularly pronounced in the caudate nucleus
and putamen, which play a role in regulating physical movement and coordination. As the
disease progresses, these regions shrink, and the ventricles (fluid-filled spaces in the brain)
may enlarge. These structural changes are visible on MRI and contribute to the diagnosis
of HD.

Imaging methods that assess functionality, such as positron emission tomography
(PET) and functional MRI (fMRI), provide insights into the brain’s activity and connectivity.
PET scans can reveal metabolic changes in the brain, including reduced glucose metabolism
in affected areas. This reduction in metabolic activity corresponds to the regions of atrophy
seen on structural MRI scans and is indicative of the dysfunction occurring in those brain
areas. Functional MRI, on the other hand, can assess the connectivity and interaction
between different brain regions [57]. In HD, disruptions in functional linkage between
the basal ganglia as well as other areas of the brain contribute to the motor and cognitive
symptoms of the disease. These functional imaging techniques not only aid in diagnosis
but also provide valuable information for tracking disease progression and evaluating
potential treatments. Furthermore, progress in neuroimaging has resulted in the creation
of specialized techniques for studying specific aspects of Huntington’s disease. Diffusion
tensor imaging (DTI) is employed to evaluate the integrity of bundles of white matter
fibers in the brain, which are essential for transmitting signals between different brain
regions [58]. In HD, DTI can detect abnormalities in white matter connectivity, contributing
to the understanding of how the disease affects information transfer within the brain.
Additionally, some studies have employed functional connectivity MRI (fcMRI) to explore
changes in brain networks and their role in HD symptomatology.

3.5.2. EEG signal

Electroencephalography (EEG) is a valuable neurophysiological tool used in the diag-
nosis and assessment of HD. HD is a progressive neurodegenerative disorder that primarily
affects the basal ganglia and results in widespread brain dysfunction [59]. While the deter-
mination of HD is primarily using clinical standards as a foundation, EEG has emerged as
a complementary diagnostic tool to provide insights into the brain’s electrical activity and
to detect certain characteristic patterns associated with the disease.
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The proportionate strength of the narrow sub-band within the theta-alpha range
(specifically 7–8 Hz) showed a statistically significant reduction in pre-HD subjects
when compared to normal controls. This reduction in relative power of the 7–8 Hz
sub-band suggests abnormal electrical activity in the brain of pre-HD individuals [60].
This slowing of brainwave activity is indicative of widespread cortical dysfunction
and is often associated with cognitive impairment, which is a common feature of HD.
Additionally, HD patients may exhibit increased interhemispheric asymmetry in their
EEG patterns, reflecting the disruption of communication between the brain’s hemi-
spheres [61]. These anomalies in EEG patterns are detectable during the early stages
of the disease, occurring prior to the emergence of obvious motor symptoms, making
EEG a potentially valuable tool for the purpose of early detection and monitoring the
advancement of the condition.

Moreover, EEG can be particularly useful in differentiating HD from other neurode-
generative disorders with similar clinical presentations, such as Parkinson’s disease. HD
often presents with chorea, a type of abnormal involuntary movement, which can be
challenging to differentiate from Parkinson’s disease-related tremors [62]. EEG can aid
in this differentiation by showing characteristic differences in the patterns of electrical
brain activity between these disorders. While EEG findings in HD are not specific to the
disease, the combination of clinical symptoms and EEG abnormalities can contribute to a
more accurate diagnosis and help clinicians rule out other conditions. Furthermore, EEG
may have a role in tracking advancement of the condition and evaluating the impacts of
potential treatments for HD, providing valuable insights into the neurological changes
associated with this devastating disorder.

3.6. Sleep Disorders Present in Huntington’s Disease

Sleep disturbances are common and often overlooked aspects of HD, a neurodegener-
ative disorder [63]. Individuals with HD frequently experience a range of sleep disorders
that further complicate their already challenging condition. Insomnia is one of the most
prevalent sleep issues in HD, marked by trouble initiating sleep or staying asleep. The
motor symptoms of HD, including chorea and dystonia, can contribute to nighttime rest-
lessness, making it challenging for affected individuals to achieve a restful night’s sleep.
This chronic sleep disruption can exacerbate other symptoms of HD, such as cognitive and
psychiatric disturbances, ultimately impacting the overall quality of life.

Another prominent sleep disorder in HD is excessive daytime sleepiness. This ex-
cessive drowsiness can be ascribed to a combination of various elements, encompassing
disrupted sleep patterns at night and the disease’s impact on the brain’s structures involved
in regulating wakefulness. Excessive daytime sleepiness not only impairs daily functioning
but can also lead to an increased risk of accidents and falls. Moreover, individuals with HD
may experience irregularities in their biological clocks, resulting in irregular sleep–wake
cycles. These disturbances can contribute to daytime sleepiness and further affect their
ability to engage in daily activities and maintain social connections. Furthermore, sleep
disorders in HD can manifest as parasomnias, which involve abnormal behaviors or move-
ments during sleep. Parasomnias in HD may include restless leg syndrome, periodic limb
movements, or even sleepwalking. These behaviors can result in injury or disrupt the sleep
of bed partners or family members. Additionally, sleep disorders in HD can exacerbate
cognitive decline and behavioral disturbances, making it essential for healthcare profes-
sionals to address sleep issues as part of the comprehensive care plan for individuals with
HD. Managing sleep disorders in HD often requires a multi-faceted approach, including
medication, behavioral interventions, and lifestyle adjustments, to help improve the overall
quality of sleep and mitigate their impact on the disease’s progression.

3.6.1. Rapid Eye Movement Sleep Behaviour Disorder

This is a prevalent sleep disturbance linked with Huntington’s disease [64]. Rapid
Eye Movement Behavior Disorder (RBD) is a sleep condition characterized by the absence
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of typical muscle paralysis during the REM (Rapid Eye Movement) phase of sleep. In
individuals with RBD, the muscles of the body are not paralyzed during REM sleep, which
allows individuals to act out their dreams. This can lead to sleep-related injuries and
disrupted sleep [62]. The occurrence of RBD is more common in individuals with HD
than in the general population, with estimates ranging from 30–50%. The development of
RBD in HD is thought to be related to the underlying neurodegeneration that occurs in
the disease. The loss of neurons in specific brain regions, such as the basal ganglia, may
lead to the development of RBD in HD. The symptoms of RBD in HD can include violent
movements during sleep, sleep-related injuries, and disrupted sleep [65]. The presence of
RBD in HD can have a substantial influence on the overall well-being of individuals with
the disease and can contribute to the development of additional sleep conditions, such as
sleep-related breathing disorders.

Characterization:
REM sleep in individuals with HD exhibits distinct characteristics that set it apart

from normal sleep patterns. Here are some key features:

• Loss of Atonia: In HD, there is a notable absence of muscular activity typically
observed during the rapid eye movement (REM) sleep phase. This means that the
characteristic muscle paralysis that occurs during REM, preventing individuals from
acting out their dreams, is compromised. This leads to vivid and often vigorous
movements or behaviors during this phase of sleep.

• Complex Motor Behaviors: Individuals with HD may exhibit a range of complex
motor behaviors during REM sleep. These can include purposeful movements, such
as reaching, grasping, or even more dramatic actions such as punching or kicking.
These behaviors can be disruptive and may lead harm to the individual or their
sleeping companion.

• Frequency and Intensity: The frequency and intensity of REM sleep behavior disorder
(RBD) in HD can vary among individuals. Some may experience sporadic episodes,
while others may have more frequent and intense behaviors. Factors such as the stage
of HD progression and individual differences in sleep patterns may contribute to
this variation.

• Dream Enactment: RBD in HD often involves vivid and often violent dream enactment
behaviors. These behaviors are typically related to the content of the dream, suggesting
a failure in the normal inhibitory mechanisms that prevent motor activity during
REM sleep.

• Potential Prodromal Sign: Emerging research suggests that RBD might occur before the
appearance of motor symptoms in Huntington’s disease. This has led to speculation
that RBD could serve as a potential prodromal sign or early marker of the disease.
Monitoring REM sleep behaviors in individuals at risk for HD could provide valuable
insights into disease progression.

3.6.2. Restless Legs Syndrome and Periodic Limb Movement

Restless legs syndrome (RLS) and periodic limb movement disorder (PLMD) are
two separate sleep disorders that can affect people with Huntington’s disease [66]. This
neurological condition is marked by an uncontrollable need to move the legs, frequently
accompanied by uncomfortable sensations in the lower limbs [67]. It typically occurs dur-
ing periods of inactivity and can interfere with sleep, leading to daytime fatigue and other
problems. RLS is thought to be caused by abnormal brain activity involving the neurotrans-
mitter dopamine. PLMD, on the other hand, is a sleep disorder characterized by repetitive,
unintentional leg motions (and sometimes the arms) during sleep. These movements can
cause disrupted sleep and can have connections to other sleep-related conditions such as
sleep apnea. While the precise origin of PLMD remains unclear, it is thought to be related
to abnormal brain signaling involving the neurotransmitter acetylcholine. Both RLS and
PLMD can be treated with medications, such as dopamine agonists or benzodiazepines, to
help reduce the frequency and severity of symptoms.
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Characterization:

• Unpleasant Sensations: Individuals may experience uncomfortable sensations in
their legs, described as tingling, crawling, or aching. These sensations are often
accompanied by an uncontrollable desire to shift or reposition the legs or other limbs,
especially when at rest.

• Worsening in the Evening/Night: Symptoms tend to worsen in the evening and at
night, disrupting the ability to fall asleep and maintain restful sleep.

• Motor Restlessness: This includes both voluntary and involuntary movements of the
lower limbs, which can extend to other parts of the body. These movements can be
rhythmic and repetitive in nature.

• Periodic Movements: In addition to the continuous urge to move, individuals may
experience periodic, involuntary limb movements during sleep. These movements
often happen at consistent time intervals, typically occurring approximately every 20
to 40 s.

• Impact on Sleep Quality: Both RLS and PLMD can severely disrupt sleep, leading to
insomnia, daytime fatigue, and impaired cognitive functioning.

• Bed Partner Awareness: In the case of PLMD, the affected individual is often unaware
of the limb movements during sleep. It is usually a bed partner or a sleep study that
observes these movements.

• Daytime Consequences: Both conditions can lead to daytime sleepiness and decreased
the standard of life resulting from disrupted sleep architecture.

Automatic Detection:
The diagnosis of RLS and PLM is based on patient self-reporting, and polysomnogra-

phy (PSG), which is an overnight sleep study that gathers a range of physiological metrics,
such as brainwave patterns, ocular movements, and muscle responses. PSG is the gold
standard for diagnosing RLS and PLM, but it is expensive, time-consuming, and requires
specialized equipment and trained technicians . Over the past few years, there has been a
noticeable trend in growing the interests to develop automated methods for detecting RLS
and PLM using non-invasive sensors, such as accelerometers, which can be worn on the
leg or ankle. These sensors can detect movement and provide objective measures of leg
movements during sleep [68].

One approach to automatic detection of RLS and PLM is to use AI-powered techniques,
which can be trained to recognize patterns in the accelerometer data that are associated
with RLS and PLM. This approach has shown promising results in several studies, with
accuracy rates ranging from 80% to 90%. Another approach to automatic detection of RLS
and PLM is to use signal processing techniques to analyze the accelerometer data [69]. This
approach involves extracting various features from the accelerometer data, such as the
frequency and amplitude of the leg movements, and using these features to identify RLS
and PLM. This approach has also shown promising results in several studies, with accuracy
rates ranging from 70% to 90%.

4. Exploring HD Disease Diagnosis via AI-Powered Models
4.1. Preamble—Diagnosis of Huntington’s Disease via AI-Powered Models

The need for AI-powered approaches in HD diagnosis arises from the pressing de-
mand for early and accurate detection of this debilitating neurodegenerative disorder. HD
is a multifaceted condition with a broad range of clinical manifestations, making it chal-
lenging for clinicians to diagnose, particularly in its early stages. ML and DL models have
demonstrated their potential in handling the intricate and multi-modal data associated
with HD, including genetic information, neuroimaging scans, and clinical assessments.
These models can leverage vast datasets to identify subtle patterns and biomarkers that
might elude human observers, enabling earlier and more precise diagnosis. Additionally,
the development of automated diagnostic tools can alleviate the burden on healthcare
professionals, streamline the diagnostic process, and ultimately lead to better patient out-
comes. Given the ongoing progression of HD coupled with the lack of a definitive cure, the
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timely diagnosis facilitated by ML and DL techniques becomes paramount for initiating
appropriate interventions, providing counseling, and advancing research into potential
therapies. Therefore, the integration of ML and DL models into HD diagnosis is not only a
necessity but also holds significant promise for enhancing the quality of life for individuals
and families impacted by this devastating disease.

4.2. Machine Learning Techniques

Machine learning techniques have emerged as valuable tools in the diagnosis and
assessment of Huntington’s disease. These techniques utilize various algorithms and
computational approaches to analyze complex data sets, offering clinicians and researchers
new insights into the disease [70]. One of the primary applications of machine learning in
HD diagnosis is the identification of biomarkers and patterns within medical images, such
as magnetic resonance imaging (MRI) and functional MRI (fMRI) [71]. Machine learning
algorithms can detect subtle changes in brain structure and function, helping to distinguish
individuals with HD from healthy controls and providing a means to monitor disease
progression over time. Additionally, machine learning models can analyze clinical data,
including motor, cognitive, and psychiatric assessments, to identify relevant features and
patterns that contribute to accurate diagnosis and prognosis [72].

It also plays a crucial role in predictive modeling for HD risk assessment. By incor-
porating genetic data and other relevant factors, machine learning algorithms can predict
an individual’s likelihood of developing HD, aiding in early intervention and counseling.
Furthermore, machine learning approaches can be applied to large-scale genetic studies to
identify genetic modifiers and factors linked to the potential for risk involving with the age
of onset and disease advancement. This information not only deepens our understanding of
the disease but also has implications for the development of targeted therapies. In summary,
machine learning techniques are advancing the field of HD diagnosis by facilitating the
extraction of valuable insights from clinical and genetic data, ultimately leading to earlier
detection and improved management of this devastating neurodegenerative disorder.

4.2.1. Naive Bayes

The Naive Bayes classifier stands out as a prominent choice for effectively discerning
gait signals between individuals with HD and those without the condition [73]. The study
reports an impressive accuracy rate of 94.4% achieved by the Naive Bayes classifier in this
diagnostic context. This highlights the effectiveness of Naive Bayes as a valuable machine
learning tool for Huntington’s disease diagnosis, offering the potential for non-invasive
and objective assessment of individuals based on their gait dynamics, aiding in the timely
identification and continuous tracking of the condition.

4.2.2. Decision Tree

The use of Decision Tree stands out as a highly effective tool in the diagnosis of
Huntington’s disease [73]. Decision Tree achieved an impressive average accuracy of 100%
in accurately classifying gait signals from subjects with HD. This remarkable accuracy
underscores the robustness of the Decision Tree algorithm in distinguishing individuals
with HD based on their gait dynamics. Additionally, the Decision Tree emerges as a
pivotal machine learning algorithm employed for the prediction and identification of
potential contributing genes in Huntington’s disease [74]. This method involves the use of
Decision Tree to formulate rules for attributes, specifically genes, and makes determinations
regarding the prediction class, which denotes whether a given sample is associated with
HD or not. Remarkably, the Decision Tree model showcased its efficacy by achieving an
impressive cross-validated classification accuracy of 90.79% with a standard deviation of
4.57% when applied to the expression data of prefrontal cortex samples.
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4.2.3. Support Vector Machine

Support Vector Machine (SVM) emerges as a crucial classifier for gait classification,
playing a significant role in the context of Huntington’s disease diagnosis, alongside other
pathological conditions [75]. The utilization of SVM to differentiate gait patterns among
diverse clinical groups, including individuals with Huntington’s disease, post-stroke pa-
tients, and healthy elderly individuals, employing data collected from inertial sensors. The
classifier is trained using features derived from subject-specific Hidden Markov Models
(HMMs), encompassing temporal and frequency domain signal data, and employs a leave-
one-subject-out cross-validation technique, working in conjunction with three HMMs to
assess likelihoods and ensure precise gait classification. The SVM also emerges as a valuable
supervised classification method utilized for the discrimination of neurodegenerative dis-
eases, including Huntington’s disease, through gait analysis [76]. This approach leverages
SVM as a prediction model to classify and monitor these target diseases effectively. Notably,
the SVM model aids in the identification of the most predictive features extracted from
the gait analysis dataset, enabling a refined and accurate disease discrimination process.
Impressively, the SVM model achieves a commendable accuracy rate of 86.9% in distin-
guishing these neurodegenerative diseases, underscoring its significance as a powerful tool
for enhancing the diagnostic capabilities and understanding of HD and similar conditions
through the analysis of gait patterns.

SVM is harnessed for classification purposes, specifically to distinguish individuals
as either pre-HD or controls based on neuroimaging data [77]. Collaborating with linear
discriminant analysis (LDA), SVM plays a crucial role in developing classification models
capable of decoding essential information about the disease state from neuroimaging
data. Impressively, these classification models utilizing SVM achieve notable success,
reaching up to 76% accuracy in effectively distinguishing between pre-HD and control
individuals based on their neuroimaging profiles. SVM is also applied for the classification
of subjects by their HD stage, based on oculomotor features [78]. The accuracy of the SVM
classifier varies depending on the specific classification task, achieving 73.47% accuracy for
distinguishing control participants from pre-HD participants, 81.84% for distinguishing
control participants from HD subjects, and 83.54% for distinguishing pre-HD subjects
from HD patients, highlighting its effectiveness in stratifying individuals based on disease
progression. Linear SVM is employed to classify eye tracking data across pre-HD, HD,
and control groups, utilizing different combinations of features to optimize performance.
Notably, the study reports the best accuracy of 76.88% for the CTRL vs. HD classifier and
72.50% for the pre-HD vs. HD classifier, underscoring the utility of SVM in Huntington’s
disease diagnosis by leveraging oculomotor performance-derived features to accurately
differentiate disease stages.

SVM plays a pivotal role in the classification of HD stages based on features ex-
tracted from T1- and diffusion-weighted imaging data [79]. Utilizing SVM, different
feature selection techniques, such as whole-brain GM or FA values, subcortical regions-
of-interest GM or FA values, and automated GM or FA value selection via the Relief-F
algorithm, are employed to classify HD stages. This research showcases the adaptability
of SVM, achieving noteworthy distinctions between Early-HD and Pre-HD or healthy
individuals, with accuracy levels spanning from 85% to 95%. Moreover, SVM effectively
discriminates Pre-HD from controls using the caudate region’s FA feature, achieving an
accuracy of 74%.

SVM model is harnessed to facilitate the development of a novel formula for HD. SVM,
a versatile machine learning algorithm widely recognized for its proficiency in classification
and regression tasks, proves instrumental in handling the complex task of formulating a
treatment for Huntington’s disease [80]. This research utilizes SVM to model training using
documented Traditional Chinese Medicine (TCM) prescriptions. The objective is to identify
a formula that can effectively target multiple proteins associated with HD, leveraging the
SVM model’s ability to work with high-dimensional data and complex datasets. SVM
is also utilized to classify gait signals from unknown subjects, distinguishing between
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those suffering from HD and healthy subjects [73]. Remarkably, experimental results
highlight SVM’s outstanding performance, achieving an impressive average accuracy of
100.0% in accurately classifying gait signals. The remarkable precision achieved marks
a notable milestone in Huntington’s disease diagnosis, underscoring SVM’s potency in
effectively utilizing gait dynamics data for dependable differentiation of HD patients from
non-afflicted individuals.

4.2.4. Random Forest

In the ref. [74], Random Forest emerges as a prominent machine learning algorithm
employed for the identification of contributing genes in Huntington’s disease. This strategy
employs Random Forest to scrutinize postmortem prefrontal cortex samples from HD
patients and control subjects, with the objective of identifying genes potentially linked
to HD pathogenesis. The versatility of Random Forest proves beneficial in this context
by effectively reducing the dimensionality of the data and highlighting the most relevant
genes implicated in the pathophysiology of HD.The Random Forest model achieved a
notable accuracy of 90.45 ± 4.24%, highlighting its pivotal role in aiding the diagnosis and
comprehension of HD by deciphering the genetic components influencing its onset and
progression. Random Forest also emerges as a prominent supervised classification model
utilized for the discrimination of neurodegenerative diseases, including Huntington’s
disease, through gait analysis. Random Forest serves as a computational classification
technique, effectively characterizing these diseases using extracted features from gait
cycles [76]. The study reports an impressive accuracy rate of 84.9% achieved by the Random
Forest model, highlighting its substantial contribution to the accurate discrimination of
HD and other neurodegenerative conditions based on gait patterns. The ref. [81] mainly
focuses on assessing the significance and order of importance of potential factors that could
predict the progression of clinical symptoms in patients with manifest HD. It accomplishes
this by employing a random forest regression model to forecast how clinical outcomes
change based on these factors.

Random Forest emerges as a powerful machine learning technique employed to
discern microRNA biomarkers indicative of susceptibility to Juvenile Onset Huntington’s
Disease (JOHD) [82]. The research employs the Random Forest methodology strategically
to build predictive models, which can distinguish between JOHD and WT samples using
mouse cortex samples from both young and aged groups. Additionally, it aims to
forecast the inclination toward those genotypes. Impressively, the Random Forest model
yields several robust models with testing accuracies exceeding 80% and impressive Area
Under the Curve (AUC) scores surpassing 90%. It demonstrates a remarkable ability to
distinguish between JOHD and WT samples, featuring a mature mRNA-based model
that achieves a flawless 100% AUC score, highlighting its outstanding discriminatory
capabilities. This application of Random Forest in the study underscores its potential
in not only identifying crucial microRNA biomarkers but also in the diagnosis and
predisposition assessment of Juvenile Onset HD, offering a significant advancement in
the field of HD diagnostics.

4.2.5. K-Nearest Neighbours

K-Nearest Neighbors (KNN) emerges as a significant classifier for the diagnosis of HD
based on gait dynamics information. KNN, a well-known machine learning classifier, plays
a crucial role in distinguishing individuals with HD from healthy subjects by classifying gait
signals from unknown subjects [73]. The study reports an impressive accuracy rate of 97.2%
achieved by the KNN classifier, underscoring its effectiveness in accurately identifying and
differentiating individuals with HD from those without the condition through the analysis
of gait dynamics.
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KNN is employed for the identification of HD through audio signal processing [83].
KNN is applied in the classification stage following dimensionality reduction of voice
signals, contributing to the accuracy of disease detection. The study demonstrates the
effectiveness of the combination of the emobase2010 feature extractor with the KNN
classifier, achieving an impressive accuracy rate of 97.3%. Notably, this high accuracy is
achieved while maintaining a prediction time below one second, highlighting the practi-
cal utility of KNN in Huntington’s disease diagnosis through audio signal analysis.

4.2.6. Ensemble Models

The ref. [84] highlights the crucial significance of ensemble classifier algorithms, with
a specific emphasis on employing general ensemble classifier algorithms, in distinguishing
gait patterns between individuals affected by HD and those who are healthy. This inno-
vative methodology amalgamates individual classifier algorithms such as Logitboost and
RandomForest, where Logitboost serves as the metaclassifier and RandomForest acts as the
base classifier. The combination of Logitboost and RandomForest as ensemble classifiers
showcases superior performance, particularly outperforming other tree decision algorithms
in effectively classifying HD gait data. Significantly, the ensemble classifier method intro-
duced demonstrates notable improvements in accuracy. It successfully classified 13 out of
14 subjects correctly and accurately identified all seven individuals with HD when employ-
ing the Logitboost and RandomForest combination. This showcases the significant promise
of ensemble classifiers, specifically in harnessing ankle-mounted iPhone sensor data for
robust diagnostic capabilities within the domain of Huntington’s disease classification.
This approach holds substantial promise for advancing the accuracy and efficiency of HD
diagnosis through gait analysis.

This research [85] presents an ensemble machine learning model that consistently
outperforms nine conventional machine learning models, notably excelling in terms of
accuracy. This ensemble model achieves a commendable balanced accuracy of 55.3% ± 6.1
in a 4-group classification of HD progression states. Even more impressive results are
observed in binary classifications, with accuracies ranging from 70.9% ± 9.4 to 83.3% ± 6.3.
Notably, the accuracy of the ensemble model experiences further augmentation through
the incorporation of volumetric scores from diverse brain regions, including the occipital
cortex, lateral ventricles, cingulate, and temporal lobe, in addition to the striatal structures.
This emphasizes the potential of ensemble learning algorithms in advancing the precision
of HD diagnosis through the utilization of structural MRI data, illustrating a significant
stride forward in the field of neuroimaging-based diagnostics.

4.2.7. Automatic Machine Learning

AutoML provides a significant advancement by automating the selection and opti-
mization of machine learning models, thus reducing the need for manual intervention in
model selection and tuning [86]. Within this investigation, the utilization of auto-sklearn,
which harnesses Bayesian optimization algorithms, effectively pinpoints the most proficient
model within the training dataset. This optimization contributes to an elevated level of
effectiveness and precision in prediction outcomes. Notably, the utilization of AutoML
enables the integration of various speech features with demographic variables to predict
cognitive, motor, and functional scores in HD. Moreover, it supports the creation of fully
automated methods for speech analysis, potentially minimizing the need for manual anno-
tations and enabling remote assessment of individual conditions in Huntington’s disease
and similar neurodegenerative disorders. While the paper does not explicitly mention the
accuracy of the AutoML models, it emphasizes the significant improvement in predictions
when combining speech features with demographic variables, showcasing its potential
for accurate assessment in HD. This innovative approach holds immense promise for
advancing the diagnostic capabilities of Huntington’s disease.
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4.2.8. Summary of Machine Learning Models

In summary, machine learning models have emerged as powerful tools for the diagno-
sis and understanding of HD. Various ML algorithms, as described in the earlier headings,
have been applied to diverse data sources such as gait dynamics, genetic information,
neuroimaging data, and speech recordings to enhance HD diagnosis and prognosis as in
Table 1. These models have shown remarkable accuracy rates, often surpassing 90%, and
have the potential to contribute to early detection, monitoring, and understanding of HD.
However, several limitations persist across these studies, including the need for larger and
more diverse datasets, the interpretability of complex models, and ethical considerations
related to data privacy and security. Moreover, generalization to larger populations and
clinical settings remains a challenge. The incorporation of automatic machine learning
(AutoML) approaches signifies a promising direction in automating model selection and
parameter tuning, potentially making these ML models more accessible for clinical deploy-
ment. Overall, ML models offer substantial potential for improving HD diagnosis, but
further research and validation are needed to fully harness their capabilities and ensure
their clinical utility.

Table 1. Summary of Machine Learning Models.

Reference

Machine
Learning
Approaches
Used

Main Contributions Dataset
Performance
Evaluation
Metrics

Limitation

[73] Decision Tree
Proposes an automated method
for evaluating gait dynamics
as a means of diagnosing HD.

Gait in
Neuro-
degenerative
disease
dataset of
36 people

Accuracy
= 100%

Limited
models
explored

[74] Decision Tree Identification of potential genes
contributing to HD

GSE33000
dataset of
314 subjects

Accuracy
= 90.79 %

Small data
samples

[75] Support Vector
Machine

Introduces an approach centered
around training classifiers such as
Hidden Markov Models
and SVMs, tailored to specific classes,
with a focus on gait classification.

Dataset
of gait
measurements
of 58
subjects

Accuracy
= 90.5%

Restricted
to only
two patho-
logical
populations

[76] Support Vector
Machine

Investigates the viability
of employing machine learning and
statistical methods to aid in
distinguishing neurodegenerative
conditions through gait analysis.

Gait in
Neuro-
degenerative
disease
dataset of
64 patients

Accuracy
= 86.9%

Use of
irrelavant
features

[77] Support Vector
Machine

Focuses on developing imaging
biomarkers for neurodegenerative
disease, specifically HD.

Voxel based
data
of 64
individuals

Accuracy
= 76%

Classification
pre-HD
subjects
>22 YTO or
>14 YTO
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Table 1. Cont.

Reference

Machine
Learning
Approaches
Used

Main Contributions Dataset
Performance
Evaluation
Metrics

Limitation

[78] Support Vector
Machine

Explores the use of ML methods,
specifically the SVM algorithm,
to classify individuals with HD
based on oculomotor performance

Recorded eye
movement
data of 50
participants

Classifying:
Accuracy
= 73.4%
Distinguishing:
Accuracy
= 81.8%

Relatively
small number
of individuals
per group

[79] Support Vector
Machine

Investigates the use of SVMs
in categorizing HD stages , utilizing
metrics extracted from T1-weighted
and diffusion-weighted imaging data.

MRI-derived
datasets of
68 people

Classifying:
Accuracy
= 85–95%
Distinguishing:
Accuracy
= 74%

Small training
sample size

[80] Support Vector
Machine

Utilization of a pharmacologic
strategy to explore a newly developed
traditional Chinese medicine (TCM)
formulation for HD therapy.

TCM database

CoMFA − R2 =
0.9488
CoMSIA − R2 =
0.9555

Limited
only to
HD

[73] Support Vector
Machine

Recommends an automated
method for diagnosing HD by
examining gait dynamics

Gait in
Neuro-
degenerative
disease
dataset of
36 people

Accuracy
= 100%

Limited
models
explored

[74] Random Forest
Utilising machine learning methods
to pinpoint potential genes that play
a role in HD

GSE33000
dataset of
314 subjects

Accuracy
= 90.45%

Small data
samples

[81] Random
Forest

Aims to assess the ability of
clinical and biological factors
to forecast the advancement of HD.

Enroll-HD
periodic
dataset (PDS6)
of 15,301
subjects

NIL

Focused on
clinical
variables
only

[82] Random
Forest

Discover potential microRNA
biomarkers associated with
susceptibility to Juvenile Onset HD.

JOHD miRNA-
mRNA
expression
dataset
(GSE65776)
of 168 samples

100% AUC
Limited to
Juvenile
Onset HD

[83] K-NN

Suggested an innovative method
to identify HD by
analyzing digitized voice recordings
of patients reciting Lithuanian poems.

Own audio
dataset
of 24
patients

Accuracy
= 97.3% Smaller dataset

[84]
Logiboost,
Random
Forest

Enhance the accuracy of
classifying HD patients using
gait data while simultaneously
minimizing the reliance on a
reduced number of sensor devices
for data acquisition.

HD gait
dataset of
28 gait
features

For raw data:
Accuracy
= 94.4%
For gait features:
Accuracy
= 92.8%

Analyses only
two
experiment
results
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Table 1. Cont.

Reference

Machine
Learning
Approaches
Used

Main Contributions Dataset
Performance
Evaluation
Metrics

Limitation

[85] Ensemble
Model

Creation and presentation of
a ML model based on stacked
ensemble techniques for predicting
the individual stages of HD.

TRACK-HD
dataset of
184 HD
patients

Accuracy
= 55.3% ± 6.1

Research solely
on baseline
cross-sectional
data only

[86]
Automatic
Machine
Learning

Development of a ML model
that can predict clinical
performance in HD using brief
samples of speech recordings

126 samples
of audio
recordings
of HD
gene carriers

Relative error
from 12.7% to
20%

Less
number of
participants

4.3. Deep Learning Techniques

Deep learning approaches have become potent instruments for advancing the field of
HD research and diagnosis. These techniques utilize the artificial neural network (ANN)
with stacked layers to automatically acquire complex patterns and representations from
complex datasets. Deep learning models excel at capturing hierarchical and abstract
features from diverse data sources, such as neuroimaging scans, genetic data, and clinical
assessments. The application of deep learning in the context of HD has shown promise
in enhancing diagnostic accuracy, predicting disease progression, and uncovering fresh
perspectives on the fundamental mechanisms behind disorder.

4.3.1. Artificial Neural Network

The study [87] introduces a mathematical model, incorporating Artificial Neural
Networks (ANN), which effectively simulates HD disorders and accurately replicates the
behavior of individuals affected by Huntington’s disease. Specifically, the ANN within the
model is trained using comprehensive data and physiological insights concerning the Basal
Ganglia (BG), the region of the brain primarily impacted by HD. This innovative model
serves as a potent analytical tool for comprehensively studying HD behavior, offering
valuable insights into the underlying causes of movement disorders in HD patients. By
employing ANN in mathematical models of brain performance, particularly within the
context of BG in HD, this research significantly contributes to the expansion of medical
knowledge and sheds crucial illuminate the intricacies of brain function in individuals
grappling with Huntington’s disease.

The research [88] introduces an innovative hybrid model designed to assess the symp-
toms of individuals afflicted with Huntington’s disease. This model ingeniously combines
the robust predictive capabilities of an ANN with the interpretability afforded by a fuzzy
logic system (FLS). Remarkably, the ANN component of the model achieved an impressive
regression R value of 0.98, along with a low mean squared error (MSE) of 0.08. These
metrics affirm the accuracy of the model in predicting the functional capacity level (FCL)
of an individual. Complementarily, the FLS component offers a conclusive evaluation
of the subject’s reaction condition, further enhancing the model’s interpretability. This
amalgamation of ANN and FLS in the hybrid model enables a comprehensive evaluation
of HD symptoms, effectively leveraging both predictive capabilities and linguistic interpre-
tation. This pioneering model holds significant potential in advancing the daily lives of
HD patients, offering a means to monitor and predict disease progression for improved
care and management.
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In the ref. [89], a comprehensive model employing a range of Artificial Neural Network
(ANN) models to analyze data gathered from smart devices, such as smartphones or
tablets, in order to forecast the functional capacity level of individuals afflicted with HD,
is introduced. This approach encompasses a diverse array of ANN models, including
Cascade forward backpropagation (CFBP), Feed-forward backpropagation (FFBP), Elman,
Generalized regression neural network (GRNN), Nonlinear autoregressive exogenous
model (NARX), Layer recurrent neural network (RNN), and Feed-forward time delay
neural network (FFTDNN). The paper intricately details the entire process, from data
preparation and labeling to the selection of learning algorithms, specific neural network
training, performance evaluation, and comparative analysis. This study represents a
significant stride toward leveraging advanced technology for a more precise and insightful
assessment of functional capacity levels in HD patients.

The ref. [90] underscores the significance of employing non-linear techniques, particu-
larly ANNs, as a potent tool in comprehending the intricacies of HD. The authors present a
pioneering approach utilizing ANNs to accurately discern between control subjects and
those affected by HD, leveraging DNA CpG methylation data. What sets this approach
apart is its capacity to streamline the consideration of CpGs from hundreds of thousands
down to a mere 237, showcasing the remarkable effectiveness of deep learning techniques
in HD diagnosis. The study’s results unequivocally demonstrate that by focusing on these
237 CpGs and employing non-linear techniques such as ANNs, a precise differentiation
between control and HD patients can be achieved. Overall, this paper advocates for the
pivotal role of artificial neural networks, particularly as a deep learning technique, in the di-
agnosis of Huntington’s disease, particularly when leveraging DNA CpG methylation data.

4.3.2. Deep Neural Network

Deep Neural Network revolutionizes the identification of HD through the utilization
of DNN in analyzing speech signals [91]. The approach leverages a combination of acoustic
and lexical features for automated detection. Employing a Leave-One-Subject-Out (LOSO)
methodology, the DNN model is meticulously trained and validated, where individual
subjects are consecutively held out as the test speakers. Notably, the study observes a
progressive increase in the accuracy of this method, particularly with advancing disease
stages. This underscores the potential of speech as an effective biomarker for monitoring
HD progression. The performance evaluation of the DNN model, alongside other deep
learning models, is quantified using the word error rate (WER), yielding an impressive
range between 9.4 to 14.9. These results substantiate the notion that employing objective
analyses through DNN and similar deep learning models holds significant promise in
distinguishing between healthy individuals and those with HD. This advancement not only
reinforces clinical diagnoses but also facilitates symptom tracking in non-laboratory and
non-clinical settings, presenting a notable stride towards improved healthcare management
for individuals affected by Huntington’s disease.

4.3.3. Deep Convolutional Neural Network

The ref. [92] delves into the application of deep learning models, specifically VGG16
and 3D CNN, for diagnosing Huntington’s disease. The study reveals that VGG16, a
well-established architecture, holds great promise in classifying disease severity through
analyzing pressure data from individual footsteps, achieving an impressive 89% accuracy.
Its proficiency in extracting nuanced features such as edges and corners significantly
contributes to accurate classification. While VGG16 excelled, other techniques such as 3D
CNN also demonstrated an accuracy of 82%. The study highlights that 3D CNN, though
slightly less accurate at 82%, presents potential for improvement when combined with
models such as VGG16. The paper suggests that while 3D CNN may have slightly different
feature extraction capabilities compared to the novel model used, combining their strengths
could lead to even more accurate Huntington’s disease diagnosis. This integrated approach
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signifies a promising stride towards refining disease classification, holding substantial
implications for both clinical practice and research in this field.

4.3.4. Extreme Learning Machine

Extreme Learning Machine (ELM) models, as outlined in this research, present a
pioneering method for predicting the progression of Huntington’s disease based on brain
scans. The approach, referred to as Brute-force Missing Data Extreme Learning Machine,
showcases significant potential in this domain [93]. This novel method leverages the ELM
framework to train models on datasets containing absent data for both processing and
the desired outcomes. Notably, the ELM approach in this study demonstrates exceptional
efficiency by individually constructing and training models for each sample in the test set.
This process is remarkably efficient, eliminating the need for repeated access to the training
data. Experimental comparisons conducted in the study reveal highly promising results,
this underscores the effectiveness of employing ELM in the diagnosis of Huntington’s
disease. By addressing missing data challenges and leveraging the power of ELM, this
approach offers a significant stride forward in accurately predicting the progression of HD,
holding considerable potential for advancing early diagnosis and intervention strategies
for individuals affected by this condition.

4.3.5. Deep Boltzmann Machine

The ref. [94] introduces a pioneering approach utilizing a stacked restricted Boltzmann
machine (SRBM) in the analysis of RNA-seq data for Huntington’s disease diagnosis. This
innovative deep learning technique is specifically tailored to identify key genes implicated
in the progression of HD. By examining differentially activated neurons and changes in gene
energy at various time intervals, SRBM efficiently screens disease-associated factors and
genes. Experimental results underscore the remarkable efficacy of SRBM, demonstrating
its ability to discern crucial information in time series gene expression datasets. This
leads to a significant improvement in the accuracy of identifying disease-associated genes
and predicting top-ranking genes, surpassing the capabilities of current state-of-the-art
methods. Moreover, SRBM outperforms other computational approaches in analyzing gene
expression data of HD-afflicted mice across distinct spans of time. Its automatic feature
learning capacity, coupled with heightened precision in identifying disease-associated
genes, underscores SRBM as a formidable tool in HD diagnosis. This approach stands at
the forefront of computational methods, offering a highly effective means of understanding
the genetic underpinnings of HD progression.

4.3.6. Summary of Deep Learning Models

These algorithms represent a significant paradigm shift in the diagnosis and under-
standing of HD as in Table 2. These DL models excel in leveraging various data modalities
such as gait dynamics, genetic information, neuroimaging data, speech signals, and RNA-
seq data to enhance the accuracy and depth of HD diagnosis and prognosis. Notably,
DL models such as DNNs showcase exceptional predictive capabilities, with impressive
accuracy rates and the potential for monitoring HD progression. However, DL models
often require large and diverse datasets for training, and their complexity may pose chal-
lenges in model interpretability and clinical applicability. Furthermore, while these models
demonstrate remarkable potential, validation in diverse populations and clinical settings
is essential to fully harness their capabilities and ensure their suitability for widespread
clinical deployment. Nonetheless, DL models signify a transformative advancement in the
field of HD diagnosis, offering valuable insights and paving the way for more accurate and
personalized care for individuals affected by this debilitating disease.
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Table 2. Summary of Deep Learning Models.

References Deep Learning
Approaches Used Main Contribution Dataset

Performance
Evaluation
Metrics

Limitation

[87] Artificial Neural
Network

Creating a mathematical model
with a grey box approach
to replicate the characteristics
of Huntington’s disease disorders.

Gait
Signal
dataset of
36 people

NIL

Limited to
pharmaceutical
treatments
only

[88] Artificial Neural
Network

Creating a hybrid framework
that merges an ANN with
a Fuzzy Logic System (FLS).

Dataset of
3032
examples
from 20
test subjects

R value: 0.98
MSE value:
0.08

Small dataset

[89] Artificial Neural
Network

Creation of an ANN model
aimed at forecasting the functional
capacity status of individuals.

Dataset of
200 examples
from 10
subjects

R value: 0.995
MSE value:
0.108

Inadequate
dataset

[90] Artificial Neural
Network

Creating a biomarker utilizing
DNA CpG methylation data
to identify HD.

DNA
methylation
data of
76 samples

CMP: 0.92
CP: 0.86

Small size of
the datapool

[91] Deep Neural
Network

Development of an objective
and non-invasive acoustic
biomarker that can detect HD

Data from
HD study of
62 speakers

Accuracy
= 87%

Insufficient
features

[92] Deep Convolutional
Neural Network

Creating a DL-driven method
to analyze gait patterns
in individuals with HD.

Foot
pressure
data of
12 patients

Accuracy
= 82%

Preprocessing
module can
be further
optimized

[93] Extreme Learning
Machine

Built an innovative technique
to educate ELM models using
datasets containing absent
data points.

Huntington’s
disease
dataset of
3729 samples
from 1370
subjects

F1 score: 0.98

Performance
loss on
smaller
features

[94] Deep Boltzmann
Machine

Proposal of SRBM to analyze
RNA-seq data associated
with Huntington’s disease.

Gene
expression
dataset of
12 samples

AUC: 0.522
Did not
explore other
methodologies

5. Open Challenges
5.1. Setbacks in Computational Machine Learning Approaches

Computational machine learning (ML) models hold great promise for HD diagnosis,
but they also face several significant challenges as shown in Figure 4 and it has been
addressed for effective implementation and clinical utility:
Data Availability and Quality: One of the primary challenges in developing ML models
for HD diagnosis is the availability of high-quality data. Gathering comprehensive datasets
that include genetic, clinical, and imaging data from a diverse range of HD patients is
essential. Ensuring the accuracy and completeness of these data is crucial for model training
and validation.
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Data Imbalance: HD is a rare genetic disorder and datasets for rare diseases that often
suffer from class imbalance, with a limited number of positive cases (HD patients) compared
to negative cases (healthy individuals). Datasets with imbalances can result in model bias,
where the algorithm demonstrates strong performance in the majority class but struggles
when dealing with the minority class. Addressing this imbalance is critical for accurate
diagnosis.
Feature Selection: HD is a complex disorder with multifaceted clinical manifestations.
Selecting the most informative features from various data sources (genetic, clinical, imaging)
and determining their relevance to the disease diagnosis is a challenge. ML models need to
incorporate relevant features while reducing dimensionality and noise.
Interpretable Models: Numerous machine learning algorithms, including deep learning
models, are often referred to as “opaque” models, posing difficulties in deciphering the
rationale behind their decisions. In the medical field, interpretability is crucial for under-
standing why a particular diagnosis or prediction was made. Developing interpretable
models that provide insights into the disease process is essential.
Ethical Concerns and Privacy: Handling patient data in healthcare applications raises
ethical and privacy concerns. Ensuring the security and privacy of sensitive health infor-
mation while allowing for meaningful analysis is a delicate balance that must be addressed
when developing ML models for HD diagnosis. Techniques such as federated learning, as
highlighted in the work [95], have emerged as crucial tools in preserving privacy while
enabling the collaborative analysis of medical data.
Generalization and Validation: ML models must generalize well to new, unseen data.
Proper cross-validation techniques and external validation on diverse datasets are essential
to ensure that the models’ performance remains consistent across different populations
and settings.
Early Detection and Biomarker Discovery: Identifying reliable biomarkers for early HD
detection is a significant challenge. ML models can assist in this process, but the discovery
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of biomarkers that can accurately predict disease onset or progression is an ongoing
research area.
Clinical Integration: Transitioning ML models from research settings to clinical practice
requires collaboration with healthcare professionals and regulatory bodies. Models need to
be validated in clinical trials and integrated into existing healthcare systems, which can be
a lengthy and complex process.
Longitudinal Data: HD is a progressive disease that evolves over time. Obtaining and
analyzing longitudinal data is essential for tracking disease progression and treatment
response accurately. ML models must be capable of handling longitudinal data effectively.
Validation with Small Cohorts: Due to the rarity of HD, it can be challenging to validate
ML models with large cohorts of patients. Small sample sizes can lead to overfitting and
may not capture the full spectrum of disease variability.

5.2. Setbacks in Computational Deep Learning Approaches

Deep learning (DL) models offer remarkable potential for advancing Huntington’s
disease diagnosis and prognosis, yet they encounter several formidable challenges that
demand careful consideration to realize their full clinical potential:
Limited HD-Specific Data: While data availability is a general challenge, obtaining a
sufficiently large and diverse dataset specifically for HD is particularly challenging due to
the rarity of the disease. HD-specific data, including genetic profiles, clinical records, and
imaging data, may be limited in comparison to other more common medical conditions.
Complex Disease Progression: HD is a neurodegenerative disease with a highly complex
and nonlinear progression pattern. Capturing this complexity in DL models, especially for
early-stage diagnosis and monitoring, is challenging. DL models must account for the multi-
modal nature of HD progression, including motor, cognitive, and psychiatric symptoms.
Feature Extraction: DL models often rely on automatic feature extraction from raw data.
However, extracting meaningful features from complex data sources such as brain imag-
ing (e.g., MRI, fMRI) and genetic data can be challenging. Developing effective feature
extraction methods tailored to HD-specific data is essential.
Heterogeneity of HD: HD exhibits significant variability in symptom onset, progression,
and severity among individuals. DL models need to account for this heterogeneity and pro-
vide personalized predictions and treatment recommendations, which can be challenging
in clinical practice.
Integration of Multiple Data Sources: Effective HD diagnosis and prognosis may require
integrating information from various sources, such as genetic, imaging, and clinical data.
Developing DL models that can seamlessly integrate heterogeneous data and extract
meaningful insights is a complex task.
Model Explainability: While interpretability is a general challenge in ML and DL, it is
particularly critical in healthcare applications. DL models for HD diagnosis need to provide
clear explanations for their predictions, helping clinicians to understand the rationale
behind a diagnosis or prognosis.
Scalability: Training large DL models for healthcare applications often requires substantial
computational resources. Ensuring that the models are scalable and can be deployed in
resource-constrained clinical settings is a challenge.
Clinical Adoption: Even with accurate DL models, achieving widespread clinical adoption
can be challenging. Overcoming barriers related to regulatory approvals, integration with
electronic health records (EHRs), and gaining the trust of healthcare professionals is crucial
for the successful deployment of DL-based diagnostic tools.
Patient Data Privacy: Protecting patient data privacy is a paramount concern. Ensuring
that DL models comply with data protection regulations and securely handle sensitive
patient information poses a challenge in healthcare applications.
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5.3. Issues in Data Integration of Huntington’s Disease Diagnosis

The complexity of Huntington’s disease and the multitude of data sources involved
pose a multifaceted challenge when it comes to the integration of diagnostic informa-
tion. Firstly, there is a significant lack of standardized data formats and protocols across
healthcare institutions, making it difficult to harmonize data from different sources. Ad-
ditionally, the inherent privacy concerns surrounding patient information in healthcare
pose a substantial hurdle, as ensuring data security and compliance with regulations such
as HIPAA is paramount [96]. Furthermore, the heterogeneity of data types, ranging from
clinical records and genetic profiles to neuroimaging data, demands sophisticated data
integration techniques and tools to extract meaningful insights. The dynamic nature of the
disease itself, with its variable progression and diverse symptomatology, complicates the
process further, as the integration framework must be adaptable to changing data over time.
Moreover, the scarcity of large-scale datasets for Huntington’s disease poses a challenge
for training robust machine learning models, hampering the development of accurate
diagnostic tools. Lastly, interdisciplinary collaboration between geneticists, clinicians, data
scientists, and ethicists is essential to navigating these challenges successfully, emphasizing
the importance of effective communication and teamwork in integrating HD diagnosis
data for improved research and patient care.

5.4. Obstacles in the Realm of Precision Medicine and the Quest for Tailored Therapies

The pursuit of precision medicine and the identification of personalized treatments for
HD confronts a multitude of formidable challenges [97]. Firstly, the inherent heterogeneity
of the disease, with variations in onset age, symptom severity, and progression rates among
individuals, makes it exceptionally complex to pinpoint universally effective treatments.
The lack of comprehensive biomarkers that can accurately predict disease progression
and treatment response further compounds this challenge. Additionally, the scarcity of
large-scale, diverse patient datasets hinders the development of robust predictive models
and therapies tailored to individual genetic profiles. Ethical concerns surrounding genetic
testing and data privacy necessitate careful consideration, as patients and their families
may be hesitant to share their genetic information for research purposes. The high cost and
time-intensive nature of genomic sequencing and data analysis also limit the widespread
adoption of precision medicine approaches. Collaborative efforts among researchers,
clinicians, and pharmaceutical companies are imperative to surmount these challenges and
unlock the potential of personalized treatments for HD, offering hope for improved patient
outcomes and quality of life.

5.5. Data Isolation Challenges

Data isolation in HD diagnosis poses a significant impediment to holistic understand-
ing and effective management of the condition. One primary challenge is the compart-
mentalization of patient data within various healthcare institutions, research centers, and
databases. These silos of information inhibit the seamless sharing and integration of vi-
tal clinical, genetic, and neuroimaging data necessary for comprehensive diagnosis and
treatment planning. Moreover, the lack of standardized data formats and protocols exac-
erbates this isolation, making it arduous to harmonize and compare data from different
sources accurately. The inherent rarity of Huntington’s disease further compounds the
problem, as it limits the pool of available patient data, hindering the development of robust
diagnostic and predictive models. Privacy concerns surrounding patient information also
contribute to data isolation, with stringent regulations and ethical considerations deterring
the free exchange of genetic and clinical data. Overcoming these data isolation challenges
in Huntington’s disease diagnosis necessitates collaborative efforts, the establishment of
interoperable data-sharing frameworks, and the development of secure, privacy-preserving
data-sharing solutions to facilitate more comprehensive and insightful analyses for im-
proved patient care and research progress.
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5.6. Data Management Challenges

The intricate landscape of Huntington’s disease diagnosis poses intricate data man-
agement obstacles, necessitating inventive solutions within the realms of clinical research
and healthcare. One of the foremost challenges is the sheer volume and diversity of data
involved. HD diagnosis requires the integration of various data streams, including clinical,
genetic, and neuroimaging data. Managing this multidimensional data in a cohesive and
standardized manner is crucial for accurate diagnosis and tracking of disease progres-
sion. Furthermore, the dynamic nature of HD necessitates the continuous acquisition
and analysis of patient data over extended periods. This long-term data management
involves maintaining data integrity, ensuring privacy and consent compliance, and adapt-
ing to evolving diagnostic criteria and treatment options. The need for secure and robust
data storage and transmission systems becomes paramount, given the sensitive nature of
genetic and clinical information. Interoperability and data sharing also pose significant
challenges. Collaborative research efforts and multi-center clinical trials require seamless
data exchange, but disparities in data formats and standards across institutions can hinder
effective communication. Establishing data-sharing protocols while respecting patient
privacy is a critical yet intricate task.

The incorporation of technologies such as machine learning and artificial intelligence
into HD diagnosis introduces further complexities. Training algorithms and models for
accurate prediction and early detection require large datasets, which may be scarce due to
the rarity of HD cases. Ensuring the quality and representativeness of training data while
addressing ethical considerations is a multifaceted challenge. The ethical implications
of data management in HD diagnosis cannot be overlooked. Balancing the potential
benefits of data sharing for research and treatment advancements with the need to protect
patient privacy and confidentiality is an ongoing ethical dilemma. Addressing the data
management challenges of HD diagnosis is pivotal in advancing our understanding of the
disease, improving diagnostic accuracy, and developing effective treatments. Solutions
must encompass data integration, security, interoperability, ethical considerations, and
adaptation to evolving diagnostic paradigms to pave the way for better outcomes and hope
for individuals and families affected by HD.

5.7. Data Sparseness Challenges

Diagnosing HD poses unique challenges, primarily due to the data sparseness asso-
ciated with this devastating neurodegenerative disorder. HD is a rare genetic condition,
affecting only a small portion of the population, which makes it challenging to accumulate
a substantial dataset for research and diagnostic purposes [98]. The rarity of the disease
means that there is limited access to clinical and genetic information, hindering efforts to
develop accurate diagnostic tools and therapies. Moreover, HD is characterized by a long
prodromal phase, during which subtle motor and cognitive symptoms emerge before a
formal diagnosis can be made. This extended prodromal phase further complicates data
collection, as individuals may not seek medical attention until their symptoms become
more pronounced. Moreover, a considerable number of subjects who are at risk of Hunting-
ton’s disease may opt out of genetic testing because of the emotional and psychological toll
that comes with knowing their genetic status. This decision contributes to the absence of
data in certain cases. The genetic complexity of HD adds to the data sparseness challenge.

6. Future Potentials

According to Figure 5, Huntington’s disease exhibits promising future potentials,
hinting at evolving research pathways that offer prospects for improved management and
therapeutic breakthroughs.



Diagnostics 2023, 13, 3592 27 of 39

Figure 5. Future Potentials.

6.1. Explainable Artificial Intelligence

The application of Explainable AI (XAI) in Huntington’s disease diagnosis holds
immense promise in enhancing our understanding of the disease’s complex diagnostic
factors. XAI algorithms provide transparency and interpretability, crucial in unraveling
the multifaceted nature of HD [99,100]. By leveraging machine learning techniques that
can not only make accurate predictions but also provide comprehensible explanations
for those predictions, XAI can help clinicians and researchers pinpoint the specific ge-
netic markers, clinical features, and other factors contributing to an individual’s risk or
progression of HD. This transparency not only aids in early and accurate diagnosis but
also aids in the development of more personalized treatment plans. Moreover, XAI can
facilitate the identification of subtle patterns in medical records and imaging data, aiding
in the early detection of prodromal symptoms, thus potentially extending the window for
intervention. Overall, the integration of Explainable AI in Huntington’s disease diagnosis
not only enhances diagnostic accuracy but also advances our understanding of the disease’s
underlying mechanisms, offering hope for improved management and eventually a cure
for this devastating condition. Additionally, the work [101] on an Explainable Supervised
Machine Learning Model for Predicting Respiratory Toxicity of Chemicals underscores the
significance of explainable ML approaches in various biomedical domains, further empha-
sizing the critical role of interpretability in complex predictive models, as is applicable in
the context of Huntington’s disease diagnosis.

6.2. Generative Artificial Intelligence

Emerging generative AI technologies, encompassing deep learning methods such
as Generative Adversarial Networks (GANs), Vision Transformer (ViT), and Variational
Autoencoders (VAEs), exhibit potential in diverse medical contexts, including their utility
in diagnosing and predicting the course of diseases such as HD [102]. Huntington’s disease,
stemming from a genetic mutation, is a neurodegenerative condition. Timely diagnosis
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plays a pivotal role in enhancing patient care and unlocking potential avenues for future
therapeutic interventions [103]. Here is how generative AI can be used for HD diagnosis:
Data Generation and Augmentation: Generative AI can be used to generate synthetic
medical images or data that closely resemble real patient data [104]. This could prove
beneficial in training machine learning models in situations where actual patient data
is scarce or in cases where privacy issues are a concern. Augmenting the dataset with
generated data can improve the performance of diagnostic models.
Image Enhancement: Generative models can be used to enhance the quality of medical
images, making it easier for healthcare professionals to identify subtle signs of HD in brain
scans or other medical imaging data [105]. Enhanced images can provide better insights
and aid in more accurate diagnoses.
Early Detection: Generative AI can assist in the early detection of HD by analyzing patterns
in medical data over time. Longitudinal data from patients can be used to create generative
models that predict the progression of the disease, allowing for early intervention and
personalized treatment plans.
Predictive Biomarkers: Generative models can identify predictive biomarkers associated
with Huntington’s disease. Through the examination of extensive patient data encompass-
ing genetic profiles, medical records, and clinical evaluations, these models can unveil
nuanced relationships that might remain concealed when employing conventional statisti-
cal methods.
Disease Progression Modeling: Generative AI can create models that simulate the pro-
gression of HD in virtual patients. This can be useful for understanding how the disease
develops over time and for testing the efficacy of potential treatments in silico before
clinical trials.
Support for Clinicians: Generative AI can assist clinicians in making more informed
decisions by providing additional insights into patient data. For example, it can generate
visualizations that highlight regions of interest in medical images or generate reports,
summarizing key findings from patient records.
Personalized Treatment Plans: Leveraging data from a substantial group of individuals
afflicted with HD, generative models have the potential to facilitate the development of
personalized therapeutic strategies. These plans can take into account an individual’s
genetic profile, disease progression, and response to previous treatments to optimize
therapeutic strategies.
Drug Discovery: Generative AI can be applied to discover potential drug candidates for
Huntington’s disease by generating molecular structures that may interact with specific
disease-related targets. This can accelerate the drug development process.

6.3. Internet of Everything

The Internet of Everything (IoE) is a concept that extends the Internet of Things (IoT)
by not only connecting devices and machines but also by incorporating data from people,
processes, and data itself [106]. This interconnected network of physical objects, data, and
people holds great potential for improving various aspects of healthcare, including the
diagnosis and management of diseases such as HD. The use of IoE in HD diagnosis can
have several significant benefits:
Remote Monitoring: IoE allows for continuous remote monitoring of patient’s vital signs
and movements. Wearable devices, such as fitness trackers and smartwatches, can collect
data on heart rate, sleep patterns, and physical activity [107]. In the case of HD, changes
in motor function and sleep disturbances can be early indicators of disease progression.
By continuously monitoring these metrics, healthcare providers can detect changes sooner
and intervene proactively.
Genomic Data Sharing: The presence of a particular genetic mutation is responsible
for HD, necessitating genetic testing as a common diagnostic procedure [108]. IoE can
facilitate the sharing of genomic data securely between patients, clinicians, and researchers.
Utilizing these data allows for the identification of individuals who may be susceptible
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to Huntington’s disease and enables the monitoring of the progression of the condition.
Privacy and security measures must be robust to protect sensitive genetic information.
Telemedicine and Consultations: IoE enables telemedicine and remote consultations,
making it easier for patients with HD to access specialized care. The utilization of video
conferencing and remote monitoring can diminish the necessity for regular face-to-face
appointments, especially benefiting individuals residing in distant or underserved regions.
Data Analytics and Predictive Modeling: IoE allows for the collection of vast amounts of
patient data. Advanced data analytics and machine learning algorithms can process this
information to identify patterns and trends associated with HD. Predictive modeling can
help anticipate disease progression and develop personalized treatment plans.
Medication Management: For individuals with HD, managing medications is crucial. IoE
can support medication adherence through smart pill dispensers and reminders [109].
These devices can notify patients when it is time to take their medication and send alerts to
caregivers or healthcare providers if doses are missed.
Support Communities: IoE can connect HD patients with support communities and re-
sources. Online forums, social networks, and communication tools can help patients and
caregivers connect, share experiences, and access valuable information and emotional
support.
Clinical Trials and Research: IoE can facilitate the recruitment and monitoring of partici-
pants in clinical trials for potential HD treatments. Real-time data collection can provide
researchers with valuable insights into treatment efficacy and safety.

6.4. Big Data

The utilization of Big Data and Augmented Analytics has become instrumental in the
detection and handling of intricate conditions such as Huntington’s disease. By tapping
into extensive datasets encompassing patient data such as genetics, clinical histories, and
even information from wearable devices, healthcare experts can uncover hidden patterns
and connections that might go unnoticed otherwise, facilitating enhanced diagnosis and
management [110]. By aggregating and analyzing this diverse dataset, machine learning
algorithms can be trained to recognize subtle early-stage symptoms and risk factors asso-
ciated with HD [111]. Augmented Analytics further enhances this process by providing
user-friendly interfaces that enable healthcare providers, even those without extensive data
science expertise, to explore and interpret the findings.

This combined approach enables earlier and more accurate diagnosis of HD, which is
critical for timely intervention and patient care planning [112]. It also facilitates personal-
ized treatment strategies by tailoring therapies based on an individual’s genetic profile and
disease progression patterns. Additionally, the continuous monitoring of patients through
wearable devices and real-time data analysis can provide insights into disease progression,
enabling healthcare providers to make informed decisions about treatment adjustments.
The synergy between Big Data and Augmented Analytics represents a promising avenue
for improving the early diagnosis and management of Huntington’s disease, ultimately
enhancing the quality of life for affected individuals and their families.

6.5. Cloud, Edge, and Fog Computing

Cloud, edge, and fog computing are all valuable technologies that can play signifi-
cant roles in the diagnosis and management of diseases such as HD, which is a complex
neurodegenerative disorder. These technologies offer unique advantages in terms of data
processing, storage, and accessibility, allowing for more efficient and effective diagnostic
and therapeutic approaches.

6.5.1. Cloud Computing

Data Storage and Centralization: Cloud computing offers vast storage capabilities, making
it ideal for storing large datasets such as genetic information, medical records, and imaging



Diagnostics 2023, 13, 3592 30 of 39

data related to Huntington’s disease patients [113]. Researchers and healthcare providers
can securely store and access these data from anywhere with an internet connection.
Data Analysis: Cloud platforms offer the computational muscle essential for intricate data
analysis, including genetic sequencing, medical imaging analysis, and machine learning
algorithms for early HD diagnosis. Researchers can run resource-intensive computations
on the cloud, accelerating the development of diagnostic tools and treatment options.
Collaboration: Cloud-based platforms facilitate collaboration among researchers and clini-
cians from different locations, allowing them to share data, insights, and best practices in
diagnosing and managing HD. This collaborative approach can lead to faster advancements
in HD research and treatment.

6.5.2. Edge Computing

Real-time Data Processing: Edge computing brings computation closer to the data source,
making it ideal for real-time analysis of patient data, including wearable device data,
continuous monitoring, and sensor data [114]. In the context of HD, edge devices can
process and analyze patient data on the spot, providing immediate feedback to both
patients and healthcare providers.
Data Privacy and Security: The utilization of edge computing can fortify data privacy and
security by maintaining sensitive patient data in proximity to its origin. This approach mit-
igates the potential for data breaches, preserving the confidentiality of patient information,
a pivotal concern in healthcare environments.
Reduced Latency: For applications such as telemedicine or remote monitoring of HD
patients, edge computing reduces data transmission latency, enabling quicker response
times and ensuring that critical information reaches healthcare professionals promptly.

6.5.3. Fog Computing

Distributed Processing: Fog computing extends the capabilities of edge computing by
enabling distributed data processing and analysis [115]. In HD diagnosis, fog computing
can distribute processing tasks across multiple edge devices, optimizing computational
resources for complex tasks.
Resilience: Fog computing provides redundancy and resilience in data processing, en-
suring that critical diagnostic processes continue to operate even in the event of a device
failure [116]. This reliability is essential for continuous monitoring and early detection of
HD symptoms.
Scalability: Fog computing possesses inherent scalability, readily expanding its capacity to
cater to a rising population of HD patients and an expanding array of devices. With the
proliferation of patients and data sources, fog computing exhibits the adaptability required
to adeptly and effectively handle the augmented workload.

6.6. Robots and Machine Co-Creativity

By harnessing advanced robotics and artificial intelligence, healthcare professionals
can collaborate with machines to enhance diagnostic capabilities. Robots equipped with so-
phisticated imaging technologies can perform highly detailed scans of the brain, capturing
minute structural and functional changes that are indicative of Huntington’s disease [117].
These machines can work tirelessly, ensuring a comprehensive analysis of patient data.
Moreover, AI-driven algorithms can sift through vast datasets, quickly identifying patterns
and anomalies that may escape the human eye.

The true power of machine co-creativity lies in its ability to augment human expertise.
By working in tandem with healthcare providers, these technologies can offer valuable
insights and suggestions, helping clinicians make more accurate and timely diagnoses.
This collaborative approach also enables a multidisciplinary team of experts to pool their
knowledge and refine diagnostic criteria continuously. Furthermore, the integration of
robotics and AI can streamline the diagnostic process, reducing the time and resources
required for assessments. This is particularly crucial for HD, which currently lacks a
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cure but benefits significantly from early detection and management. Their ability to
enhance accuracy, efficiency, and collaboration among healthcare professionals holds the
promise of earlier interventions and improved patient outcomes in the battle against this
devastating disorder.

6.7. Quantum Computing

The vast potential of quantum computing is poised to drive significant progress in the
healthcare sector, offering promising prospects for improving the diagnosis and therapeutic
interventions for a multitude of illnesses [118,119]. Quantum computing could be beneficial
in this context:
Efficient Genetic Analysis: Quantum computers have the capability to process vast
amounts of genetic data much faster than classical computers. This becomes particu-
larly pertinent when dealing with HD, where the focus lies on scrutinizing the patient’s
DNA to pinpoint the distinct genetic mutation responsible for this condition. Quantum
computers can accelerate the process of genetic sequencing and analysis, potentially leading
to quicker and more accurate diagnoses.
Simulating Protein Structures: Understanding the molecular basis of diseases such as
Huntington’s relies on simulating complex protein structures. Quantum computers can
simulate these structures with far greater precision and speed than classical computers.
This potential can assist scientists in uncovering the underlying processes of the condition,
potentially pinpointing areas for therapeutic intervention.
Drug Discovery: Quantum computing can expedite drug discovery by simulating the
interactions between potential drug compounds and the target proteins involved in HD.
This has the potential to substantially decrease the resources and time required for the
development of novel therapies or the discovery of already-available drugs suitable for
repurposing in treatment.
Personalized Medicine: Quantum computing can enhance the personalization of treatment
plans. By analyzing a patient’s genetic data alongside other clinical parameters, quantum
computers can help healthcare providers tailor treatment strategies specifically to each
patient’s unique genetic makeup, potentially leading to more effective treatments and
better outcomes.
Data Security: As quantum computing advances, so does the need for improved data
security. Given the sensitivity of genetic and medical data, quantum-resistant encryption
methods will become crucial to protect patients’ privacy and the integrity of healthcare
systems [120].
Machine Learning and Pattern Recognition: Quantum computing can be harnessed to
enhance machine learning algorithms [121].Enhancing disease diagnosis precision can be
achieved by scrutinizing a wider spectrum of patient information, encompassing medical
imaging, patient records, and genetic data. This comprehensive approach aims to detect
Huntington’s disease-related patterns and markers effectively.

It is crucial to acknowledge that quantum computing is still in the early stages of
development, and it will likely be several years before it becomes widely integrated into
healthcare practices. Additionally, the technology presents various challenges, including
scalability, error correction, and accessibility. However, as quantum computing technology
matures, it holds great promise for revolutionizing the way we diagnose and treat complex
diseases such as Huntington’s, ultimately leading to more efficient and effective healthcare
solutions. Continued exploration and investment in the realm of quantum computing
hold promise for researchers, healthcare providers, and policymakers seeking to advance
medical diagnosis and treatment.

6.8. Cyber-Physical Systems

Integrated systems of computational hardware and software, along with physical
components, known as Cyber-Physical Systems (CPS), can monitor, control, and interact
with the physical world. They have found applications in various domains, including
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healthcare [122]. When it comes to diagnosing complex diseases such as Huntington’s
disease, CPS can play a significant role in improving the diagnostic process and patient
care. CPS can be used for HD diagnosis as follows:
Remote Monitoring: CPS can enable the remote monitoring of individuals at risk of or
already diagnosed with Huntington’s disease. Wearable devices equipped with sensors
can continuously collect data on motor function, gait, and other relevant parameters. These
data can be transmitted in real-time to healthcare professionals, allowing for early detection
of symptoms and timely intervention.
Data Analytics and Machine Learning: The collected data can be processed using ad-
vanced analytics and machine learning algorithms to identify subtle changes in motor
skills and behavior associated with HD. These algorithms can analyze patterns over time
and provide insights into disease progression, potentially leading to earlier diagnosis and
personalized treatment plans.
Telemedicine and Telehealth: CPS can facilitate telemedicine consultations for individuals
with limited access to specialized healthcare facilities [123]. Remote consultations can help
healthcare providers assess patients’ symptoms, track their progress, and make treatment
adjustments as needed.
Medication Adherence: CPS can remind patients to take their medications and track ad-
herence. This is especially important for individuals with HD, as medication management
can be complex, and missing doses can impact symptom management.
Fall Detection and Safety Monitoring: Individuals with HD are at an increased risk of
falls due to motor impairments. CPS can incorporate fall detection systems and alert
caregivers or emergency services when a fall occurs. Additionally, environmental sensors
can be used to monitor home safety and detect hazards.
Genetic Testing and Predictive Modeling: CPS can integrate genetic testing data to iden-
tify individuals at risk of developing HD based on their genetic profile. Predictive modeling
can estimate the likelihood and age of onset, allowing for early interventions and lifestyle
modifications.
Patient Support and Education: CPS can provide patients and their families with educa-
tional resources, support groups, and communication tools to enhance their understanding
of HD and improve their quality of life.
Research and Data Sharing: The integration of Cyber-Physical Systems (CPS) has the po-
tential to enhance data exchange between researchers and healthcare institutions, fostering
improved insights into HD and expediting advancements in treatments and therapies.

6.9. Augmented Reality (AR), Mixed Reality (MR) and Virtual Reality (VR)

Innovative technologies such as Virtual Reality (VR), Augmented Reality (AR), and
Mixed Reality (MR) are showing substantial promise in the healthcare domain, offering
potential benefits in the diagnosis and management of conditions such as HD. Here is how
each of these technologies can be applied to HD diagnosis and care:

6.9.1. Augmented Reality (AR)

Diagnostic Support: AR can assist healthcare professionals during the diagnostic process
by overlaying relevant medical data, such as genetic information or diagnostic criteria,
onto a patient’s medical record or real-time examination. This can help doctors make more
accurate and timely diagnoses [124].
Guided Procedures: During medical procedures such as deep brain stimulation (DBS)
surgery, AR can provide surgeons with real-time guidance and data visualization. This can
improve the precision and safety of surgical interventions for individuals with HD.
Therapeutic Support: AR apps and wearables can provide individuals with HD and their
caregivers with real-time information and reminders related to medication schedules,
therapy exercises, and symptom management strategies.
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6.9.2. Mixed Reality (MR)

Simulated Environments for Assessment: MR can be used to create simulated environ-
ments that mimic real-life situations [125]. This can aid in the assessment of a patient’s
functional capabilities and how HD impacts their daily life. Clinicians can use MR to
understand a patient’s challenges better and tailor treatment plans accordingly.
Neuroimaging Visualization: MR can enhance the visualization of neuroimaging data,
such as MRI or CT scans. By overlaying these images onto a patient’s physical body, doctors
can get a clearer understanding of the brain structures affected by HD. This aids in precise
diagnosis and treatment planning.

6.9.3. Virtual Reality (VR)

Patient Education and Empowerment: VR can be used to create immersive educational
experiences for patients and their families, helping them understand the complexities of
HD, its symptoms, and its progression [126]. This can promote better self-management and
informed decision-making.
Rehabilitation: VR-based rehabilitation programs can help individuals with HD improve
their motor skills, coordination, and cognitive functions. Personalized virtual reality activi-
ties and games can be customized to cater to individual patient requirements, enhancing
therapy engagement and efficacy.
Telemedicine and Remote Consultations: VR can facilitate remote consultations with spe-
cialists, enabling individuals with HD to access expert care without the need for extensive
travel. This is particularly valuable for patients in remote or underserved areas.

The integration of these technologies in HD diagnosis and treatment holds the promise
of elevating patient well-being, enhancing assessment precision, and increasing healthcare
accessibility. However, it is essential to consider factors such as patient comfort, data
privacy, and the need for skilled professionals to operate these technologies effectively.
With ongoing technological progress, we anticipate witnessing further groundbreaking
advancements in the realm of diagnosing and treating neurodegenerative diseases.

7. Discussion

In our extensive review of machine learning and deep learning models for Hunting-
ton’s disease (HD) diagnosis, we observed diverse approaches and notable contributions.
Decision trees and Support Vector Machines (SVMs) demonstrated robust performance in
analyzing gait dynamics and neurodegenerative databases, achieving accuracies ranging
from 86.9% to a remarkable 100%. Random Forests showcased potential in gene identifi-
cation, yielding accuracies around 90%, despite facing limitations posed by small sample
sizes. K-Nearest Neighbors (K-NN) emerged as a powerful tool, particularly in diagnosing
HD with accuracies surpassing 97%, even in light of the limitation on smaller datasets. The
application of deep learning techniques, including Artificial Neural Networks (ANNs),
Deep Neural Networks (DNNs), and Convolutional Neural Networks (CNNs), addressed
various aspects of HD diagnosis, such as predicting functional capacity status, identifying
biomarkers, and analyzing gait patterns. However, these models often grappled with
limited datasets, hindering their generalizability and overall robustness.

Despite the significant strides made in AI-based HD diagnosis, a pervasive limitation
across these studies remains the reliance on small or constrained datasets. This hampers
the broader applicability of the models and raises concerns about their generalizability to
diverse populations. Furthermore, the exploration of a limited number of models in several
studies suggests a need for a more comprehensive investigation into the most effective
approaches for HD diagnosis. Another common challenge is the inclusion of irrelevant
features in certain models, impacting the accuracy and efficacy of predictions. In conclusion,
while AI models show promise in advancing HD diagnosis, addressing these limitations,
particularly the need for larger and more diverse datasets, is paramount to realizing their
full potential in clinical applications.
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8. Conclusions

In the realm of Huntington’s disease diagnosis, this in-depth comprehensive review
meticulously explores the utilization of AI-driven techniques, offering a comprehensive
insight into this juncture. Our examination uncovers an expanding body of research show-
casing how these computational methods have the capacity to fundamentally transform
the diagnosis of Huntington’s disease. ML techniques, such as classification and regression,
have been instrumental in leveraging various data sources, including clinical, genetic, and
neuroimaging data, to aid in early and accurate HD diagnosis. Meanwhile, DL models,
with their capacity to process complex and high-dimensional data, have shown promise
in uncovering intricate patterns and biomarkers associated with Huntington’s disease.
Within the context of this comprehensive review, it is essential to recognize the obstacles
and constraints arising from the limited availability of expansive and varied datasets, the
need for model interpretability, and the ethical concerns surrounding privacy and data
security. As this field continues to evolve, collaboration between researchers, clinicians,
and data scientists will be essential to address these challenges and unlock the full potential
of ML and DL in improving HD diagnosis. Future research should focus on refining model
performance, integrating multimodal data, and conducting rigorous clinical validation
to ensure the safe and effective deployment of these technologies in clinical practice. Ul-
timately, the fusion of machine learning and HD diagnosis holds immense promise for
earlier intervention, more personalized treatment strategies, and a brighter outlook for
individuals and families affected by this devastating neurodegenerative disease.
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