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Abstract: Heating and cooling systems account for a considerable portion of the energy consumed for
domestic reasons in Europe. Burning fossil fuels is the main way to produce this energy, which has a
detrimental effect on the environment. It is essential to consider a building’s characteristics when
determining how much heating and cooling is necessary. As a result, a study of the related buildings’
characteristics, such as the type of cooling and heating systems required for maintaining appropriate
indoor air conditions, can help in the design and construction of energy-efficient buildings. Numerous
studies have used machine learning to predict cooling and heating systems based on variables that
include relative compactness, orientation, overall height, roof area, wall area, surface area, glazing
area, and glazing area distribution. Fuzzy logic, however, is not used in any of these methods.
In this article, we study a fuzzy logic approach, i.e., HHO−ANFIS (combination of Harris hawks
optimization and adaptive neuro-fuzzy interface system), to predict the heating load in residential
buildings and investigate the feasibility of this technique in predicting the heating load. Fuzzy
techniques obtain perfect results. The analysis results show that the HHO−ANFIS with a population
size of 400, the highest value of R2 (0.98709 and 0.98794), and the lowest value of RMSE (0.08769
and 0.08281) in the training and testing dataset, respectively, can predict the heating load with high
accuracy. According to the high value of R2 (98%) and low value of RMSE, HHO−ANFIS can be
used in predicting the heating load of residential buildings.

Keywords: ANFIS; heating-load; metaheuristic; residential buildings

1. Introduction

Globally, cities and the population of people are growing rapidly, and meeting citizens’
needs requires a lot of energy. According to recent studies, the number of people living in
cities is predicted to grow to five billion at the end of 2030 [1]. Dwellings use a significant
amount of energy, and other types of buildings comprise only a small portion of the total
energy consumption [2,3]. There are limited resources available for supplying energy to
citizens. Due to the importance of residential buildings to the overall welfare of society,
residential consumption needs to be carefully monitored and controlled [4,5]. Meanwhile,
cooling and heating systems are two essential energy resources for citizens, so their usage
should be managed accordingly.

It is critical to have complete knowledge about buildings’ performance and environ-
mental factors to manage and optimize their energy consumption. In a building, electricity,
heating supply, and gas are the primary energy sources, but domestic hot water, heating,
ventilation and air conditioning (HVAC), elevators, and other applications are the essential
final uses. Building energy performance is influenced by all these mentioned resources,
but two are the most critical factors: optimum indoor air condition supply operation and
HVAC systems [6,7]. HVAC plays a vital role in residential buildings by regulating the
internal cooling and heating loads [8]. In spite of the necessity of this system for buildings,
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it consumes about 40% of the overall energy, particularly in office buildings [9,10]. In order
to minimize the heating and cooling costs of buildings, it is essential to forecast the thermal
loads because deviations from the optimal scheduled values will greatly increment the
whole costs [11].

A residential building’s consumption patterns can be predicted with the help of energy
forecasting to maintain an optimal HVAC and energy management system [12,13]. The
development of technology has enabled many micro-intelligent building management
systems (BMSs) and devices to be installed on green building sites, which record and
monitor building load patterns that influence energy forecasting. Such data could be used
to predict and control building consumption patterns on an hourly basis. A number of
studies have explained the importance of forecasting energy. In [14], for example, a survey
of thermal energy consumption in buildings was conducted. This study investigated
fuel mix, social–economic conditions, and climate change as factors that affect thermal
energy comfort. As a result of forecasting the loads, buildings can flexibly schedule energy
consumption for the following day, not only in order to participate in demand-response
programs [15–17], but also for energy trading programs [18,19].

Building load forecasting has been evaluated in a number of studies so far. Authors in
Ref [20], used an integrated design method to estimate energy savings over the lifetime
of a building, minimize expenses, and carbon emissions reductions. Applying a genetic
algorithm integrated with a dynamic simulating tool, [21] presents a multi-objective op-
timization technique for renovating existing buildings and HVAC systems. There is an
investigation of the effect of data dimensionality and size on artificial neural networks
(ANNs) in [22–26], where the predictive power of ANNs is evaluated for office buildings. A
study using ANN has been conducted in [27] to forecast electricity load for HVAC systems.
The BR-based ANN outperforms the others among the three algorithms applied in this
paper, including scaled conjugate gradient backpropagation, Bayesian regularization (BR),
and Levenberg–Marquardt. In another research, statistical analysis was used to forecast
cooling and heating in an office [28]. Moreover, In Ref. [29], four hybrid methods based on
metaheuristics and ANN have been presented for forecasting buildings’ energy efficiency
based on particle swarm optimization (PSO), artificial bee colony (ABC), genetic algorithms
(GA), and imperialist competitive algorithms (ICA). According to [30], cooling load fore-
casting was achieved using probabilistic entropy-based neural networks (PENNs). The
energy consumption of a building was reduced by 36.5% through the use of feed forward
neural networks (FFNNs) in [31]. A decision tree approach has been proposed in [32]
for predicting energy requirements and evaluating energy performance measures for resi-
dential buildings. An analysis of forecasting strategies for cooling and heating loads was
conducted in [33], comparing machine learning (ML) approaches such as deep neural net-
work (DNN) [34], Gaussian process regressions (GPR), gradient boosted machines (GBM),
and minimax probability machine regressions (MPMR). Furthermore, according to [35],
ANN, general linear regression (GLR), classification and regression tree (CART), and chi-
squared automatic interaction detectors (CHAID) were applied to predict the cooling and
heating systems of buildings. This paper considers the building’s technical characteristics
as an input for the networks. Adaptive linear time-series methods and models were used
to forecast cooling and heating energy consumption for sixteen residential buildings in
Ref [36]. Similarly, [37] presented a BMS that can forecast cooling loads with the help of
data mining techniques [38]. Optimization of HVAC heat storage in public buildings has
also been investigated with general regression neural networks (GRNNs) in [39].

The application of fuzzy logic methods for energy analysis in buildings has mainly
taken place in control research [40,41] and multi-criteria decision-making [42,43]. How-
ever, as far as the authors are aware, fuzzy logic has only been used sparingly in energy
performance estimation.

An adaptive neuro-fuzzy inference system (ANFIS) model is proposed in this research
for predicting residential energy performance. An ANFIS modeling approach is a very
good option in the energy management field of buildings due to its potential for working
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with uncertainties, explaining effective complex relationships, and identifying uncertain
causal relationships between variables [44]. Moreover, its ability to accurately predict
energy consumption is extremely valuable [45,46]. As a consequence, we explore non-linear
fuzzy approaches for estimating residential buildings’ energy performance, including
fuzzy inductive reasoning (FIR) and ANFIS. In Ref [47], a first attempt has been made in
this direction.

Xifara and Tsanas [48] have created simulated buildings of the residential type that are
accessible in the UCI machine-learning repository [49]. Using simulated building data to
deal with energy prediction problems is an important and justified method, since it reduces
the amount of time required to achieve the data, allows researchers to design various
building configurations easily, and allows them to work with lower detail levels [50]. Based
on the authors’ assertions, the produced data is likely to represent actual real data, allowing
for comparisons of energy between buildings.

In their paper, residential buildings’ cooling and heating loads were predicted using
classical linear regression and random forest approaches [48]. Similar problem and datasets
were addressed by other studies using additional ML approaches, such as support vector
machines, neural networks, and evolutionary computation [34,35,51–55].

Having studied the heating load in residential buildings using HHO integrated with
ANFIS, this paper’s first goal is to compare its performance. With the mentioned model,
the heating load can be forecasted. The contribution of the current study is to exert a hybrid
method of artificial intelligence, for evaluating the heating load. Several buildings (768) are
investigated for this study. This information is then trained utilizing the HHO−ANFIS. The
outcomes of HHO−MLP are reported utilizing three criteria of performance and recognize
the feasibility and accuracy level of the method in forecasting residential buildings’ heating
load. It is a novelty to investigate the application of fuzzy approaches for the prediction of
heating and cooling loads based on building design characteristics because no other study
has used this type of system.

The remainder of the article is classified as follows. The datasets used for this paper are
extensively discussed in Section 2. Section 3 introduces HHO and ANFIS methodologies
and describes how the HHO−ANFIS model forecasts the energy performance in residential
buildings. In Section 4, a discussion of the results achieved by the HHO−ANFIS approach
is presented, and its effectiveness is demonstrated compared to other strategies. Finally,
the conclusion is presented in Section 5.

2. Established Database

Our study utilized data from the UCI machine learning repository [49] with the following:
A total of 768 simulated buildings were generated using Ecotet by the authors in

Ref [48]. The Ecotet is a special software tool for sustainable building design. It compre-
hensively analyzes a building’s energy, water use, and thermal performance, among other
capabilities [56].

Each building in the simulation occupies a total of 771.75 m3, but each has a different
surface area and dimensions. Building elements are designed to achieve the minimum heat
loss (U-value) from walls, floors, or roofs using the latest and most frequently used mate-
rials in the building industry. In this simulation, buildings are assumed to be residential
buildings in Athens, Greece.

Three categories of glazing areas were applied as a percentage of the floor area: 10%,
25%, and 40%. In addition, five different scenarios were used to simulate the distribution
of each glazing area: (1) uniform scenario: 25% glazing area for all parts, (2) north scenario:
55% for the north and 15% for any other parts, (3) east scenario: 55% for the east part
and 15% for any other parts, (4) south scenario: 55% for the south part and 15% for any
other parts, and (5) west scenario: 55% for the west part and 15% for any other parts.
Furthermore, samples without glazing areas were obtained. A final rotation was performed
to ensure that all shapes were facing the four fundamental points. Figure 1 shows the
building’s types.
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Figure 1. Graphical view of data preparation.

Table 1 summarizes eight building parameters that characterize all 768 simulated
buildings. Parameters corresponding to input variables are listed in this table.

Table 1. Input variables used for the models.

RC Relative Compactness OH Overall Height

SA Surface Area O Orientation
WA Wall Area GA Glazing Area
RA Roof Area GAD Glazing Area Distribution

Furthermore, the output variable of heating load (HL) was recorded. The data were
also analyzed statistically, and linear modeling approaches were not suitable because the
density and scatter plots were not according to Gaussian distributions. It has already been
mentioned that this data is likely to represent real data, allowing energy comparisons
among buildings [48]. As an additional benefit, simulated building data can be very
beneficial and justified when it comes to energy prediction issues since it reduces the time
it takes to obtain data, allows us to design different building configurations easily, and
allows us to work with lower degrees of detail during the prediction process [57].

3. Methodology

The methodology of paper searching is to predict the heating load in residential
buildings via the fuzzy approach of HHO−ANFIS. The following subsections introduced
both the HHO and ANFIS approach widely, and in the next section the analysis used
criteria in forecasting the heating load, and the results are discussed.

3.1. Adaptive Neuro-Fuzzy Interface System (ANFIS)

In terms of function approximation, ANFIS proposed by Jang is a known strategy
among hybrid neuro-fuzzy systems with several applications in different fields [58,59]. The
ANFIS is a neuro-fuzzy system of the Sugeno type [60]. Using neural networks as a learning
method, neuro-fuzzy systems find their parameters through a learning process [61–63]. In
line with the HHO methodology, the learning technique is data-driven, not knowledge-
based [64,65].

As expressed in Equation (1), one of the main characteristics of the Sugeno inference
system is that the outputs of rules in the fuzzy system are functions rather than fuzzy sets.

R1 = If a is A1 and b is B1 then z = p1 × a + q1 × b + r1
R1 = If a is A2 and b is B2 then z = p2 × a + q2 × b + r2

(1)
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In this equation, b and a are linguistic variables; B2 , B1, A2, and A1 are linguistic
values selected by fuzzy sets on the scope of B and A; p1, q1, r1, p2, q2, and r2 are output
function variables.

In Figure 2, the two rules expressed in Equation (1) are illustrated graphically to explain
the inference process based on the Sugeno model. To obtain the degree of membership of
each input to each fuzzy set, the Sugeno inference first combines a given input tuple (for
this figure: a = 3 and b = 2) with its antecedents (left panel of Figure 2). To compute the final
output or z (right panel of Figure 2), the main function is applied to get the weight for each
rule or wi. Two different sets of parameters are involved in the Sugeno inference. The first
set relates to the input variables and their membership function parameters. Additionally,
there is a second set containing the parameters related to the output function for each rule,
which are pi, qi, and ri.
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Figure 2. Example of a Sugeno model (estimation of two fuzzy rules with two input variables, b = 2
and a = 3).

The parameters in these two sets are automatically adjusted by ANFIS using least
square and backpropagation (gradient descendent) estimation algorithms [66]. For learning
the variables of the antecedents or membership functions, backpropagation can be applied,
while least squares estimation determines the coefficients for the linear combinations to
obtain the rules’ results. Figure 3 shows the ANFIS structure, which consists of five layers.
In ANFIS, n represents the number of input nodes. For the example in Figure 3, the value
of n is 2 and is related to a and b.
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Each node in layer 1, the fuzzification layer, represents a membership value to a
linguistic term, such as a triangular, Gaussian, or other function. Backpropagation is used
during the learning process to adjust the parameters for the chosen function.

When the parameters change, so do the linguistic terms of Ai, and Bi in the mem-
bership function. The fuzzy intersection is performed at layer 2 by using the T-norm
operator. In addition, in layer 3, each rule is normalized, and its strength is calculated
using ωi =

ωi
∑i ωi

. Moreover, in layer 4, an algorithm based on least squares approximation
to update the parameters of the results of the rules. As a final step, layer 5 sums up the
outputs of all layer 4 nodes. In the MATLAB program, ANFIS is implemented as a func-
tion in the Fuzzy toolbox. In Nauck et al. [58], the ANFIS methodology is explained in
more detail.

3.2. Harris Hawks Optimization (HHO)

In their study [67], Heidari et al. developed a new optimization method called HHO.
This nature-inspired optimization algorithm is based on the behavior model of Harris Hawk
birds. Cooperation between hawks to hunt prey is a vital part of the algorithm. In order to
take the prey by surprise, a flock of Harris hawks attacks from different directions based
on the algorithm. The Harris hawk’s chase model correlates with the prey’s escape pattern.
In the attacking process, birds cooperate. Meanwhile, the Harris hawk leading the hunt
attacks the prey, follows, and unexpectedly leaves out of sight, but the next Harris hawk
stays on the chase. By using this strategy, the prey is eventually exhausted and captured.
Compared to other algorithms, HHO is better suited for constraint-based problems. In
addition, as a global optimizer, HHO can maintain a balance between the exploration
and exploitation phases [68]. In this optimization algorithm, three phases are involved.
Exploration is the first phase, and it can be described using the following equation:

x(t + 1) =
{

xrand(t)− r1|xrand(t)− 2r2x(t)| q ≥ 0.5
xprey(t)− xa(t)− r3(LB + r4(UB− LB)) q < 0.5

(2)

where x(t) represents the current position of Hawk, x(t + 1) represents Hawk’s position in
the succeeding iteration t, xprey(t) represents the position of prey, Each of r1, r2, r3, r4 and q
is a randomly chosen number between 0 and 1. xrand(t) represents a randomly chosen hawk
among the population. Moreover, LB and UB are the lower and upper limits, respectively.
xa(t) represents the average position of the Harris Hawk, which can be obtained by:

xa(t) =
1
N

N

∑
i=1

xi(t) (3)

In this equation, xi(t) is the position of each Harris Hawk in iteration number t, and
N represents the overall number of Harris Hawks. Exploitation is the second phase. The
energy of hawks is reduced through the hunt-and-chase process. Preys’ energy can be
formulated by:

E = 2E0

(
1− 1

T

)
(4)

where E represents escaping energy, E0 is the amount of energy in the initial stage, and T is
the maximum allowable number of iterations. For this phase, when |E0| ≥ 1 exploration
occurs and when |E0| < 1 exploitation happens.

Exploitation is the third phase, which involves improving locally found solutions
using previously collected data. During this phase, the hawks surprise their prey, identified
in the second phase, by attacking it. Four models have been presented for the phase of the
attack, formulated on the prey’s escape and the hawks’ chasing behavior.
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3.2.1. Soft Besiege

Condition for soft besiege strategy is justified when r ≥ 0 and |E| ≥ 0, which can be
modeled by:

x(t + 1) = ∆x(t)− E
∣∣Jxprey(t)− 2x(t)

∣∣ (5)

∆x(t) = xprey(t)− x(t) (6)

In this equation, ∆x represents the difference between the prey and Hawk’s current
position in the t iteration. J is the prey jump power parameter in the escaping process,
which is calculated by J = 2(1 − r5) and r5 considered as a randomly selected number
between 0 and 1.

3.2.2. Hard Besiege

The condition for hard besiege strategy is justified when r ≥ 0 and |E| < 0. The prey
does not have enough energy to escape because it is tired. This phase can be modeled by:

x(t + 1) = xprey(t)− En|∆x(t)| (7)

3.2.3. Soft Besiege with Progressive Rapid Dive

The condition for soft besiege with progressive rapid dive strategy is justified when r <
0 and |E| ≥ 0. The prey is able to escape successfully during this phase. For implementing
a soft besiege, Hawk considers the following next move:

x = xprey(t)− E
∣∣Jxprey(t)− x(t)

∣∣ (8)

Z = Y + S + LF(D) (9)

In this equation, D represents the dimension and S are considered as a random vector
of 1 × D size, and LF represents the levy flight function [67,69]. Consequently:

x(t + 1) =
{

Y f (Y) < f (y(t))
Z f (Z) < f (y(t))

(10)

Hard besiege with progressive rapid dive:
The condition for a hard besiege with progressive rapid dive strategy is justified when

r < 0 and |E| < 0. In this case, it is impossible for the prey to escape appropriately because
it lacks sufficient energy. Using the following equation, this strategy can be formulated:

x(t + 1) =
{

xprey(t)− E
∣∣Jxprey(t)− xm(t)

∣∣ f (Y) < f (y(t))
Z = Y + S + LF(D) f (Z) < f (y(t))

(11)

4. Results and Discussion

A two-stage computational model is applied in this paper to predict heating load (HL)
using influential variables. The training set comprises almost 80% of the samples, and the
testing set comprises approximately 20%. This ensures the generalization capabilities of
the model and overcomes the overfitting problem.

4.1. Accuracy Indicators

A training subset is used to obtain model parameters, and a testing subset is used to
validate the model. Statistical confidence is achieved by repeating the training and testing
phases 1000 times on the whole dataset, rearranging them randomly in each run before
segmenting them into training and testing.

Each of the models is evaluated according to three criteria. Two of these criteria
are error indexes, including the root mean square error (RMSE) and the mean absolute
error (MAE), which are formulated in Equations (12) and (13), respectively. The indexes
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selected here are those utilized most frequently in previous research works [35,48,52], so
our proposed fuzzy technique can be compared with their methodologies.

RMSE =

√√√√ 1
N

N

∑
i=1
|yi − ŷi|2 (12)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (13)

In these equations, ŷ(t) refers to the predicted output, y(t) is the actual output, and N
represents the overall number of samples. This study compares various strategies on the
same dataset using RMSE and MAE, which are commonly used as accuracy indexes. All
individual differences in the MAE are weighted equally in the average since it is a linear
index. In the RMSE, errors are squared before they are averaged, which provides a quite
high weight for large errors. In other words, it is most beneficial to use the RMSE when
large errors are especially undesired. It is possible to reduce the variation in forecast errors
by combining the MAE and the RMSE.

To have a comprehensive measure of performance, the third evaluation criterion was
implemented. For this purpose,

R2 = 1−
N

∑
i=1

(yi − ŷi)
2/

N

∑
i=1

(yi − yi)
2 (14)

The term yi stand for the number of occurrences and the average of the actual HL values.

4.2. Incorporated FIS with Optimizers

In this section, the RMSE and MAE values, calculated for HL output variables, are
summarized. A diagram showing the accuracy obtained based on ideal values for each index
can be found in this diagram. It should be noted that RMSE and R2 should ideally be 0 and 1.
Based on a training population of 400 individuals, the values for these indexes related to the
HHO−ANFIS model are 0.08769 and 0.98709. As a result, it can be concluded that the proposed
model achieved 91.23% (1 − 0.08769 = 0.91231) and 98.70% (0.98709/1 = 0.98709) accuracy
for RMSE and R2 indexes. This conclusion also applies to the validity and precision of
the other indexes. It should be noted that to determine performance indexes in decimal
form, the percentage values need to be converted. Figure 4 presents the MSE value versus
iterations (1000 iterations) for ten population sizes (50, 100, 150, 200, 250, 300, 350, 400, 450,
and 500) for HL in the present study. The best result is obtained from the lowest value
of RMSE. As indicated in Figure 4 and Table 2, the lowest MSE value for HHO−ANFIS
resulted from a population size of 400 (MSE = 0.08769 and 0.08281), and the highest MSE
value from a population size of 500 (MSE = 0.15105 and 0.15016). These results indicate
that the HHO−ANFIS can predict the heating load with high accuracy.

Zhang et al.’s [42] work introduced the theory of rank analysis. In each index, a
maximum rank (which refers to the models’ number under study) was assigned to the
model that has the best value, whereas a rank of 1 was assigned to the model with the
worst value, different for training and testing results. Their ranks were then added up to
calculate the total score. As a final step, the testing and training phases are added together
to calculate each model’s final score.

Using the results demonstrated in Table 2, it is evident that the HHO−ANFIS approach
made the most accurate prediction for predicting the heating load, applying a population
of 400 and with the highest R2 values of 0.98709 and 0.98794 and the lowest RMSE values
of 0.08768 and 0.08281, respectively, in the training and testing datasets. On the contrary,
having the lowest R2 (0.96119 and 0.95978) and highest RMSE (0.15105 and 0.15016), the
population of 500 is the least accurate model in heating load prediction. There is a strong
correlation between the kind of input data used and the results of fuzzy methods. A
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comparison of the results obtained in this paper with those from other studies is necessary
to analyze the efficacy of the suggested method. It is recommended to make comparisons
using similar datasets with caution.
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Table 2. The network results for the HHO−ANFIS having different swarm size.

Swam Size
Training Dataset Testing Dataset Scoring

Total Score Rank
RMSE R2 RMSE R2 Training Testing

50 0.12403 0.974 0.126 0.97185 6 6 5 5 22 5
100 0.15039 0.96154 0.1469 0.96154 3 3 2 2 10 8
150 0.15102 0.96121 0.14546 0.96231 2 2 3 3 10 8
200 0.09207 0.98576 0.10153 0.98182 9 9 8 8 34 2
250 0.12921 0.97175 0.1248 0.97239 5 5 6 6 22 5
300 0.1409 0.96632 0.12994 0.97003 4 4 4 4 16 7
350 0.10745 0.98055 0.10199 0.98165 7 7 7 7 28 4
400 0.08769 0.98709 0.08281 0.98794 10 10 10 10 40 1
450 0.10233 0.98238 0.10016 0.98231 8 8 9 9 34 2
500 0.15105 0.96119 0.15016 0.95978 1 1 1 1 4 10

It is clear from Figure 5 that the proposed HHO−ANFIS network has passed its
training phase properly since target data and network output correlate well. When training
is carried out correctly, the network learns to identify patterns inherent in the data and then
predicts unknown data by applying the learned patterns. Thus, the HHO−ANFIS network
determines how much heating load is necessary for each building based on its particular
characterizations. As a result of the training process, each network can predict the amount
of heat load based on the input data from the test phase. The initial test data is used to
validate each network after training. The network itself performs this test as part of the
training phase.
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Figure 5. The accuracy of training and testing dataset performance of HHO−ANFIS in the best fit
optimization structure. (a) HHO−ANFIS Np = 50. (b) HHO−ANFIS Np = 100. (c) HHOANFIS
Np = 150. (d) HHO−ANFIS Np = 200. (e) HHO−ANFIS Np = 250. (f) HHO−ANFIS Np = 300.
(g) HHO−ANFIS Np = 350. (h) HHO−ANFIS Np = 400. (i) HHO−ANFIS Np = 450. (j) HHO−ANFIS
Np = 500.
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4.3. Error Analysis

For the HHO−ANIFS network, the prediction errors for both the validation and test
phases are depicted in Figures 6–10 in the histogram as one of the essential factors for
assessing the results. This error histogram model indicates the maximum and minimum
prediction errors. The trained network could have an amount of error equal to the values
in the below figures when forecasting test data related to the heating load.
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(a) Training dataset. (b) Testing dataset.

As a result of analyzing and evaluating the following figures that represent the initial
testing and training phases of the HHO−ANFIS network for five population sizes (100,
200, 300, 400, and 500), one can conclude that the suggested approach has been adequately
tested using the target data. If the network is trained accurately, the design is good, and the
amount of error varies with the type of data used for initial validation and testing processes.
As a result, the final model will be capable of analyzing and predicting new data, as well as
unknown data.
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4.4. Discussion

The majority of reviews and research works focus on the development of machine
learning algorithms. Among the research papers studied, there is often a sporadic reporting
problem on how machine learning models are developed, with key information missing.
The data used in many papers is simply listed without any details about how it was
separated for training and testing, for example.

A major limitation in machine learning algorithms lies in the lack of high-quality and
real-world datasets and testbeds for evaluating their performance. Even though some
datasets are available, such as “UCI machine learning repository” [49], which can be
used for training and testing algorithms, high-quality testbeds for evaluating algorithm
performance remain scarce. Furthermore, the optimization algorithm performance will
become more compelling once tested in a standardized experimental environment.

For future studies on applying machine learning to building load prediction, we
expect that the trend will move from the simple application of certain algorithms to a
more integrated process and/or framework that incorporates machine learning algorithms
training and application as well as data engineering and feature engineering. In particular,
it is predicted that the following trends will emerge:

• A shift will be made from algorithm development to data development.
• There will be more and more advances in using domain knowledge to integrate

machine learning processes. It is important to note that machine learning development
is not just about algorithm development but also the exploration phase of algorithm
design for various application scenarios.

• Various machine learning techniques will be implemented in the development of the
models, including clustering, active learning, data augmentation, and so on.

• The future of machine learning will feature plug-and-play algorithms and models that
require minimal tuning by users.

• As we see it, the major problems related to the future research and investigation of
machine learning-based approaches for load prediction are models related to a real
building, reduced engineering expenses, and the realization of automation. More
specifically:

• The important benefits of machine learning methods for load prediction are automa-
tion and engineering cost reduction, but incorporating the algorithms and models into
existing BAS and IoT systems can be challenging.
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• It is essential to improve algorithms to be applied to different types of buildings,
energy systems, and weather to realize automation. A framework based on specific
data and buildings can be difficult to automate and tune.

• A lack of real-building testbeds with high data quality also poses a challenge to testing
the extendibility of algorithms.

5. Conclusions

The main purpose of this article is to explore the feasibility of estimating building
energy performance using a fuzzy approach. It is essential to take into account the building
characteristics when determining the amount of heating load required. Therefore, to design
and construct energy-efficient buildings and have appropriate indoor conditions, choosing
the most related building characteristics, such as those related to heating is helpful. The
current study builds on previous research which designed some buildings with the purpose
of predicting the heating and cooling systems of buildings. This was done based on the
following variables: relative compactness, orientation, roof area, wall area, overall height,
surface area, glazing area, and glazing area distribution.

A fuzzy methodology has been studied in this research, i.e., HHO−ANFIS. The
training and testing processes were repeated 1000 times in ten population sizes (50, 100, 150,
200, 250, 300, 350, 400, 450, and 500) to the whole dataset, which was randomly permuted
in each run prior to splitting it into training and testing subsets. The analysis results
show that the HHO−ANFIS with a population size of 400, has a high value of R2 (0.98709
and 0.98794), and a low value of RMSE (0.08769 and 0.08281) in the training and testing
dataset, respectively. According to the high value of R2 (98%) and low value of RMSE,
HHO−ANFIS can be used in predicting the heating load of residential buildings.
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