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Abstract: This research addresses the factors that impact the acceptance of AI-based technologies or
products depending upon firm size in the construction industry, in which various corporates exist.
In order to achieve the research goals, a technology acceptance model was applied to investigate the
influencing factors in respect to adopting AI-based technologies or products. From the research results,
technological and organizational factors were found to positively influence perceived usefulness and
perceived ease of use. Corporate users perceived that technology is useful to their work and is easy
to use when enough capital and education were invested prior to the company adopting AI-based
technologies or products. It was found that perceived ease of use and perceived usefulness indicate
satisfaction with new technology, and the higher the intention to use, the higher the satisfaction. In
addition, as various information sharing and distribution channels increase, the frequency of use of new
technologies or products also increases, not through traditional marketing, but through viral marketing
via social media or promotion by influential persons or organizations. Furthermore, there are differences
in the adoption of AI-based technologies or products depending on the size of the company.

Keywords: technology acceptance model; artificial intelligence; construction industry; firm size;
mediating effect

1. Introduction

In the middle of the 20th century, Alan Turing raised the question, “Can machines
think?” [1]. In March 2016, half a century later, human beings realized that AI had come
close to equaling us through the match between Google’s AI Go program, ‘AlphaGo’, and
Sedol Lee, professional ninth dan Go player, in Korea [2,3]. Later, AI became the main
technology that could transform industrial processes through all parts of industry. The
construction industry is also trying to develop as a new AI-based industry. Following this
trend, terms including robot, unmanned aerial vehicle (UAV) or drone, digital twin, build-
ing information modeling (BIM), machine-learning, AI, and metaverse are now common in
the construction industry [4–8].

The emergence of new products or services due to these technological advances
has not always been welcomed. The introduction of the weaving machine in the early
19th century in Britain sparked the Luddite movement, a machine-destroying movement,
due to the belief that weaving machines would reduce employment opportunities for
workers [9]. Similarly, in many countries in the 21st century, including Korea, there have
been conflicts with existing technology or dominant powers within the industry whenever a
new fourth-industrial-revolution-based service or technology appears [10–12]. For instance,
Uber, which emerged as a new transport intermediary platform service, raised a dispute by
directly conflicting between its purpose of “carrying people for monetary exchange” and the
taxi-related laws of each country [10]. In addition, ChatGPT and illustration using artificial
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intelligence, which appeared in early 2023, pose a threat to jobs in existing occupations,
such as reporting, writing, or illustration, and have created friction as a result [13].

Although there are confrontations and conflicts between existing and new technolo-
gies every time a new technology appears, humanity eventually accepts and utilizes the
new technology. AI or machine-learning, the main technologies of the fourth industrial
revolution, are used in various fields and are transforming our lives and industries [14–17].
The construction industry, which requires mass manpower, capital, and resources, is con-
sidered a traditional industry that plays a crucial role in the national economy. However,
compared with many industries, digital transformation in the construction industry is a
slow process [18–20]. At a point where the outcome from applying AI-based technologies
or products is becoming clearer in various industrial fields, the awareness that the con-
struction industry should not be left behind is spreading [5,7,20–22]. Singapore launched
the Building and Construction Authority (BCA)’s Construction Industry Transformation
Map in 2017. Through fourth industrial revolution technology, they are enhancing pro-
ductivity, reducing expenses and safety accidents, and creating job opportunities in the
construction industry [23]. Similarly, Germany and the UK are pursuing cost reduction and
productivity advancement by utilizing digital technology, through “Construction Site 4.0”
and “Construction 2025: industrial strategy for construction—government and industry in
partnership”, respectively [24,25].

The questions “Will industrial transitions, such as utilizing AI-based new technology,
digital transformation, and digitalization, succeed? If so, in order to effectively achieve these
transitions, what thoughts will individual players in the construction industry possess?”
address the considerations that companies and individuals in organizations will have
prior to using AI-based technologies or products. To suggest appropriate answers to these
questions, potential users’ attitudes towards the acceptance of new technologies or products
should be thoroughly examined. When adopting AI-based technologies or products in the
construction industry, reviews on the thoughts and attitudes of potential users should be
conducted for minimized conflict and stable settlement during the introduction process.
Currently, there are many works on the development of AI-based technologies or products
to be utilized in the construction industry, whereas works on the acceptance of these are
rare [4,5,7,18,22].

Thus, in this research, we aim to understand the factors that impact acceptance of
AI-based technologies or products depending on the size of the company in the construc-
tion industry, in which various corporates exist. We apply a technology acceptance model
(TAM), which is used for research on acceptability and attitudes towards data communi-
cation equipment in the management of information systems (MIS) field, to determine
the acceptance of and attitudes towards AI-based technologies or products depending on
the size of the company. That is to say, by considering influencing relationships between
constructs by applying the TAM, we can not only address the acceptance of AI-based tech-
nologies or products depending on the size of the company in the construction industry,
but we can also provide useful data with respect to developing customized strategies when
these technologies are adopted in the future. The second section in this paper presents a
theoretical study of AI-based technologies or products in the construction industry, as well
as describing the TAM, firm sizes, and innovations. The third section describes the research
model, hypothesis setting, and research method. The fourth section analyzes the research
model and examines implications of the research. Based on the results of the quantitative
verification, the last section suggests the limitations of the research and further study points,
as well as providing a summary of the research. The introduction briefly places the study
in a broad context and highlights why it is important. This defines the purpose of the work
and its significance.
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2. Related Work
2.1. Artificial Intelligence (AI) in the Construction Industry

In the construction industry, the utilization of AI-based technologies or products is
part of the life cycle of buildings or structures. In general, the life cycle of a building
involves the following stages: inception–design–construction–operation and maintenance–
demolition [26–28].

Site management and building or facility maintenance are the fields in which AI-based
technology development has actively progressed [20,29–31]. There are numerous workers,
as well as potential risk factors, on construction sites. Moreover, many construction
materials and workers frequently enter the site, so effective and efficient management is
crucial. The management of construction materials and inventory through computer-vision-
based AI technology is one of the active fields of AI research [32–35]. Shin et al. (2021)
developed a computer-vision-based method to count rebar, one of the most important
materials in ferro-concrete structures, quickly and precisely [33]. Computer-vision-based
machine-learning is used for tracking the number of site workers and the wearing of
safety helmets, which is an important site safety management factor, along with material
maintenance [36,37]. As summarized in Table 1, computer-vision-based AI technologies
are not restricted to the lab, but are recognized for usability, thus positioning them as one
of the common technologies on site [32,38–40].

Table 1. AI studies on construction site management.

Authors Summary References

Shin et al. (2021) Rebar size and number counting
Convolutional neural network in combination with homography method [33]

Kamari and Ham (2021) Volumetric measurements on construction sites
Point-cloud methods for 3D segmentation [41]

Liu et al. (2021) Review of construction site monitoring techniques based on
computer-vision-based technologies [36]

Yang and Lei (2021) Adopting YOLOv5 for segmentation of helmet wearing at a construction site [37]

Xiao et al. (2021)
Construction machine tracking at night on construction sites

Illumination enhancement methods providing better object detection under
low light conditions

[38]

Yu et al. (2019) Computer-vision-based 3D motion assessment model for motion capturing
of workers [39]

Fang et al. (2018)
Detecting various objects and workers for on-site safety management

Application of improved faster regions with convolutional neural
network approach

[40]

Facility maintenance and management of buildings or structures completed through
these procedures are important for stable usage and enhancing residents’ satisfaction [31,42,43].
In particular, facilities including bridges or tunnels have limits with respect to workers making
visual inspections [44–47]. In the case of bridges, it is difficult for workers to visually identify
problems due to height. In order to solve these problems, drones and computer vision have
been actively adopted [48–50]. In terms of ferro-concrete or steel-frame structures, cracks play
an important role in understanding problems with buildings or structures. Computer-vision-
based crack detection technology acts as a substitute to overcome a variety of problems, such
as workers and equipment falling, human errors, and work limits due to weather [47–49,51].
Furthermore, AI-based technologies or products can function as precautionary maintenance
methods that can predict and prevent possible issues. Data collected by various sensors
could assist in the preparation of buildings’ or structures’ maintenance plans, and efficient
distribution of resources [29]. Research on the operation and maintenance of buildings is
summarized in Table 2.
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Table 2. Artificial intelligence research on the operation and maintenance of buildings.

Authors Summary References

Jiang et al. (2021) Proposes a new method to detect and classify concrete cracks for damage management
Fewer parameters for portable and speedy application of the suggested method [51]

Guan et al. (2021)
Pavement distress detection using a vehicle-mounted system to collect pavement

surface pictures
Modified U-net network architecture to improve computational efficiency

[45]

Dung and Anh (2019) Concrete crack detection and density evaluation
An encoder-decoder FCN for segmentation of images [46]

Rezaie et al. (2020) Crack detection in combination with a threshold and deep learning method [47]
Park et al. (2020) Real-time concrete crack detection applying YOLOv3-tiny algorithm [48]
Yang et al. (2020) Transfer-learning-based deep convolutional neural network for efficient learning [49]

2.2. Technology Acceptance Model

Finding the reasons behind users accepting or rejecting new information and commu-
nication technology (ICT) is one of the important aspects of new technology research [52,53].
The technology acceptance model is one of the models developed to explain and predict
users’ attitudes against state-of-the-art technology and acceptance of new IT products [54].
First suggested by Davis, Baggozzi, and Warshawet, TAM’s theoretical basis is of the theory
of reasoned action (TRA), proposed by Fishbein and Ajzen, and the theory of planned
behavior (TPB), suggested by Ajzen [55–58].

According to the TRA, the direct decision factor that leads to actual behavior is not
the attitude towards action, but the behavioral intention to act [56]. The TRA suggests
that real behavior is affected by a behavioral intention to carry out an actual act and
the behavioral intention is decided based on attitude and subjective norms [56]. The
TPB, which was developed as an extension of rational behavior theory, adding subjective
norms and perceived behavioral control variables to its conceptual framework, claims that
restricted behavior is under perceptual control through volitional control [57,58]. That is, if
individuals perceive that they have little control over their intended actions, they are more
likely to refrain from taking action.

The TAM consists of four factors suggested by Davis et al. [54], which are perceived
usefulness, perceived ease of use, behavior, and behavioral intention (see Figure 1). Per-
ceived usefulness is defined as the degree of an individual’s subjective belief that using a
particular system will enhance job performance [54]. This refers to the evaluation of the
result that using a product or service with newly introduced technology will improve an
individual’s job performance or quality of life. Perceived ease of use is defined as the degree
of belief that an individual will be able to use a particular type of information technology or
system without significant psychological or physical effort [54]. In other words, ease of use
is perceived as high when a new product or technology is designed to be user-friendly or
when the usage method is similar to an existing work system; it is judged that the system
requires less psychological and physical effort to learn. An individual’s attitude towards
technology usage is revealed as one’s belief and emotion towards behavior and affects
direct behavioral intention. That is, one’s attitude towards technology usage is affected by
perceived usefulness and ease of use, and has an effect on the intention [54,55].
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2.3. Firm Size and New Technology Adoption

Many scholars have emphasized the importance of the size of the companies in regard
to technology acceptance and adoption [59–61]. Schumpeter (1986) contended that large
corporations have enough competence and resources to invest in technology development
and innovation, whereas small and medium enterprises do not [62]. Similarly, according
to a study by Lee and Xia (2006), corporate size is a surrogate for total available resources
and slack within a company, and economies of scale play an important role in accepting
innovation [63].

In particular, according to various studies, the size of a company plays a crucial role in
developing and accepting new technology, as well as innovation [63–65]. It is said that since
new technology development and adoption have attributes such as long-term, grand-scale
projects, company size is hugely influential [66–68]. According to a study by Bound et al.
(1982), R&D intensity decreases in the beginning and later increases, taking the form of
the letter U as company size increases [69]. Based on research results, considering budget
processing and research intensity, R&D is more active in large corporates than in small and
medium enterprises [70].

However, compared with large corporates, small and medium enterprises possess
higher flexibility and adaptability to their surroundings; thus, they are more innovative
and find it easier to adopt and utilize new technology [71,72]. Moreover, Mansfield (1981)
states that small and medium enterprises have relative advantages over large corporates in
technology innovation and development since less effort (time and resources) is required
in promoting and mediating cooperation and collaboration between staff. Mansfield also
states that when the impact on productivity depending on corporate size and R&D in-
vestment is investigated, small and medium enterprises’ R&D investment has a larger
aggregating effect on the total productivity per factor in the long- and short-term compared
with that of large corporates. When these research results are examined, the reality is that
studies on corporate size, technology innovation, and R&D are being progressed consider-
ably, whereas research on the acceptance of new technologies or products depending on
corporate size is less common.

3. Research Model and Hypothesis
3.1. Overview of the Proposed Model

As suggested in previous research, although there is a consensus on the possibilities
and advantages of applying AI-based technologies in the construction industry, methods
by which to apply them and maximize profit due to such technologies are not yet clear.
Therefore, research on the impact factors to maximize AI-based technologies in the con-
struction industry, and how to apply these in various companies, remains to be carried
out. In particular, according to data collected by Statistics Korea, it has been reported
that among the registered construction companies in Korea, 98.4% of them are small and
medium enterprises and they take 62% of the revenue [73]. Analysis on the impacting
factors of AI-based technologies due to the asymmetry between large corporates and small
and medium enterprises could play an important role in the application and distribution
of AI-based technologies customized for companies. Thus, in this research, we aim to
understand the mechanism behind accepting AI-based technologies in the construction
industry depending on the company size, based on positively verified research models,
such as TAM-related theories.

In order to determine the degree of accepting AI-based technology in the construction
industry depending on company size, we achieved verification based on the TAM by Davis
(1989) [54]. As shown in Figure 2, the research model suggested in the study uses external
variables affecting the intention and usefulness of usage as technological and social factors,
as well as individual and organizational capacities, based on previous research. Moreover,
along with perceived usefulness, perceived ease of use, and intention to use suggested
in the TAM, technology usage satisfaction was chosen as a basic variable. Together with
these basic variables, based on the chance that new technology acceptability and individual
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capacity may vary depending on company size, corporate size was considered as an
adjustable variable. In addition, taking into account that individual experience may affect
perceived usefulness and perceived ease of use when accepting and using new technology,
experience was chosen as an adjustable variable to impact perceived ease of use and
perceived usefulness.
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3.2. External Variables for AI-based Technology Adoption
3.2.1. Technology

When introducing new technology, it is important to judge whether the technology
currently in use or adopted internally is suitable for the organization [74]. For new tech-
nology to be stably used and settled, it should not only align with corporate values, but
also with the demand for technology and potential user experiences [75]. In other words,
even though the new AI-based technology can act as a factor for enhancing work effi-
ciency and competitive advantage, if it shows less compatibility with software or hardware
commonly used in the company, the organization or the members may not choose it. In
terms of AI-based technology, we suppose that technological attributes show technological
suitability, ease of use, and compatibility. Previous research has suggested that for new
technology to be used in the construction industry, it should have high compatibility with
existing software [76,77]. Compatibility is defined as corresponding with a potential user’s
previous experience, work practice, system, and requests, and is mandatory in accepting
new technology or innovative products. Moreover, it is considered that if new technology
is more complicated than the existing technology, users are hesitant to use it even though
it is technically superior. Therefore, we set hypotheses as below to verify the effect that
technological aspects have on perceived usefulness and ease of use in terms of AI-based
technology [74–77].

H1a. When adopting AI-based technology or products, the technological aspect affects the perceived
usefulness of users.
H1b. When adopting AI-based technology or products, the technological aspect affects the perceived
ease of use of users.
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3.2.2. Personal Competence

The degree of accepting new technology differs depending on an individual’s in-
novativeness or attitude. Research on the TAM has been considering individual traits,
such as personal innovativeness as an external variable affecting attitudes, in accepting
technology [78–80]. The research suggests there are factors that influence individual traits,
such as self-efficacy, an individual’s trust of technology, and innovativeness. Bandura
(1997) defined self-efficacy as people’s beliefs in their capabilities to exercise control over
their own functioning and over events that affect their lives [81]. In this study, judgement
on self-efficacy affects the cognitive reaction and the affected cognitive reaction has an
impact on the expected outcome. Research by Compeau et al. (1999) suggests that new
technology users gain confidence with the technology by repeatedly using it for work, and
their confidence will affect the expected outcome through the technology. Moreover, indi-
vidual innovativeness refers to the willingness to accept new technology [82]. Individual
innovativeness means early adopters and this can imply how fast one accepts and uses
new technology compared with others [78]. Self-efficacy and individual innovativeness
represent one’s attitude towards encountering new technology, and the positive influence
of a person is shown to affect the perceived usefulness and ease of use when accepting new
technology. Therefore, on these bases, in this research, we supposed that personal traits
affect the acceptance of new technology, and we set hypotheses as below [78–82].

H2a. When adopting AI-based technology or products, personal competence affects perceived
usefulness.
H2b. When adopting AI-based technology or products, personal competence affects perceived ease
of use.

3.2.3. Organizational Competence

Individuals within an organization are the main subjects accepting new technology,
and one decides whether to accept or not based on influences from organizational structure,
culture, and support [83]. The organizational structure mentioned above refers to official
procedures concerning decision-making processes, job assignment, and communication,
which comprise the series of works and processes with respect to internal announcements
when a company adopts a new technology [84–86]. In addition, the organizational members
may share reactions or attitudes towards the values or beliefs they share or specific issues;
these are designated as organizational culture [87–89]. Members of the organization are
unwittingly under the organizational cultural influence, and organizational culture greatly
affects attitudes towards adopting new technology. In particular, organizational culture is
regarded as one of the important factors for companies to decide on positively accepting
new technologies or technological innovations [89]. Hierarchies in communication and
active support of the company during technology adoption, which is currently being
emphasized, are included in organizational culture. That is, the organizational culture is
a comprehensive concept including the goals, support, and policies of an organization in
terms of adopting new technology and is regarded as one of the main factors by which
companies in the construction industry will decide to use AI-based technology in this
research. Furthermore, when it comes to adopting and using new technology, whether or
not it will be successfully used is a potential risk, and accepting the risk and the degree of
tolerance is useful in forming trust between the members of the organization; these factors
will influence active accommodation [80]. Therefore, we set hypotheses as below to verify
the impact that organizational competence has on perceived usefulness and ease of use
when construction industry companies adopt AI-based technology [83–89].

H3a. When adopting AI-based technology or products, organizational competence affects
perceived usefulness.
H3b. When adopting AI-based technology or products, organizational competence affects perceived
ease of use.



Buildings 2023, 13, 1066 8 of 22

3.2.4. Social Influence

Social influence is a factor used to identify differences between one company and an-
other as new methods of communication technologies are developed. Here, social influence
refers to the social environment that affects an individual when making a decision, and it
also refers to the technological support environment and social atmosphere when adopting
new technology [90–93]. In the research on adopting new technologies and the associated
attitudes, studies related to the social environment are relatively scant when compared
with other factors. However, when core technologies of the fourth industrial revolution
such as AI and the metaverse are adopted, discussions on perceiving surroundings and
social impacts gradually increase [91,93]. Particularly, for the construction industry, since
many stakeholders participate in projects and cooperation among various parties within the
supply chain is important, social influence is considered a significant factor in the attitudes
towards acceptance of AI-based technology [94,95]. Social influence is an important factor
in bridging and bonding, thus its importance is addressed in social capital research [94].
Moreover, it has been reported that in terms of social influence, bridging is an important
factor in forming emotional bonds and it greatly affects loyalty to the technology and
persistent usage when adopting the technology. Furthermore, bonding is a relational trait
that enables forming a strong mutual link in a close relationship; this suggests a closed
relationship but refers to one that is able to draw reciprocal emotional support through a
network of those with similar backgrounds or characteristics. Therefore, when companies
in the construction industry adopt AI-based technology, whether or not to accept the at-
titudes towards adopting new technology are affected by bridging and bonding within
the industry. We set hypotheses as below to verify the impact that social influence has on
perceived usefulness and ease of use in adopting AI-based technology [90–95].

H4a. When adopting AI-based technology or products, social influence affects perceived usefulness.
H4b. When adopting AI-based technology or products, social influence affects perceived ease of use.
H4c. When adopting AI-based technology or products, social influence affects users’ intention to use.

3.2.5. Perceived Usefulness

In terms of using ICT or systems, usefulness is defined as the user’s subjective degree of
trust that the technology will enhance the task result [54]. That is, it is a user’s belief that one’s
task performance or quality of life will be improved by using new ICT or systems compared
with previous ones. For the TAM suggested by Davis, perceived usefulness is described to
affect the attitude and intention of users who adopt new ICT. In addition, when it comes to
accepting new ICT or systems, the positive influence that perceived usefulness has on the
attitude and intention to use is being verified through many studies in various fields [96–98].
Particularly, the impact of perceived usefulness in the construction industry has been proven
in studies on influencing factors and acceptance attitudes in embracing building information
modeling (BIM) [80,97]. We set hypotheses as below to verify the impact that perceived
usefulness has on adopting AI-based technology in the construction industry.

H5a. When adopting AI-based technology or products, perceived usefulness affects technological
satisfaction.
H5b. When adopting AI-based technology or products, perceived usefulness affects users’ intention
to use.

3.2.6. Perceived Ease of Use

Davis (1989) defined ease of use as a potential user’s degree of belief that using
particular information and communication technology or systems will require little physical
or psychological effort, or the extent to which one expects to be able to use new technology
or systems with little effort [54,55]. Thus, perceived ease of use refers to the degree of
personal belief in how easy or difficult it will be for an individual to use a newly adopted
technology or product. When practitioners in the construction industry use AI-based
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technology, the attitude or intention of individuals to adopt or use it may vary depending
on the degree of their subjective belief that it is easy to use [54,55,79,91,96]. Therefore, we
set the below hypotheses to verify the effect that perceived ease of use has on perceived
usefulness and technological satisfaction when adopting AI-based technology.

H6a. When adopting AI-based technology or products, perceived ease of use affects perceived
usefulness.
H6b. When adopting AI-based technology or products, perceived ease of use affects technological
satisfaction.

3.2.7. Satisfaction with the Technology

Satisfaction is considered to occur when a user’s experience with a product or service
exceeds their expectations when compared with prior experiences [99]. Satisfaction is
defined as the perceptive, subjective evaluation of a user of an information system based
on system quality [100]. Among many subjective evaluation factors for satisfaction, user
satisfaction is especially frequently evaluated in information system usage. In particular,
user satisfaction tends to show high contentment and outstanding performance when a
user willingly uses a system and is not forced to do so by external influences [101,102]. The
reason that satisfaction evaluation is important is that it has positive impacts not only on
corporate financial performance, but also on non-monetary factors, such as continuous
usage, loyalty, and positive references [103,104]. Therefore, we set the below hypothesis
by which to verify the effect that technological satisfaction has on usage intention when
adopting AI-based technology [100–104].

H7. When adopting AI-based technology or products, technological satisfaction affects user’s
intention to use.

3.2.8. Firm Size

When it comes to adopting new technologies or products for companies, relationships
between firm size and new technology adoption are controversial [59–61]. Particularly, large
firms play an essential role in the technological innovation, development, and distribution
of new products, and act as innovators for technological development [64,65,67].

Since large companies have an absolute advantage in technological innovation in
terms of financing, execution, and sustainability, new technology development is more
active than it is for small- and medium-sized enterprises (SMEs) [66,68,71]. Firm size is
also considered one of the important factors affecting the acceptance and utilization of new
technologies. In the case of AI-based technology, which requires a large amount of capital
and human resources, firm size is more crucial in adopting new technology. Therefore, we
set below a hypothesis by which to verify the effect that company size has on adopting
technology in general when adopting AI-based technology [64–68,71].

H8. When adopting AI-based technology or products, company size affects hypotheses 1–7.

4. Research Design
4.1. Research Procedure and Data Acquisition

The conducted research involved surveying practitioners in the South Korean con-
struction industry to verify influencing factors when adopting AI-based technology. The
construction industry, which is the main area of this study, was defined to include building
construction, architectural design, structural design, operation and maintenance, building
equipment and machinery, supply chains, and research professionals in this industry.

The research took the form of an online survey in order to verify the set hypotheses.
This method was chosen since an online survey is a useful way to meet basic conditions,
such as complying with COVID-19 quarantine guidelines, as well as time and space
constraints. We consecutively carried out preliminary and main research so as to verify
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the adequacy of the questionnaires and to develop the research. Preliminary research
was conducted from October to November 2022 through semi-structured interviews of
experts. Through preliminary research, experts reviewed the adequacy of models and
variables suggested in the study, and the main research was conducted based on these
developed questionnaires. A total of 500 emails were sent for the main research from
December 2022 to January 2023. Among the surveys sent, we received 432 replies, which
represented an 86.4% return rate. Normality and outliers of measurement variables were
checked through retrieved surveys, and 420 were valid; these were used for analyzing the
actual conditions. The results of the technical statistical analysis for the respondents of the
collected questionnaires are shown in Table 3.

Table 3. Demographics of respondents (N = 420).

Measure Frequency Percentage

Gender
Male 315 75.0

Female 105 25.0

Age

20 ≤ Age < 28 37 16.0
28 ≤ Age < 36 157 37.4
36 ≤ Age < 44 107 25.5
44 ≤ Age < 52 76 18.1
52 ≤ Age < 60 12 2.9

Age ≥ 60 1 0.2

Type

Construction management 210 50.0
Design 76 18.1

Structure design 118 28.1
Facilities management 8 1.9

Research and development 8 1.9

Size of company Large 206 49.0
Small and medium 214 51.0

Education
Bachelor’s degree 246 58.6
Master’s degree 154 36.7

Doctorate and above 20 4.8

Working experience

1 ≤ Years < 5 112 26.7
5 ≤ Years < 10 125 29.8
10 ≤ Years < 15 141 33.6

Years ≥ 15 42 10.0

The questionnaires used in the research comprised three sections. The first section
included a simple explanation of the purpose of the survey, the definition of AI-based
technology in the construction industry, and the criteria for classifying company size. In
this research, AI-based technology was defined as those commonly used throughout the
construction industry, such as computer vision, natural language processing, and machine-
learning. In order to provide a demographic analysis of the survey respondents, the second
part of the survey was designed to provide information on sex, educational background
and level, career, business category, and company size. The last section was composed of
48 questions to determine the factors that influence acceptance of AI-based technology (see
Table 3). Each questionnaire used a five-point Likert scale (ranging from “strongly disagree”
to “strongly agree”) to evaluate the impact factors in adopting AI-based technology.

Valid responses obtained through the email survey were used for various empiri-
cal analyses including hypotheses verification. Prior to verification, frequency analysis
and technical statistical analysis were performed preferentially on all measurement vari-
ables in order to check data input errors, etc. Through this process, error values were
removed, and the measurement variables’ distribution was checked by identifying the
normal distribution, skewness, and kurtosis of variables measured on the consecutive
interval scale. Analysis details after implementing these procedures are as follows. First,
frequency analysis was conducted to examine the demographic information of respon-
dents. Second, technical statistical analysis was conducted to examine the basic traits
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(e.g., average, median, mode, standard deviation, skewness, etc.) of continuous variables
of the questionnaire (technology, personal competence, organizational competence, social
influence, perceived usefulness, perceived ease of use, satisfaction with the technology, and
size of company). Third, in order to evaluate the internal consistency of the questionnaire,
as well as the convergent validity and conceptual validity of measurement items, reliability
analysis (using Cronbach’s α coefficient) and confirmatory factor analysis (CFA) were
conducted. Lastly, research hypothesis verification through the influencing relationship
between responses was undertaken based on structural equation modeling (SEM). We
used IBM SPSS 28 and AMOS28 programs to verify the hypotheses for factors affecting the
acceptance of AI-based technology.

4.2. Model Validation
4.2.1. Measurement Model

In order to evaluate the overall compatibility of the model, we used the general
indexes—the ratio of x2 to the degree of freedom (df ), root-mean-square residual (RMR),
goodness-of-fit (GIF), comparative fit index (CFI), and Bentler and Bonnet’s normed fit
index (NFI)—used for model compatibility measurement [105]. As indicated in Table 4, all
x2/df, RMR, NFI, TLI, and CFI indexes except GFI were shown to exceed the recommended
reference values in the research. The GFI was 0.843, which did not meet the recommended
standard of over 0.9 in this research. However, it was over 0.8, and according to the results
of research by Gefen, Straub, and Boudreau, this can be considered acceptable [106].

Table 4. Results of model compatibility measurement index.

Fitness Indices Recommended Value Measurement Value Structural Model

X2/df ≤3.0 2.282 2.391
RMR ≤0.1 0.040 0.033
GIF ≥0.9 0.843 0.961
NFI ≥0.9 0.905 0.966

TLI (NNFI) ≥0.9 0.930 0.934
CFI ≥0.9 0.944 0.970

Moreover, seven questions in total were deducted from the research based on verified
variables in previous research. Through confirmatory factor analysis of the individual
deducted questions, the accuracy and appropriateness of the measurement variables for
questions were examined. CFA refers to examining the compatibility of the measurement
model to measure the relationships between measurement items and questions [106]. Con-
vergent validity and discriminant validity were analyzed to determine the measurement
model’s compatibility. In order to check these, factor loading, average variance extracted
(AVE), and composite reliability (CR) were measured. In general, if factor loading and AVE
are over 0.5, they are considered to have convergent validity, and if the composite reliability
value is over 0.7, it is considered to indicate internal consistency and convergent validity of
the research model [105]. In this research, CR and AVE were 0.913~0.948 and 0.529~0.779,
respectively, which appears to exceed the standard (see Table 5).

In order to examine discriminant validity, covariance between the factors was com-
pared with the average variance extracted from each individual factor [107]. Discriminant
validity refers to the process of examining whether there are differences between each
question, and whether there is discrimination between them, indicating that they are
independent questions rather than the same. We examined discriminant validity using
the correlation matrix table derived from the CFA results of the theoretical model. If the
AVE value was higher than the square of the coefficient correlation value (i.e., squared
correlation), we considered discriminant validity to be acquired [108]. As shown in Table 6,
the square root value of the AVE of each latent variable was larger than the coefficient
correlation of others. These results show that the research model suggested in the study is
discriminant valid.
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Table 5. CFA results for measurement model.

Latent Variables Observed Indicators β SE t Value Cronbach CR AVE

Technology

TECH6 0.735 - -

0.908 0.931 0.692

TECH5 0.761 0.074 15.205
TECH4 0.799 0.075 15.644
TECH3 0.870 0.087 15.186
TECH2 0.846 0.098 13.983
TECH1 0.789 0.099 13.413

Personal competence

PERS6 0.645 - -

0.873 0.870 0.529

PERS5 0.641 0.086 12.592
PERS4 0.610 0.096 11.041
PERS3 0.762 0.136 11.871
PERS2 0.731 0.110 11.722
PERS1 0.767 0.123 12.266

Organizational
competence

ORG9 0.923 - -

0.869 0.944 0.654

ORG8 0.656 0.042 17.947
ORG7 0.941 0.026 36.971
ORG6 0.923 0.027 33.583
ORG5 0.908 0.030 32.115
ORG4 0.917 0.027 33.251
ORG3 0.895 0.030 30.098
ORG2 0.922 0.027 32.779
ORG1 0.900 0.026 30.595

Socialin
fluence

SOC6 0.765 - -

0.903 0.913 0.638

SOC5 0.772 0.046 21.720
SOC4 0.704 0.058 15.173
SOC3 0.741 0.059 15.418
SOC2 0.656 0.057 12.329
SOC1 0.735 0.053 14.044

Perceived usefulness

PEOU5 0.859 - -

0.934 0.948 0.753

PEOU4 0.882 0.047 22.695
PEOU3 0.863 0.043 22.456
PEOU2 0.865 0.045 20.930
PEOU1 0.844 0.051 19.150

Perceived
ease of use

PU6 0.831 - -
PU5 0.888 0.042 24.672

0.943 0.946 0.779
PU4 0.851 0.048 21.597
PU3 0.860 0.051 20.577
PU2 0.817 0.049 20.079
PU1 0.818 0.045 20.388

Satisfaction of the
technology

SATF4 0.852 - -

0.932 0.919 0.739
SATF3 0.822 0.048 22.108
SATF2 0.796 0.049 19.507
SATF1 0.819 0.043 20.383

Intention to use

INT6 0.568 - -

0.912 0.916 0.652

INT5 0.587 0.088 10.521
INT4 0.873 0.104 11.385
INT3 0.847 0.118 10.327
INT2 0.795 0.117 10.260
INT1 0.810 0.134 10.505

Note: TECH = technology; PERS = personal competence; ORG = organization competence; SOC = social influence;
PEOU = perceived ease of use; PU = perceived usefulness; SATF = satisfaction with the technology; INT = intention
to use; β = standardized regression coefficient; SE = standard error; CR = composite reliability; and AVE = average
variance extracted.

4.2.2. Hypothesis Verification of the Structural Equation Model

Structural equation model analysis was described in the previous section in order to
verify the research hypotheses deducted from the theoretical background. A structural
equation is a way of verifying the relations from a cause variable to a result variable based
on the theoretical background. In a structural equation, the acceptance of a hypothesis is
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determined based on the critical ratio (t-value) of CR ± 1.96 and a significance level of 0.05
or less. Prior to verifying the causal relationship, the overall compatibility of the model
was shown to meet the established criteria, including the theoretical model of this study as
the appropriate model.

Table 6. Correlation matrix between hypotheses.

TECH PERS ORG SOC PEOU PU SATF INT

TECH 1.000
PERS 0.693 1.000
ORG 0.731 0.552 1.000
SOC 0.809 0.676 0.687 1.000

PEOU 0.555 0.775 0.549 0.653 1.000
PU 0.724 0.751 0.691 0.737 0.827 1.000

SATF 0.711 0.692 0.731 0.756 0.760 0.925 1.000
INT 0.208 0.155 0.307 0.213 0.150 0.182 0.207 1.000

As indicated in Table 7, it can be seen that 11 research hypotheses were verified among the
suggested 14 in the theoretical model. The impact of exogenous variables on the acceptance of
AI-based technology or products is as shown in Table 7. The exogenous variables with respect
to the acceptance of AI-based technology or products appeared to have a positive (+) impact on
two aspects, which are the perceived ease of use (β = 0.269, CR = 5.735, p < 0.001) and perceived
usefulness (β = 0.567, CR = 5.418, p < 0.001); thus, the two research hypotheses were chosen.
Similarly, the β-values of H3a and H3b, the research hypotheses of organizational competence
suggested as exogenous variables, were 0.084 and 0.124, and the CR values were 3.338 and 5.000,
which is statistically meaningful (p < 0.001); thus, these hypotheses were selected. However, as
a result of the structural equation analysis, personal competence was shown to have a positive
(+) impact on perceived ease of use (β = 0.564, CR = 12.157, p < 0.001), but had a negative
(−) impact on perceived usefulness (β = 0.059, CR = 1.380, p < 0.001). Analogous to these,
social influence was shown to have a positive (+) impact on perceived ease of use (β = 0.290,
CR = 5.000, p < 0.001), but had a negative (−) impact on perceived usefulness (β = 0.073,
CR = 1.551, p = 1.551) and on the intention to use technology (β = 0.014, CR = 0.187, p = 0.851).

Table 7. Verification results of the structural equation model’s influencing relationship on the
theoretical model.

Hypotheses Relationship β SE CR ρ Results

H1a PU ← TECH 0.268 0.047 5.753 *** Supported
H1b PEOU ← TECH 0.576 0.085 5.418 *** Supported
H2a PU ← PERS 0.059 0.043 1.380 0.168 Not supported
H2b PEOU ← PERS 0.564 0.046 12.157 *** Supported
H3a PU ← ORG 0.084 0.025 3.338 *** Supported
H3b PEOU ← ORG 0.124 0.031 5.000 *** Supported
H4a PU ← SOC 0.073 0.047 1.551 0.121 Not supported
H4b PEOU ← SOC 0.290 0.058 5.000 *** Supported
H4c INT ← SOC 0.014 0.077 0.187 0.851 Not supported
H5a PU ← PEOU 0.485 0.039 12.574 *** Supported
H5b SATF ← PEOU 0.135 0.038 3.563 *** Supported
H6a SATF ← PU 0.680 0.039 17.563 *** Supported
H6b INT ← PU 0.333 0.072 4.030 *** Supported
H7 INT ← SATF 0.106 0.075 1.409 ** Supported

Note: β = standardized regression coefficient; SE = standardized error; and CR = critical ratio (t-value),
*** p < 0.001, ** p < 0.01.

Moreover, perceived ease of use was shown to have a positive (+) impact on perceived
usefulness (β = 0.485, CR = 12.574, p < 0.001) in adopting AI-based technology or prod-
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ucts, similar to previous research. Along with this result, technology satisfaction newly
suggested in the research was shown to be positively (+) affected by perceived ease of use
(β = 0.135, CR = 3.563, p < 0.001) and perceived usefulness (β = 0.680, CR = 17.563,
p < 0.001). That is, it can be acknowledged from the research that AI-based technology or
products that are technically easy to use and can enhance task performance can provide
satisfaction to potential users.

However, personal competence and social influence were shown to have a negative (−)
impact on perceived usefulness, thus, hypotheses H2a and H4a were dismissed accordingly.
In addition, social influence had no impact on potential users in the construction industry.
It was found that the impact of social influence on the acceptance of new technology was
similar to previous research, showing a relatively weak effect. In addition, the survey results
show that social influence had a negative (−) impact on the intention to use technology
(see Figure 3). These results, with respect to adopting AI-based technology or products,
are considered to be due to the conservativeness and site-orientation of the construction
industry as well as the many manual workers who are site-centered.
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Together with the analysis of adopting AI-based technology or products, an analysis of
acceptance in accordance with company size and affecting factors was also conducted with
respect to survey respondents. According to the Enforcement Decree of Minor Enterprises
Act in Korea, approximately 98% of companies in the construction industry are small and
medium enterprises, accounting for 62% of the total industry revenue. Thus, it is considered
that analyses on the attitudes and influencing factors of adopting AI-based technology
or products depending on company size in the construction industry are necessary in
the establishing of strategies to adopt corporate, customized, AI-based technologies or
products. We divided the surveyed samples into two groups, large corporations and small-
and medium-sized enterprises, to analyze the moderating effects of H1 to H7. Based
on this division, the results of the analysis of the adoption of AI-based technologies or
products among large corporations and small- and medium-sized enterprises are presented
in Figures 4 and 5.

When adopting AI-based technologies or products, the small- and medium-sized
enterprise group in the construction industry was identified to have a negative (−) impact
on two factors, which were perceived ease of use and perceived usefulness. Unlike the
general approach of adopting viral marketing or using influential individuals to promote or
disseminate new products or technologies, this study suggests that social influence has little
impact on the adoption of AI-based technologies or products among small- and medium-
sized enterprises in the construction industry [109–111]. It also showed that organizational
competence was a negative (−) factor with respect to perceived ease of use in small-
and medium-sized enterprises. As a result of the research, since technological factors,
organizational competence, and social influence are factors that could create a negative
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attitude towards adopting AI-based technologies or products in small- and medium-sized
enterprises, it is considered necessary to minimize these factors when adopting.
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5. Discussion

We empirically researched the relationship between the adoption of AI technology or
products and the factors influencing their acceptance in the construction industry based on
the size of the company. For empirical research, the study was designed based on previous
research and technological satisfaction, and a new hypothesis was added to explain the
acceptance of AI-based technologies or products. The below implications were deduced
through these empirical verifications.

First, viral marketing, which is an important method for new product promotion, is
not commonly used by companies in the construction industry when adopting AI-based
technologies or products. Viral marketing is a technique for promotion or providing
information about a product that is constantly delivered between the actual users, not
through mass media advertisements [109–112]. Due to the emergence of social media and
various information-delivering channels, it is utilized as a significant way of distributing
new products [112]. However, as a result of our research, recommendations or going
viral are not considered effective in adopting AI-based technologies or products in the
construction industry. Due to the nature of the products in the construction industry, which
involve long-term construction and consideration for human safety after construction, it
is believed that the industry avoids the use of good technology or products through viral
recommendations [30,35,94,97]. In the construction industry, which uses technology or
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products verified over long periods, viral promotion of AI-based technologies or products
should be avoided.

Next, we determined that organizational competence is an important influencing
factor in the adoption of AI-based technologies or products. In companies, there are many
occasions where new technologies or products are introduced based on top management’s
decisions [113–116]. For conservative industries, such as construction, whether to accept
or postpone a new technology is decided by the top management. Moreover, the top
management of a company plays the role of integrating organizational members, and the
greater the uncertainty surrounding AI-based technologies or products, the more important
its role becomes in sharing work and promoting participation [117,118]. Furthermore, the
knowledge and intuition of top management can foresee and respond to market demand
and the company’s direction, and their intuition plays a crucial role in producing a core
capability to engage with uncertain markets and futures and in setting comprehensive
strategies. The positive role of top management in the adoption of new products or tech-
nologies, as identified in the results of this study regarding the organization’s capabilities,
supports previous research findings [119].

Additionally, the research results show that perceived ease of use and perceived useful-
ness have a positive (+) impact on technological satisfaction. These results are similar to those
of Devaraj et al. (2002) and Landrum and Prybutok (2004), from which it could be identified
that perceived ease of use and perceived usefulness, as the user’s predisposing factors of
technological satisfaction, are causes that have a positive influence [120–122]. Furthermore,
our results show that the technological satisfaction of a user had a positive (+) impact on the
intention to use new technology. This was in accordance with the previous research results of
Oliver (1980), who found that user satisfaction has a direct influence on the potential inten-
tion of action, such as the continuous intention to use [99]. Thus, along with the previously
mentioned top management’s decisions, technology being easy to use and useful to users is
important to consider when adopting AI-based technologies or products.

6. Conclusions and Implications
6.1. Conclusions

This research has empirically verified the factors affecting the adoption of AI-based
technologies or products, depending on the size of company in the construction industry.
In order to achieve the research objectives, the TAM was applied to examine influencing
factors with respect to the adoption of AI-based technologies or products. Technological
and organizational factors were identified to positively influence perceived usefulness and
perceived ease of use. Users seemed to think that technology would be useful to their work
and would be easy to use when enough capital and education were invested, prior to the
company adopting AI-based technologies or products. It was found that perceived ease of
use and perceived usefulness indicated satisfaction with new technology, and the higher
the intention to use, the higher the satisfaction.

However, as various information-sharing and distribution channels increase, the
frequency of using new technologies or products is not achieved through traditional mar-
keting, but through viral marketing via social media; impacts due to influential persons
or organizations are also high (REF). As marketing techniques are used as tools for the
promotion or dissemination of various products, social influence is regarded as one of the
main factors in adopting new technologies or products. However, according to our study,
considering adopting AI-based technologies or products is not socially or externally influ-
enced in the construction industry, regardless of company size. This result is believed to be
an important implication with respect to the attitudes towards adopting new technologies
or products in organizations within the construction industry. That is, organizations within
the construction industry selectively choose when to adopt new technologies or products,
but not due to external trends or streams.

Furthermore, there were differences in adopting AI-based technology or products
depending on the size of the company. The distinct factor between large corporates and
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small- and medium-sized enterprises was organizational competence. In general, large
corporates are able to develop customized technology more easily, as they can handle ev-
erything from demand surveys for the technologies they require to their own development.
Thus, it was found that the organization’s capabilities have a positive (+) impact on the
perceived ease of use and perceived usefulness of potential users, as a sufficient reflection
of the technology demand from technology users is possible. The results show similarities
to previous research, indicating that the size of a company is advantageous in large-scale
capital implementation and human resource supply in terms of technological innovation.

6.2. Implications

The results of this research suggest the following: Firstly, in terms of adopting AI-
based technologies or products in the construction industry, the relationship between
satisfaction with the technology, perceived usefulness, and perceived ease of use was
examined. The predisposing factor of intention to use AI-based technologies or products
could not be understood by simple perceived traits of technology usage, but was instead
based on personal judgments of the technology; satisfaction was an important factor
with respect to the intention to use. Additionally, satisfaction with the technology for an
individual user was shown to be based on perceived usefulness and perceived ease of use.
The research result was similar to that of Oliver (1980) [99], which implies that positive
judgment is influential in forming continuous intentions to use the technology. Secondly,
we checked whether certain traits have an impact on perceived usefulness, perceived
ease of use, technological satisfaction, and the intention to use technology when adopting
AI-based technologies or products, and we identified relations between the variables. By
applying the TAM as the theoretical outline of the research models for adopting AI-based
technologies or products in the construction industry, a theoretical system that could
explain a potential technology user’s usage attitude or practical usage actions regarding
usage intention was prepared. Thirdly, empirical analysis was performed on different
influencing factors depending on company size when adopting AI-based technologies or
products. In other words, a customized strategy should be set depending on corporate
size when introducing new technology. Moreover, constant attention should be paid to
technological satisfaction, perceived ease of use, and perceived usefulness for continuous
usage of the adopted AI-based technology or product.

6.3. Limitations and Future Research

Despite the suggested implications, the research still has some limitations, which
suggest that additional study reflecting these is necessary. First, although the study was
conducted to examine differences in company size within the construction industry based
on the extracted sample, differences that may arise in the adoption of AI-based technologies
or products depending on the industry were not investigated. In other words, it is consid-
ered that additional research on the differences in accepting technology and the influencing
factors depending on the type of business in the construction industry is necessary. It seems
that establishing the basis for setting customized strategies per company size and industry
is necessary through additional research in the industry. Moreover, the results show that
organizational competence was one of the important factors affecting perceived ease of
use and perceived usefulness in this research. Top management’s decision-making is an
important factor with respect to organizational competence for the adoption of technology,
and it seems that research considering factors including top management’s attitude and
organizational culture is necessary.
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